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Abstract
For a given sequence α = [α1,α2, . . . ,αN+1] of N +1 positive integers, we consider
the combinatorial function E(α)(t) that counts the non-negative integer solutions
of the equation α1x1 + α2x2 + · · ·+ αNxN + αN+1xN+1 = t, where the right-hand
side t is a varying non-negative integer. It is well-known that E(α)(t) is a quasi-
polynomial function in the variable t of degree N . In combinatorial number theory
this function is known as Sylvester’s denumerant. Our main result is a new algo-
rithm that, for every fixed number k, computes in polynomial time the highest k+1
coefficients of the quasi-polynomial E(α)(t) as step polynomials of t (a simpler and
more explicit representation). Our algorithm is a consequence of a nice poset struc-
ture on the poles of the associated rational generating function for E(α)(t) and the
geometric reinterpretation of some rational generating functions in terms of lattice
points in polyhedral cones. Our algorithm also uses Barvinok’s fundamental fast
decomposition of a polyhedral cone into unimodular cones. This paper also presents
a simple algorithm to predict the first non-constant coefficient and concludes with
a report of several computational experiments using an implementation of our algo-
rithm in LattE integrale. We compare it with various Maple programs for partial
or full computation of the denumerant.
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1. Introduction

Let α = [α1,α2, . . . ,αN ,αN+1] be a sequence of positive integers. If t is a non-
negative integer, we denote by E(α)(t) the number of solutions in non-negative
integers of the equation

∑N+1
i=1 αixi = t. In other words, E(α)(t) is the same as the

number of partitions of the number t using the parts α1,α2, . . . ,αN ,αN+1 (with
repetitions allowed). Let us begin with some background and history before stating
the precise results.

The combinatorial function E(α)(t) was called by J. Sylvester the denumerant.
The denumerant E(α)(t) has a beautiful structure: it has been known since the
times of Cayley and Sylvester that E(α)(t) is in fact a quasi-polynomial, i.e., it can
be written in the form E(α)(t) =

∑N
i=0 Ei(t)ti, where Ei(t) is a periodic function

of t (a more precise description of the periods of the coefficients Ei(t) will be given
later). In other words, there exists a positive integer Q such that for t in the coset
q+QZ, the function E(α)(t) coincides with a polynomial function of t. This paper
presents a new algorithm to compute individual coefficients of this function and
uncovers new structure in generating functions that allows one to compute their
periodicity. The study of the coefficients Ei(t), in particular determining their
periodicity, is a problem that has occupied various authors and it is the key focus
of our investigations here. Sylvester and Cayley first showed that the coefficients
Ei(t) are periodic functions having period equal to the least common multiple of
α1, . . . ,αN+1 (see [12, 13] and references therein). In 1943, E.T. Bell gave a simpler
proof and remarked that the period Q is in the worst case given by the least common
multiple of the αi, but in general it can be smaller. A classical observation that
goes back to I. Schur is that when the list α consist of relatively prime numbers,
then asymptotically

E(α)(t) ≈ tN

N !α1α2 · · ·αN+1
as the number t→∞.

Thus, in particular, there is a large enough integer F such that for any t ≥ F ,
E(α)(t) > 0 and there is a largest t for which E(α)(t) = 0. Let us give a simple
example:

Example 1. Let α = [6, 2, 3]. Then on each of the cosets q + 6Z, the function
E(α)(t) coincides with a polynomial E[q](t). Here are the corresponding polynomi-
als.

E[0](t) = 1
72 t

2 + 1
4 t+ 1, E[1](t) = 1

72 t
2 + 1

18 t−
5
72 ,

E[2](t) = 1
72 t

2 + 7
36 t+

5
9 , E[3](t) = 1

72 t
2 + 1

6 t+
3
8 ,

E[4](t) = 1
72 t

2 + 5
36 t+

2
9 , E[5](t) = 1

72 t
2 + 1

9 t+
7
72 .

Naturally, the function E(α)(t) is equal to 0 if t does not belong to the lattice∑N+1
i=1 Zαi ⊂ Z generated by the integers αi. So if g is the greatest common divisor



INTEGERS: 15 (2015) 3

of the αi (which can be computed in polynomial time), andα/g = [α1
g , α2

g , . . . , αN+1

g ]
the formula E(α)(gt) = E(α/g)(t) holds, and we may assume that the numbers αi

span Z without changing the complexity of the problem. In other words, we may
assume that the greatest common divisor of the αi is equal to 1.

Our primary concern is how to compute E(α)(t), a problem that has received
a lot of attention. Computing the denumerant E(α)(t) as a close formula or eval-
uating it for specific t is relevant in several other areas of mathematics. In the
combinatorics literature the denumerant has been studied extensively (see e.g.,
[2, 12, 15, 27, 30] and the references therein). The denumerant plays an important
role in integer optimization too [25, 28], where the problem is called an equality-
constrained knapsack. In combinatorial number theory and the theory of partitions,
the problem appears in relation to the Frobenius problem or the coin-change prob-
lem of finding the largest value of t with E(α)(t) = 0 (see [19, 24, 29] for details and
algorithms). Authors in the theory of numerical semigroups have also investigated
the so called gaps or holes of the function (see [20] and references therein), which
are values of t for which E(α)(t) = 0, i.e., those positive integers t which cannot be
represented by the αi. For N = 1 the number of gaps is (α1 − 1)(α2 − 1)/2 but for
larger N the problem is quite difficult.

Unfortunately, computing E(α)(t) or evaluating it are very challenging compu-
tational problems. Even deciding whether E(α)(t) > 0 for a given t, is a well-known
(weakly) NP-hard problem. Computing E(α)(t), i.e., determining the number of
solutions for a given t, is #P -hard. Computing the Frobenius number is also known
to be NP-hard [29]. Likewise, for a given coset q +QZ, computing the polynomial
E[q](t) is NP-hard. Despite the difficulty to compute the function, in some special
cases one can compute information efficiently. For example, the Frobenius number
can be computed in polynomial time when N + 1 is fixed [24, 7]. At the same time
for fixed N +1 one can compute the entire quasi-polynomial E(α)(t) in polynomial
time as a special case of a well-known result of Barvinok [8]. There are several
papers exploring the practical computation of the Frobenius numbers (see e.g., [19]
and the many references therein).

We are certainly not the first to use generating functions to compute E(α)(t).
Already Ehrhart obtained formulas for E(α)(t) in terms of binomial coefficients
using partial fraction decomposition. Similary, in [31] the authors propose another
way to recover the coefficients of the quasi-polynomial by a method they named
rigorous guessing. In [31] quasi-polynomials are represented as a function f(t)
given by q polynomials f [1](t), f [2](t), . . . , f [q](t) such that f(t) = f [i](t) when t ≡ i
(mod q). To find the coefficients of the f [i] their method finds the first few terms
of the Maclaurin expansion of the partial fraction decomposition to find enough
evaluations of those polynomials and then recovers the coefficients of the f [i] as a
result of solving a linear system. Here we are able to prove good complexity results
and produced faster practical algorithms using the number-theoretic nature of the
question.
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It should be noted that the polynomial-time complexity results for fixed N were
achieved using a powerful geometric interpretation of E(α)(t) (which was the origi-
nal way we encountered the problem too). The function E(α)(t) can also be thought
of as the number of integral points in the N -dimensional simplex in RN+1 defined
by ∆α = { [x1, x2, . . . , xN , xN+1] : xi ≥ 0,

∑N+1
i=1 αixi = t } with rational vertices

si = [0, . . . , 0, t
αi
, 0, . . . , 0]. In this context, E(α)(t) is a very special case of the

Ehrhart function (in honor of French mathematician Eugène Ehrhart who started
its study [18]). Ehrhart functions count the lattice points inside a convex polytope
P as it is dilated t times. All of the results we mentioned about E(α)(t) are in fact
special cases of theorems from Ehrhart theory [10]. For example, the asymptotic
result of I. Schur can be recovered from seeing that the highest-degree coefficient
of Eα(t) is just the normalized N -dimensional volume of the simplex ∆α. Our
coefficients are very special cases of Ehrhart coefficients.

This paper is about the computation of the coefficients of E(α)(t). Here are our
main results:

1. It is clear that the leading coefficient is given by Schur’s result. Our main
result is a new algorithm for computing explicit formulas for more coefficients.

Theorem 2. Given any fixed integer k, there is a polynomial time algorithm
to compute the highest k + 1 degree terms of the quasi-polynomial E(α)(t),
that is

TopkE(α)(t) =
k∑

i=0

EN−i(t)t
N−i.

The coefficients are recovered as step polynomial functions of t.

Note that the number Q of cosets for E(α)(t) can be exponential in the binary
encoding size of the problem, and thus it is impossible to list, in polynomial
time, the polynomials E[q](t) for all the cosets q+QZ. That is why to obtain
a polynomial time algorithm, the output is presented in the format of step
polynomials, which we now introduce:

(i) We first define the function {s} = s − (s) ∈ [0, 1) for s ∈ R, where (s)
denotes the largest integer smaller or equal to s. The function {s+1} =
{s} is a periodic function of s modulo 1.

(ii) If r is rational with denominator q, the function T +→ {rT } is a function
of T ∈ R periodic modulo q. A function of the form T +→

∑
i ci{riT } will

be called a (rational) step linear function. If all the ri have a common
denominator q, this function is periodic modulo q.

(iii) Then consider the algebra generated over Q by such functions on R. An
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element φ of this algebra can be written (not in a unique way) as

φ(T ) =
L∑

l=1

cl

Jl∏

j=1

{rl,jT }nl,j .

Such a function φ(T ) will be called a (rational) step polynomial.

(iv) We will say that the step polynomial φ is of degree (at most) u if∑
j nl,j ≤ u for each index l occurring in the formula for φ.5 We will

say that φ is of period q if all the rational numbers rj have common
denominator q.

In Example 1, instead of the Q = 6 polynomials E[0](t), . . . , E[5](t) that we
wrote down, we would write a single closed formula, where the coefficients of
powers of t are step polynomials in t:

1

72
t2 +

(
1

4
−

{− t
3}
6
−

{ t
2}
6

)
t

+

(
1− 3

2
{− t

3}−
3

2
{ t
2}+

1

2

(
{− t

3}
)2

+ {− t
3}{

t
2}+

1

2

(
{ t
2}

)2
)
.

For larger Q, one can see that this step polynomial representation is much
more economical than writing the individual polynomials for each of the cosets
of the period Q.

Our results come after an earlier result of Barvinok [9] who first proved a
similar theorem valid for all simplices. Also in [5], the authors presented a
polynomial-time algorithm to compute the coefficient functions of TopkE(P )(t)
for any simple polytope P (given by its rational vertices) in the form of step
polynomials defined as above. We note that both of these earlier papers use
the geometry of the problem very strongly; instead our new algorithm is dif-
ferent as it uses more of the number-theoretic structure of the special case at
hand. There is a marked advantage of our algorithms over the work in [9]: We
compute in a closed formula using the step polynomials all the possibilities of
E[q](t) while [9] recovers a single polynomial E[q](t) for a given q. More im-
portantly, our new algorithm is much easier to implement. Another relevant
prior work (also useful for comparison) is our algorithm LattE Top-Ehrhart
presented in [5]. In that paper we extend Barvinok’s results of [9] to weighted
Ehrhart quasi-polynomials via variation of his original approach. The other
important ingredient used in the efficient computation of the top coefficients is
the reinterpretation of some generating functions in terms of lattice points in

5This notion of degree only induces a filtration, not a grading, on the algebra of step polyno-
mials, because there exist polynomial relations between step linear functions and therefore several
step-polynomial formulas with different degrees may represent the same function.
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cones. This allows us to apply the polynomial-time signed cone decomposition
of Barvinok for simplicial cones of fixed dimension k [8].

2. Although the main result is computational, interesting mathematics comes
into play: the new algorithm uses directly the residue theorem in one complex
variable, which can be applied more efficiently as a consequence of a rich poset
structure on the set of poles of the associated rational generating function for
E(α)(t) (see Subsection 2.3). By Schur’s result, it is clear that the coefficient
EN (t) of the highest degree term is just an explicit constant. Our analysis of
the high-order poles of the generating function associated to E(α)(t) allows
us to decide what is the highest-degree coefficient of E(α)(t) that is not a
constant function of t (we will also say that the coefficient is strictly periodic).

Theorem 3. Given a list of non-negative integer numbers α = [α1, . . . ,αN+1],
let # be the greatest integer for which there exists a sublist αJ with |J | = #, such
that its greatest common divisor is not 1. Then for k ≥ # the coefficient of de-
gree k is a constant while the coefficient of degree #−1 of the quasi-polynomial
E(α)(t) is strictly periodic. Moreover, if the numbers αi are given with their
prime factorization, then detecting # can be done in polynomial time.

Example 4. We apply the theorem above to investigate the question of pe-
riodicity of the denumerant coefficients in the case of the classical partition
problem E([1, 2, 3, . . . ,m])(t). It is well known that this coincides with the
classical problem of finding the number of partitions of the integer t into at
most m parts, usually denoted pm(t) (see [3]). In this case, Theorem 3 pre-
dicts indeed that the highest-degree coefficient of the partition function pm(t)
which is non-constant is the coefficient of the term of degree -m/2.. This
follows from the theorem because the even numbers in the set {1, 2, 3, . . . ,m}
form the largest sublist with gcd two.

3. The paper closes with an extensive collection of computational experiments
(Section 5). We constructed a dataset of over 760 knapsacks and show our
new algorithm is the fastest available method for computing the top k terms
in the Ehrhart quasi-polynomial. Our implementation of the new algorithm
is made available as a part of the free software LattE integrale [4], version
1.7.2.6

6Available under the GNU General Public License at https://www.math.ucdavis.edu/~latte/.
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2. The Residue Formula for E(α)(t)

Let us begin fixing some notation. If φ(z) dz is a meromorphic one form on C, with
a pole at z = ζ, we write

Resz=ζ φ(z) dz =
1

2πi

∫

Cζ

φ(z) dz,

where Cζ is a small circle around the pole ζ. If φ(z) =
∑

k≥k0
φkzk is a Laurent

series in z, we denote by resz=0 the coefficient of z−1 of φ(z). Cauchy’s formula
implies that resz=0 φ(z) = Resz=0 φ(z) dz.

2.1. A Residue Formula for E(α)(t).

Let α = [α1,α2, . . . ,αN+1] be a list of integers. Define

F (α)(z) :=
1

∏N+1
i=1 (1− zαi)

.

Denote by P =
⋃N+1

i=1 { ζ ∈ C : ζαi = 1 } the set of poles of the meromorphic
function F (α) and by p(ζ) the order of the pole ζ for ζ ∈ P .

Note that because the αi have greatest common divisor 1, we have ζ = 1 as a
pole of order N + 1, and the other poles have order strictly smaller.

Theorem 5. Let α = [α1,α2, . . . ,αN+1] be a list of integers with greatest common
divisor equal to 1, and let

F (α)(z) :=
1

∏N+1
i=1 (1− zαi)

.

If t is a non-negative integer, then

E(α)(t) = −
∑

ζ∈P
Resz=ζ z

−t−1F (α)(z) dz (1)

and the ζ-term of this sum is a quasi-polynomial function of t with degree less than
or equal to p(ζ)− 1.

Proof. For |z| < 1, we write 1
1−zαi =

∑∞
u=0 z

uαi so that F (α)(z) =
∑

t≥0 E(α)(t)zt.

For a small circle |z| = ε of radius ε around 0, the integral of zk dz is equal to 0
except if k = −1, when it is 2πi. Thus

E(α)(t) =
1

2πi

∫

|z|=ε
z−tF (α)(z)

dz

z
=

1

2πi

∫

|z|=ε
z−t

N+1∏

i=1

1

(1 − zαi)

dz

z
.

Because the αi are positive integers, and t a non-negative integer, there are no
residues at z =∞ and we obtain Equation (1) by applying the residue theorem (for
a reference about computational complex analysis see [21, 22, 23].)
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Write Eζ(t) := −Resz=ζ z−tF (α)(z)dzz ; then the dependence in t of Eζ(t) comes
from the expansion of z−t near z = ζ. We write z = ζ + y, so that

Eζ(t) = −Resy=0(ζ + y)−tF (α)(ζ + y)
dy

ζ + y
.

As the pole of F (α)(ζ + y) at y = 0 is of order p(ζ), to compute the residue at
y = 0, we only need to expand in y the function (ζ+ y)−t−1 and take the coefficient
of yp(ζ)−1. Now from the generalized Newton binomial theorem, for k = t + 1 the
function (ζ + y)−k =

∑∞
n=0

(
n+k−1

n

)
ζ−k−n(−y)n. From this expression one can

recover the desired coefficient.

One can easily check that the dependence in t of our residue is a quasi-polynomial
with degree less than or equal to p(ζ)− 1. We thus obtain the result.

2.2. Poles of High and Low Order

Given an integer 0 ≤ k ≤ N , we partition the set of poles P in two disjoint sets
according to the order of the pole:

P>N−k = { ζ : p(ζ) ≥ N + 1− k }, P≤N−k = { ζ : p(ζ) ≤ N − k }.

Example 6. (a) Let α = [98, 59, 44, 100], so N = 3, and let k = 1. Then P>N−k

consists of poles of order greater than 2. Of course ζ = 1 is a pole of order 4.
Note that ζ = −1 is a pole of order 3. So P>N−k = { ζ : ζ2 = 1 }.

(b) Let α = [6, 2, 2, 3, 3], so N = 4, and let k = 2. Let ζ6 = e2πi/6 be a primitive
6th root of unity. Then ζ66 = 1 is a pole of order 5, ζ6 and ζ56 are poles of
order 1, and ζ26 , ζ

3
6 = −1, ζ46 are poles of order 3. Thus P>N−k = P>2 is the

union of { ζ : ζ2 = 1 } = {−1, 1} and { ζ : ζ3 = 1 } = {ζ26 , ζ46 , ζ66 = 1}.

According to the disjoint decomposition P = P≤N−k ∪ P>N−k, we write

EP>N−k(t) = −
∑

ζ∈P>N−k

Resz=ζ z
−t−1F (α)(z) dz

and

EP≤N−k(t) = −
∑

ζ∈P≤N−k

Resz=ζ z
−t−1F (α)(z) dz.

The following proposition is a direct consequence of Theorem 5.

Proposition 7. We have

E(α)(t) = EP>N−k(t) + EP≤N−k(t),

where the function EP≤N−k(t) is a quasi-polynomial function in the variable t of
degree strictly less than N − k.
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Thus for the purpose of computing TopkE(α)(t) it is sufficient to compute the
function EP>N−k(t). This function is computable in polynomial time, as stated in
the main result of our paper:

Theorem 8. Let k be a fixed number. Then the coefficient functions of the quasi-
polynomial function EP>N−k(t) are computable in polynomial time as step polyno-
mials of t.

We prove the theorem in the rest of this section and the next.

2.3. The Poset of the High-order Poles

We first rewrite our set P>N−k. Note that if ζ is a pole of order ≥ p, this means
that there exist at least p elements αi in the list α so that ζαi = 1. But if ζαi = 1
for a set I ⊆ {1, . . . , N + 1} of indices i, this is equivalent to the fact that ζf = 1,
for f the greatest common divisor of the elements αi, i ∈ I.

Now let I>N−k be the set of subsets of {1, . . . , N +1} of cardinality greater than
N−k. Note that when k is fixed, the cardinality of I>N−k is a polynomial function
of N . For each subset I ∈ I>N−k, define fI to be the greatest common divisor of
the corresponding sublist αi, i ∈ I. Let G>N−k(α) = { fI : I ∈ I>N−k } be the set
of integers so obtained and let G(f) ⊂ C× be the group of f -th roots of unity,

G(f) = { ζ ∈ C : ζf = 1 }.

The set {G(f) : f ∈ G>N−k(α) } forms a poset P̃>N−k (partially ordered set) with
respect to reverse inclusion. That is, G(fi) 1P̃>N−k

G(fj) if G(fj) ⊆ G(fi) (the i

and j become swapped). Notice G(fj) ⊆ G(fi)⇔ fj divides fi. Even if P̃>N−k has
a unique minimal element, we add an element 0̂ such that 0̂ 1 G(f) and call this
new poset P>N−k.

In terms of the group G(f) we have thus P>N−k =
⋃

f∈G>N−k(α) G(f). This is,
of course, not a disjoint union, but using the inclusion–exclusion principle, we can
write the indicator function of the set P>N−k as a linear combination of indicator
functions of the sets G(f):

[P>N−k] =
∑

f∈G>N−k(α)

µ>N−k(f)[G(f)],

where µ>N−k(f) := −µ′
>N−k(0̂, G(f)) and µ′

>N−k(x, y) is the standard Möbius
function for the poset P>N−k:

µ′
>N−k(s, s) = 1 ∀s ∈ P>N−k,

µ′
>N−k(s, u) = −

∑

s(t≺u

µ′
>N−k(s, t) ∀s ≺ u in P>N−k.
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For simplicity, µ>N−k will be called the Möbius function for the poset P>N−k and
will be denoted simply by µ(f). We also have the relationship

µ(f) = −µ′
>N−k(0̂, G(f))

= 1 +
∑

0̂≺G(t)≺G(f)

µ′
>N−k(0̂, G(t))

= 1−
∑

0̂≺G(t)≺G(f)

−µ′
>N−k(0̂, G(t))

= 1−
∑

0̂≺G(t)≺G(f)

µ(t).

Example 9 (Example 6, continued).

(a) Here we have I>N−k = I>2 =
{
{, , }, {, , }, {, , }, {, , }, {, , , }

}

and G>N−k(α) = {1, 1, 2, 1, 1} = {1, 2}. Accordingly, P>N−k = G(1) ∪ G(2).
The poset P>2 is

G(1)

G(2)

0̂

The arrows denote subsets, that is G(1) ⊂ G(2) and 0̂ can be identified with
the unit circle. The Möbius function µ is simply given by µ(1) = 0, µ(2) = 1,
and so [P>N−k] = [G(2)].

(b) Now I>N−k = I>2 =
{
{, , }, {, , }, . . . , {, , }, {, , , }, {, , , },

{, , , }, {, , , }, {, , , }, {, , , , }
}
and thus G>N−k(α) = {2, 3, 1, 1}

= {1, 2, 3}. Hence P>N−k = G(1) ∪ G(2) ∪ G(3) = {1} ∪ {−1, 1} ∪ {ζ3, ζ23 , 1},
where ζ3 = e2πi/3 is a primitive 3rd root of unity.

G(1)

G(2) G(3)

0̂
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The Möbius function µ is then µ(3) = 1, µ(2) = 1, µ(1) = −1, and thus
[P>N−k] = −[G(1)] + [G(2)] + [G(3)].

Theorem 10. Given a list α = [α1, . . . ,αN+1] and a fixed integer k, then the values
for the Möbius function for the poset P>N−k can be computed in polynomial time.

Proof. First find the greatest common divisor of all sublists of the list α with size
greater than N − k. Let V be the set of integers obtained from all such greatest
common divisors. We note that each node of the poset P>N−k is a group of roots
of unity G(v). But it is labeled by a non-negative integer v.

Construct an array M of size |V | to keep the value of the Möbius function.
Initialize M to hold the Möbius values of infinity: M [v] ← ∞ for all v ∈ V . Then
call Algorithm 2.3 below with findMöbius(1, V,M).

Algorithm 1 findMöbius(n, V , M)

Input: n: the label of node G(n) in the poset P̃>N−k

Input: V : list of numbers in the poset P̃>N−k

Input: M : array of current Möbius values computed for P>N−k

Output: updates the array M of Möbius values
1: if M [n] <∞ then
2: return
3: end if
4: L← { v ∈ V : n | v } \ {n}
5: if L = ∅ then
6: M [n]← 1
7: return
8: end if
9: M [n]← 0

10: for all v ∈ L do
11: findMöbius(v, L,M)
12: M [n]←M [n] +M [v]
13: end for
14: M [n]← 1−M [n]

Algorithm 2.3 terminates because the number of nodes v with M [v] = ∞ de-
creases to zero in each iteration. To show correctness, consider a node v in the
poset PN−k. If v covers 0̂, then we must have M [v] = 1 as there is no other G(w)
with G(f) ⊂ G(w). Else if v does not cover 0̂, we set M [v] to be 1 minus the sum∑
w: v|w

M [w] which guarantees that the poles in G(v) are only counted once because
∑

w: v|w
M [w] is how many times G(v) is a subset of another element that has already

been counted.

The number of sublists of α considered is
(N
1

)
+
(N
2

)
+ · · ·+

(N
k

)
= O(Nk), which

is a polynomial for k fixed. For each sublist, the greatest common divisor of a set
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of integers is computed in polynomial time. Hence |V | = O(Nk). Notice that lines
4 to 14 of Algorithm 2.3 are executed at most O(|V |) times as once a M [v] value is
computed, it is never recomputed. The number of additions on line 12 is O(|V |2)
while the number of divisions on line 4 is also O(|V |2). Hence this algorithm finds
the Möbius function in O(|V |2) = O(N2k) time where k is fixed.

Let us define for any positive integer f

E(α, f)(t) = −
∑

ζ: ζf=1

Resz=ζ z
−t−1F (α)(z) dz.

Proposition 11. Let k be a fixed integer, then

EP>N−k(t) = −
∑

f∈G>N−k(α)

µ(f)E(α, f)(t). (2)

Thus we have reduced the computation to the fast computation of E(α, f)(t).

3. Polyhedral Reinterpretation of the Generating Function E(α, f)(t)

To complete the proof of Theorem 8 we need only to prove the following proposition.

Proposition 12. For any integer f ∈ G>N−k(α), the coefficient functions of the
quasi-polynomial function E(α, f)(t) and hence EP>N−k(t) are computed in polyno-
mial time as step polynomials of t.

By Proposition 11 we know we need to compute the value of E(α, f)(t). Our
goal now is to demonstrate that this function can be thought of as the generating
function of the lattice points inside a convex cone. This is a key point to guarantee
good computational bounds. Before we can do that we review some preliminaries
on generating functions of cones. We recall the notion of generating functions of
cones; see also [5].

Let V = Rr provided with a lattice Λ, and let V ∗ denote the dual space. A
(rational) simplicial cone c = R≥0w1 + · · · + R≥0wr is a cone generated by r
linearly independent vectors w1, . . . ,wr of Λ. We consider the semi-rational affine
cone s + c, s ∈ V . Let ξ ∈ V ∗ be a dual vector such that 〈ξ,wi〉 < 0, 1 ≤ i ≤ r.
Then the sum

S(s+ c,Λ)(ξ) =
∑

n∈(s+c)∩Λ

e〈ξ,n〉

is summable and defines an analytic function of ξ. It is well known that this function
extends to a meromorphic function of ξ ∈ V ∗

C . We still denote this meromorphic
extension by S(s + c,Λ)(ξ).



INTEGERS: 15 (2015) 13

Example 13. Let V = R with lattice Z, c = R≥0, and s ∈ R. Then

S(s+ R≥0,Z)(ξ) =
∑

n≥s

enξ = e.s/ξ
1

1− eξ
.

Using the function {x} = x− (x), we find -s. = s+ {−s} and can write

e−sξS(s+ R≥0,Z)(ξ) =
e{−s}ξ

1− eξ
. (3)

Recall the following result:

Theorem 14. Consider the semi-rational affine cone s + c and the lattice Λ. The
series S(s+ c,Λ)(ξ) is a meromorphic function of ξ such that

∏r
i=1 〈ξ,wi〉 · S(s+

c,Λ)(ξ) is holomorphic in a neighborhood of 0.

Let t ∈ Λ. Consider the translated cone t + s + c of s + c by t. Then we have
the covariance formula

S(t+ s + c,Λ)(ξ) = e〈ξ,t〉S(s+ c,Λ)(ξ). (4)

Because of this formula, it is convenient to introduce the following function.

Definition 15. Define the function

M(s, c,Λ)(ξ) := e−〈ξ,s〉S(s+ c,Λ)(ξ).

Thus the function s +→M(s, c,Λ)(ξ) is a function of s ∈ V/Λ (a periodic function
of s) whose values are meromorphic functions of ξ. It is interesting to introduce
this modified function since, as seen in Equation (3) in Example 13, its dependance
in s is via step linear functions of s.

There is a very special and important case when the function M(s, c,Λ)(ξ) =
e−〈ξ,s〉S(s + c,Λ)(ξ) is easy to write down. A unimodular cone, is a cone u whose
primitive generators gu

i form a basis of the lattice Λ. We introduce the following
notation.

Definition 16. Let u be a unimodular cone with primitive generators gu
i and let

s ∈ V . Then, write s =
∑

i sig
u
i , with si ∈ R, and define

{−s}u =
∑

i

{−si}gu
i .

Thus s + {−s}u =
∑

i-si.gu
i . Note that if t ∈ Λ, then {−(s + t)}u = {−s}u.

Thus, s +→ {−s}u is a function on V/Λ with value in V . For any ξ ∈ V ∗, we then
find

S(s+ u,Λ)(ξ) = e〈ξ,s〉e〈ξ,{−s}u〉 1
∏

j(1 − e〈ξ,g
u
j 〉)
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and thus

M(s, u,Λ)(ξ) = e〈ξ,{−s}u〉 1
∏

j(1− e〈ξ,g
u
j 〉)

. (5)

For a general cone c, we can decompose its indicator function [c] as a signed sum
of indicator functions of unimodular cones,

∑
u εu[u], modulo indicator functions of

cones containing lines. As shown by Barvinok (see [8] for the original source and
[10] for a great new exposition), if the dimension r of V is fixed, this decomposition
can be computed in polynomial time. Then we can write

S(s+ c,Λ)(ξ) =
∑

u

εu S(s+ u,Λ)(ξ).

Thus we obtain, using Formula (5),

M(s, c,Λ)(ξ) =
∑

u

εu e
〈ξ,{−s}u〉 1

∏
j(1 − e〈ξ,g

u
j 〉)

. (6)

Here u runs through all the unimodular cones occurring in the decomposition of c,
and the gu

j ∈ Λ are the corresponding generators of the unimodular cone u.

Remark 17. For computing explicit examples, it is convenient to make a change
of variables that leads to computations in the standard lattice Zr. Let B be the
matrix whose columns are the generators of the lattice Λ; then Λ = BZr.

M(s, c,Λ)(ξ) = e−〈ξ,s〉
∑

n∈(s+c)∩BZr

e〈ξ,n〉

= e−〈B#ξ,B−1s〉
∑

x∈(B−1(s+c)∩Zr

e〈B
#ξ,x〉 = M(B−1s, B−1c,Zr)(B0ξ).

3.1. Back to the Computation of E(α, f)(t)

After the preliminaries we will see how to rewrite E(α, f)(t) in terms of lattice points
of simplicial cones. This will require some suitable manipulation of the initial form
of E(α, f)(t). To start with, define the function

E(α, f)(t, T ) = − resx=0 e
−tx

∑

ζ: ζf=1

ζ−T

∏N+1
i=1 (1− ζαieαix)

.

Writing z = ζex, changing coordinates in residue and computing dz = z dx we
write:

E(α, f)(t, T ) = − resz=ζ z
−t−1ζt

∑

ζ : ζf=1

ζ−T

∏N+1
i=1 (1− zαi)

.

By evaluating at T = t, we obtain:

E(α, f)(t) = E(α, f)(t, T )
∣∣
T=t

. (7)

We can now define:
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Definition 18. Let k be fixed. For f ∈ G>N−k(α), define

F(α, f, T )(x) :=
∑

ζ: ζf=1

ζ−T

∏N+1
i=1 (1 − ζαieαix)

,

and

Ei(f)(T ) := resx=0
(−x)i

i!
F(α, f, T )(x).

Then
E(α, f)(t, T ) = − resx=0 e

−txF(α, f, T )(x).

The dependence in T of F(α, f, T )(x) is through ζT . As ζf = 1, the function
F(α, f, T )(x) is a periodic function of T modulo f whose values are meromorphic
functions of x. Since the pole in x is of order at most N + 1, we can rewrite
E(α, f)(t, T ) in terms of Ei(f)(T ) and prove:

Theorem 19. Let k be fixed. Then for f ∈ G>N−k(α) we can write

E(α, f)(t, T ) =
N∑

i=0

tiEi(f)(T )

with Ei(f)(T ) a step polynomial of degree less than or equal to N − i and periodic
of T modulo f . This step polynomial can be computed in polynomial time.

It is now clear that once we have proved Theorem 19, then the proof of Theorem
8 will follow. Writing everything out, for m such that 0 ≤ m ≤ N , the coefficient
of tm in the Ehrhart quasi-polynomial is given by

Em(T ) = − resx=0
(−x)m

m!

∑

f∈G>m(α)

µ(f)
∑

ζ: ζf=1

ζ−T

∏
i(1− ζαieαix)

. (8)

As an example, we see that EN is indeed independent of T because G>N (α) = {1};
thus EN is a constant. We now concentrate on writing the function F(α, f, T )(x)
more explicitly.

Definition 20. For a list α and integers f and T , define meromorphic functions
of x ∈ C by:

B(α, f)(x) := 1∏
i : f |αi

(1− eαix)
,

S(α, f, T )(x) :=
∑

ζ: ζf=1

ζ−T

∏
i : f !αi

(1 − ζαieαix)
.

Thus
F(α, f, T )(x) = B(α, f)(x)S(α, f, T )(x).

The expression we obtained will allow us to compute F(α, f, T ) by relating
S(α, f, T ) to a generating function of a cone. This cone will have fixed dimen-
sion when k is fixed.
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3.2. E(α, f)(t) as the Generating Function of a Cone in Fixed Dimension

To this end, let f be an integer from G>N−k(α). By definition, f is the greatest
common divisor of a sublist of α. Thus the greatest common divisor of f and the
elements of α which are not a multiple of f is still equal to 1. Let J = J(α, f) be
the set of indices i ∈ {1, . . . , N + 1} such that αi is indivisible by f , i.e., f ! αi.
Note that f by definition is the greatest common divisor of all except at most k of
the integers αj . Let r denote the cardinality of J ; then r ≤ k. Let VJ = RJ and
let V ∗

J denote the dual space. We will use the standard basis of RJ , and we denote
by RJ

≥0 the standard cone of elements in RJ having non-negative coordinates. We
also define the sublist αJ = [αi]i∈J of elements of α indivisible by f and view it as
a vector in V ∗

J via the standard basis.

Definition 21. For an integer T , define the meromorphic function of ξ ∈ V ∗
J ,

Q(α, f, T )(ξ) :=
∑

ζ: ζf=1

ζ−T

∏
j∈J(α,f)(1− ζαj eξj )

.

Remark 22. Observe that Q(α, f, T ) can be restricted at ξ = αJx, for x ∈ C
generic, to give S(α, f, T )(x).

We find that Q(α, f, T )(ξ) is the discrete generating function of an affine shift
of the standard cone RJ

≥0 relative to a certain lattice in VJ which we define as:

Λ(α, f) :=

{
y ∈ ZJ : 〈αJ ,y〉 =

∑

j∈J

yjαj ∈ Zf
}
. (9)

Consider the map φ : ZJ → Z/Zf , y +→ 〈α,y〉+Zf . Its kernel is the lattice Λ(α, f).
Because the greatest common divisor of f and the elements of αJ is 1, by Bezout’s
theorem there exist s0 ∈ Z and s ∈ ZJ such that 1 =

∑
i∈J siαi + s0f . Therefore,

the map φ is surjective, and therefore the index |ZJ : Λ(α, f)| equals f .

Theorem 23. Let α = [α1, . . . ,αN+1] be a list of positive integers and f be the
greatest common divisor of a sublist of α. Let J = J(α, f) = { i : f ! αi }. Let
s0 ∈ Z and s ∈ ZJ such that 1 =

∑
i∈J siαi+s0f using Bezout’s theorem. Consider

s = (si)i∈J as an element of VJ = RJ . Let T be an integer, and ξ = (ξi)i∈J ∈ V ∗
J

with ξi < 0. Then

Q(α, f, T )(ξ) = f e〈ξ,Ts〉
∑

n∈(−Ts+RJ
≥0)∩Λ(α,f)

e〈ξ,n〉

Remark 24. The function Q(α, f, T )(ξ) is a function of T periodic modulo f .
Since fZJ is contained in Λ(α, f), the element fs is in the lattice Λ(α, f), and we
see that the right hand side is also a periodic function of T modulo f .
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Proof of Theorem 23. Consider ξ ∈ V ∗
J with ξj < 0. Then we can write the equality

1∏
j∈J (1− ζαj eξj )

=
∏

j∈J

∞∑

nj=0

ζnjαjenjξj .

So
Q(α, f, T )(ξ) =

∑

n∈ZJ
≥0

( ∑

ζ : ζf=1

ζ
∑

j njαj−T
)
e
∑

j∈J njξj .

We note that
∑

ζ: ζf=1 ζ
m is zero except if m ∈ Zf , when this sum is equal to f .

Then we obtain that Q(α, f, T ) is the sum over n ∈ ZJ
≥0 such that

∑
j njαj − T ∈

Zf . The equality 1 =
∑

j∈J sjαj + s0f implies that T ≡
∑

j tsjαj modulo f , and
the condition

∑
j njαj−T ∈ Zf is equivalent to the condition

∑
j(nj−Tsj)αj ∈ Zf .

We see that the point n − T s is in the lattice Λ(α, f) as well as in the cone
−T s+ RJ

≥0 (as nj ≥ 0). Thus the claim.

By definition of the meromorphic functions S
(
−T s + RJ

≥0,Λ(α, f)
)
(ξ) and

M
(
−T s,RJ

≥0,Λ(α, f)
)
(ξ), we obtain the following equality.

Corollary 25. We have

Q(α, f, T )(ξ) = f M
(
−T s,RJ

≥0,Λ(α, f)
)
(ξ).

Using Remark 22 we thus obtain by restriction to ξ = αJx the following equality.

Corollary 26. We have

F(α, f, T )(x) = f M
(
−T s,RJ

≥0,Λ(α, f)
)
(αJx)

∏

j : f |αj

1

1− eαjx
.

3.3. Unimodular Decomposition in the Dual Space

The cone RJ
≥0 is in general not unimodular with respect to the lattice Λ(α, f). By

decomposing RJ
≥0 in cones u that are unimodular with respect to Λ(α, f), modulo

cones containing lines, we can write

M
(
−T s,RJ

≥0,Λ(α, f)
)
=

∑

u

εuM(−T s, u,Λ),

where εu ∈ {±1}. This decomposition can be computed using Barvinok’s algorithm
in polynomial time for fixed k because the dimension |J | is at most k.

Remark 27. For this particular cone and lattice, this decomposition modulo cones
containing lines is best done using the “dual” variant of Barvinok’s algorithm, as
introduced in [11]. This is in contrast to the “primal” variant described in [14, 26];
see also [6] for an exposition of Brion–Vergne decomposition and its relation to both
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decompositions. To explain this, let us determine the index of the cone RJ
≥0 in the

lattice Λ = Λ(α, f); the worst-case complexity of the signed cone decomposition is
bounded by a polynomial in the logarithm of this index.

Let B be a matrix whose columns form a basis of Λ, so Λ = BZJ . Then |ZJ :
Λ| = |detB| = f . By Remark 17, we find

M
(
−T s,RJ

≥0,Λ
)
(ξ) = M(−TB−1s, B−1RJ

≥0,ZJ )(B0ξ).

Let c denote the cone B−1RJ
≥0, which is generated by the columns of B−1. Since

B−1 is not integer in general, we find generators of c that are primitive vectors of ZJ

by scaling each of the columns by an integer. Certainly |detB|B−1 is an integer
matrix, and thus we find that the index of the cone c is bounded above by f r−1.
We can easily determine the exact index as follows. For each i ∈ J , the generator
ei of the original cone RJ

≥0 needs to be scaled so as to lie in the lattice Λ. The
smallest multiplier yi ∈ Z>0 such that 〈αJ , yiei〉 ∈ Zf is yi = lcm(αi, f)/αi. Thus
the index of RJ

≥0 in ZJ is the product of the yi, and finally the index of RJ
≥0 in Λ is

1

|Zr : Λ|
∏

i∈J

lcm(αi, f)

αi
=

1

f

∏

i∈J

lcm(αi, f)

αi
.

Instead we consider the dual cone, c◦ = {η ∈ V ∗
J : 〈η,y〉 ≥ 0 for y ∈ c }. We

have c◦ = B0RJ
≥0. Then the index of the dual cone c◦ equals |detB0| = f , which

is much smaller than f r−1.

Following [17], we now compute a decomposition of c◦ in cones u◦ that are uni-
modular with respect to ZJ , modulo lower-dimensional cones,

[c◦] ≡
∑

u

εu[u
◦] (modulo lower-dimensional cones).

Then the desired decomposition follows:

[c] ≡
∑

u

εu[u] (modulo cones with lines).

Because of the better bound on the index of the cone on the dual side, the worst-case
complexity of the signed decomposition algorithm is reduced. This is confirmed by
computational experiments.

Remark 28. Although we know that the meromorphic function M
(
−T s,RJ

≥0,
Λ(α, f)

)
(ξ) restricts via ξ = αJx to a meromorphic function of a single variable x,

it may happen that the individual functions M
(
−T s, u,Λ(α, f)

)
(ξ) do not restrict.

In other words, the line αJx may be entirely contained in the set of poles. If this
is the case, we can compute (in polynomial time) a regular vector β ∈ QJ so that,
for ε 9= 0, the deformed vector (αJ + εβ)x is not a pole of any of the functions
M

(
−T s, u,Λ(α, f)

)
(ξ) occurring. We then consider the meromorphic functions
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ε +→M
(
−T s, u,Λ(α, f)

)
((αJ + εβ)x) and their Laurent expansions at ε = 0 in the

variable ε. We then add the constant terms of these expansions (multiplied by εu).
This is the value of M

(
−T s,RJ

≥0,Λ(α, f)
)
(ξ) at the point ξ = αJx.

3.4. The Periodic Dependence in T

Now let us analyze the dependence in T of the functions M(−T s, u,Λ(α, f)), where
u is a unimodular cone. Let the generators be gu

i , so the elements gu
i form a basis

of the lattice Λ(α, f). Recall that the lattice fZr is contained in Λ(α, f). Thus as
s ∈ Zr, we have s =

∑
i sig

u
i with fsi ∈ Z and hence {−T s}u =

∑
i{−Tsi}gu

i with
{−Tsi} a function of T periodic modulo f .

Thus the function T +→ {−T s}u is a step linear function, modulo f , with value
in V . We then write

M(−T s, u,Λ(α, f))(ξ) = e〈ξ,{Ts}u〉
r∏

j=1

1

1− e〈ξ,gj〉
.

Recall that by Corollary 26,

F(α, f, T )(x) = f M
(
−T s,RJ

≥0,Λ(α, f)
)
(αJx)

∏

j : f |αj

1

1− eαjx
.

Thus this is a meromorphic function of the variable x of the form:

∑

u

elu(T )x h(x)

xN+1
,

where h(x) is holomorphic in x and lu(T ) is a step linear function of T , modulo f .
Thus to compute

Ei(f)(T ) = resx=0
(−x)i

i!
F(α, f, T )(x)

we only have to expand the function x +→ elu(T )x up to the power xN−i. This
expansion can be done in polynomial time. We thus see that, as stated in Theo-
rem 19, Ei(f)(T ) is a step polynomial of degree less than or equal to N − i, which
is periodic of T modulo f . This completes the proof of Theorem 19 and thus the
proof of Theorem 8.

4. Periodicity of Coefficients

Now that we have the main algorithmic result we can prove some consequences to
the description of the periodicity of the coefficients. In this section, we determine
the largest i with a non-constant coefficient Ei(t) and we give a polynomial time
algorithm for computing it. This will complete the proof of Theorem 3.
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Theorem 29. Given as input a list of integers α = [α1, . . . ,αN+1] with their prime
factorization αi = pai1

1 pai2
2 · · · pain

n , there is a polynomial time algorithm to find all
of the largest sublists where the greatest common divisor is not one. Moreover, if #
denotes the size of the largest sublists with greatest common divisor different from
one, then (1) there are polynomially many such sublists, (2) the poset P̃>&−1 is a fan
(a poset with a maximal element and adjacent atoms), and (3) the Möbius function
for P>&−1 is µ(f) = 1 if G(f) 9= G(1) and µ(1) = 1− (|G>&−1(α)|− 1).

Proof. Consider the matrix A = [aij ]. Let ci1 , . . . , cik be column indices of A that
denote the columns that contain the largest number of non-zero elements among
the columns. Let α(cij ) be the sublist of α that corresponds to the rows of A where
column cij has a non-zero entry. Each α(cij ) has greatest common divisor different
from one. If # is the size of the largest sublist of α with greatest common divisor
different from one, then there are # many αi’s that share a common prime. Hence
each column ci1 of A has # many non-zero elements. Then each α(cij ) is a largest
sublist where the greatest common divisor is not one. Note that more than one
column index ci might produce the same sublist α(cij ). The construction of A,
counting the non-zero elements of each column, and forming the sublist indexed by
each cij can be done in polynomial time in the input size.

To show the poset P̃>&−1 is a fan, let G = {1, f1, . . . , fm} be the set of greatest
common divisors of sublists of size > # − 1. Each fi corresponds to a greatest
common divisor of a sublist α(i) of α with size #. We cannot have fi | fj for i 9= j
because if fi | fj , then fi is also the greatest common divisor of α(i) ∪ α(j), a
contradiction to the maximality of #. Then the Möbius function is µ(fi) = 1, and
µ(1) = 1−m.

As an aside, gcd(fi, fj) = 1 for all fi 9= fj as if gcd(fi, fj) 9= 1, then we can take
the union of the sublist that produced fi and fj thereby giving a larger sublist with
greatest common divisor not equal to one, a contradiction.

Example 30. [2274411, 2172111, 114, 173] gives the matrix





2 4 0 0 1
1 2 1 0 0
0 0 4 0 0
0 0 0 3 0





where the columns are the powers of the primes indexed by (2, 7, 11, 17, 41). We
see the largest sublists that have gcd not equal to one are [2274411, 2172111] and
[2172111, 114]. Then G = {1, 2172, 11}. The poset P>1 is
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G(1)

G(2172) G(11)

0̂

and µ(1) = −1, µ(11) = µ(2172) = 1.

Proof of Theorem 3. Let # be the greatest integer for which there exists a sublist αJ

with |J | = #, such that its gcd f is not 1. Then for m ≥ # the coefficient of degree
m, Em(T ), is constant because in Equation (8), G>m(α) = {1}. Hence Em(T ) does
not depend on T . We now focus on E&−1(T ). To simplify Equation (8), we first
compute the µ(f) values.

Lemma 31. For # as in Theorem 3, the poset G>&−1(α) is a fan, with one maxi-
mal element 1 and adjacent elements f which are pairwise coprime. In particular,
µ(f) = 1 for f 9= 1.

Proof. Let αJ1 , αJ2 be two sublists of length # with gcd’s f1 9= f2 both not equal
to 1. If f1 and f2 had a nontrivial common divisor d, then the list αJ1∪J2 would
have a gcd not equal to 1, in contradiction with its length being strictly greater
than #.

Next we recall a fact about Fourier series and use it to show that each term in
the summation over f ∈ G>&−1(α) in Equation (8) has smallest period equal to f .

Lemma 32. Let f be a positive integer and let φ(t) be a periodic function on Z/fZ
with Fourier expansion

φ(t) =
f−1∑

n=0

cne
2iπnt/f .

If cn 9= 0 for some n which is coprime to f then φ(t) has smallest period equal to f .

Proof. Assume φ(t) has period m with f = qm and q > 1. We write its Fourier
series as a function of period m.

φ(t) =
m−1∑

j=0

c′je
2iπjt/m =

m−1∑

j=0

c′je
2iπ(jq)t/f .

By uniqueness of the Fourier coefficients, we have cn = 0 if n is not a multiple of q
(and cqj = c′j). In particular, cn = 0 if n is coprime to f , a contradiction.

Theorem 3 is thus the consequence of the following lemma.
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Lemma 33. Let f ∈ G>&−1(α). The term in the summation over f in (8) has
smallest period f as a function of T .

Proof. For f = 1, the statement is clear. Assume f 9= 1. We observe that the
f -term in (8) is a periodic function (of period f) which is given as the sum of its
Fourier expansion and is written as

∑f−1
n=0 cne

−2iπnT/f where

cn = − resx=0
(−x)&−1

(#− 1)!
∏

j

(
1− e−2iπnαj/feαjx

) .

Consider a coefficient for which n is coprime to f . We decompose the product
according to whether f divides αj or not. The crucial observation is that there are
exactly # indices j such that f divides αj , because of the maximality assumption on
#. Therefore x = 0 is a simple pole and the residue is readily computed. We obtain

cn =
(−1)&−1

(#− 1)!
· 1∏

j:f !αj

(
1− e2iπnαj/f

) · 1∏
j:f |αj

αj
.

Thus cn 9= 0 for an n coprime with f . By Lemma 32, each f -term has minimal
period f .

As the various numbers f in G>&−1(α) different from 1 are pairwise coprime
and the corresponding terms have minimal period f , E&−1(T ) has minimal period∏
f∈G>#−1(α)

f > 1. This completes the proof of Theorem 3.

5. Summary of the Algorithm and Computational Experiments

In this last section we report on experiments using our algorithm. But first, let us
review the key steps of the algorithm:

Given a sequence of integers α of length N + 1, we wish to compute the top k+1
coefficients of the quasi-polynomial E(α)(t) of degree N . Recall that

E(α)(t) =
N∑

i=0

Ei(t)t
i

where Ei(t) is a periodic function of t modulo some period qi. We assume that
greatest common divisor of the list α is 1.

1. We have
E(α)(t) = EP>N−k(t) + EP≤N−k(t)

with EP≤N−k(t) a periodic polynomial of degree strictly less than N − k. Com-
puting the first k + 1 coefficients means computing EP>N−k(t).
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2. By writing [P>N−k] =
∑

f∈F>N−k(α) µ(f)[G(f)], we have

EP>N−k(t) =
∑

f∈F>N−k(α)

µ(f)E(f,α)(t).

3. Fix f an integer. Write

F(α, f, T )(x) =
∑

ζ: ζf=1

ζ−T

∏N+1
i=1 (1− ζαieαix)

;

E(f,α)(t) =
∑

i

tiEi(f)(t) with

Ei(f)(T ) = resx=0(−x)i/i! · F(α, f, T )(x).

4. We fix f and let r be the number of elements αi such that αi is not a multiple
of f .

We then list such αi in the list α = [α1,α2, . . . ,αr].

We introduce a lattice Λ := Λ(α, f) ⊂ Zr and an element s ∈ Zr so that fs ∈ Λ.

We decompose the standard cone Rr
≥0 as a signed decomposition, modulo cones

containing lines, in unimodular cones u for the lattice Λ, obtaining

F(α, f, T )(x) =
∑

u

εuM(T s, u,Λ)(αIx)
1∏

i : f |αi
(1− eαix)

.

5. To compute EN−i(f)(T ), we compute the Laurent series of F(α, f, T )(x) at
x = 0 and take the coefficient in x−N−1+i of this Laurent series. As the Laurent
series of F(α, f, T )(x) starts by x−N−1, if i is less than k, we just have to
compute at most k terms of this Laurent series.

5.1. Experiments

We first wrote a preliminary implementation of our algorithm in Maple, which we
call M-Knapsack in the following. Later we developed a faster implementation in
C++, which is referred to as LattE Knapsack in the following (we use the term knap-
sack to refer to the Diophantine problem α1x1+α2x2+ · · ·+αNxN +αN+1xN+1 =
t). Both implementations are released as part of the software package LattE

integrale [4], version 1.7.2.7

We report on two different benchmarks tests:

7Available under the GNU General Public License at https://www.math.ucdavis.edu/~latte/.
The Maple code M-Knapsack is also available separately at https://www.math.ucdavis.edu/

~latte/software/packages/maple/.
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1. We test the performance of the implementations M-Knapsack8 and LattE
Knapsack9, and also the implementation of the algorithm from [5], which refer
to as LattE Top-Ehrhart10, on a collection of over 750 knapsacks. The latter
algorithm can compute the weighted Ehrhart quasi-polynomials for simplicial
polytopes, and hence it is more general than the algorithm we present in this
paper, but this is the only other available algorithm for computing coefficients
directly. Note that the implementations of the M-Knapsack algorithm and the
main computational part of the LattE Top-Ehrhart algorithm are in Maple,
making comparisons between the two easier.

2. Next, we run our algorithms on a few knapsacks that have been studied in
the literature. We chose these examples because some of these problems are
considered difficult in the literature. We also present a comparison with other
available software that can also compute information of the denumerantEα(t):
the codes CTEuclid6 [33] and pSn [31].11 These codes use mathematical ideas
that are different from those used in this paper.

All computations were performed on a 64-bit Ubuntu machine with 64 GB of
RAM and eight Dual Core AMD Opteron 880 processors.

5.2. M-Knapsack vs. LattE Knapsack vs. LattE Top-Ehrhart

Here we compare our two implementations with the LattE Top-Ehrhart algorithm
from [5]. We constructed a test set of 768 knapsacks. For each 3 ≤ d ≤ 50, we
constructed four families of knapsacks:

random-3 Five random knapsacks in dimension d− 1 where a1 = 1 and the other
coefficients, a2, . . . , ad, are 3-digit random numbers picked uniformly

random-15 Similar to the previous case, but with a 15-digit random number

repeat Five knapsacks in dimension d − 1 where α1 = 1 and all the other αi’s
are the same 3-digit random number. These produce few poles and have a
simple poset structure. These are among the simplest knapsacks that produce
periodic coefficients.

partition One knapsack in the form αi = i for 1 ≤ i ≤ d.

8Maple usage: coeff Nminusk knapsack(〈knapsack list〉, t, 〈k value〉).
9Command line usage: dest/bin/top-ehrhart-knapsack -f 〈knapsack file〉 -o 〈output file〉

-k 〈k value〉.
10Command line usage: dest/bin/integrate --valuation=top-ehrhart --top-ehrhart-save=

〈output file〉 --num-coefficients=〈k value〉 〈LattE style knapsack file〉.
11Both codes can be downloaded from the locations indicated in the respective papers. Maple

scripts that correspond to our tests of these codes are available at https://www.math.ucdavis.
edu/~latte/software/denumerantSupplemental/.
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For each knapsack, we successively compute the highest degree terms of the
quasi-polynomial, with a time limit of 200 CPU seconds for each coefficient. Once
a term takes longer than 200 seconds to compute, we skip the remaining terms, as
they are harder to compute than the previous ones. We then count the maximum
number of terms of the quasi-polynomial, starting from the highest degree term
(which would, of course, be trivial to compute), that can be computed subject to
these time limits. Figures 1, 2, 3, 4 show these maximum numbers of terms for the
random-3, random-15, repeat, and partition knapsacks, respectively. For example,
in Figure 1, for each of the five random 3-digit knapsacks in ambient dimension 50,
the LattE Knapsack method computed at most 6 terms of an Ehrhart polynomial,
the M-Knapsack computed at most four terms, and the LattE Top-Ehrhart method
computed at most the trivially computable highest degree term.

In each knapsack family, we see that each algorithm has a “peak” dimension
where after it, the number of terms that can be computed subject to the time limit
quickly decreases; for the LattE Knapsack method, this is around dimension 25 in
each knapsack family. In each family, there is a clear order to which algorithm can
compute the most: LattE Knapsack computes the most coefficients, while the LattE
Top-Ehrhart method computes the least number of terms. In Figure 3, the simple
poset structure helps every method to compute more terms, but the two Maple

scripts seem to benefit more than the LattE Knapsack method.

Figure 4 demonstrates the power of the LattE implementation. Note that a
knapsack of this particular form in dimension d does not start to have periodic terms
until around d/2. Thus even though half of the coefficients are only constants we see
that the M-Knapsack code cannot compute past a few periodic term in dimension
10–15 while the LattE Knapsack method is able to compute the entire polynomial.

In Figure 5 we plot the average speedup ratio between theM-Knapsack and LattE
Top-Ehrhart implementations along with the maximum and minimum speedup ra-
tios (we wrote both algorithms in Maple). The ratios are given by the time it takes
LattE Top-Ehrhart to compute a term, divided by the time it takes M-Knapsack
to compute the same term, where both times are between 0 and 200 seconds. For
example, among all the terms computed in dimension 15 from random 15-digit
knapsacks, the average speedup between the two methods was 8000, the maximum
ratio was 20000, and the minimum ratio was 200. We see that in dimensions 3–10,
there are a few terms for which the LattE Top-Ehrhart method was faster than the
M-Knapsack method, but this only occurs for the highest degree terms. Also, after
dimension 25, there is little variance in the ratios because the LattE Top-Ehrhart
method is only computing the trivial highest term. Similar results hold for the other
knapsack families, and so their plots are omitted.
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Figure 1: Random 3-digit knapsacks: Maximum number of coefficients each algo-
rithm can compute where each coefficient takes less than 200 seconds.

Figure 2: Random 15-digit knapsacks: Maximum number of coefficients each algo-
rithm can compute where each coefficient takes less than 200 seconds.
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Figure 3: Repeat knapsacks: Maximum number of coefficients each algorithm can
compute where each coefficient takes less than 200 seconds.

Figure 4: Partition knapsacks: Maximum number of coefficients each algorithm can
compute where each coefficient takes less than 200 seconds.
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Figure 5: Average speedup ratio (dots) between the M-Knapsack and LattE Top-
Ehrhart codes along with maximum and minimum speedup ratio bounds (vertical
lines) for the random 15-digit knapsacks.

5.3. Other Examples

Next we focus on ten problems listed in Table 1. Some of these selected problems
have been studied before in the literature [1, 16, 33, 32]. Table 2 shows the time in
seconds to compute the entire denumerant using the M-Knapsack , LattE Knapsack
and LattE Top-Ehrhart codes with two other algorithms: CTEuclid6 and pSn.

The CTEuclid6 algorithm [33] computes the lattice point count of a polytope,
and supersedes an earlier algorithm in [32].12 Instead of using Barvinok’s algorithm
to construct unimodular cones, the main idea used by the CTEuclid6 algorithm
to find the constant term in the generating function F (α)(z) relies on recursively
computing partial fraction decompositions to construct the series. Notice that the
CTEuclid6 method only computes the number of integer points in one dilation of a
polytope and not the full Ehrhart polynomial. We can estimate how long it would
take to find the Ehrhart polynomial using an interpolation method by computing the
time it takes to find one lattice point count times the periodicity of the polynomial
and degree. Hence, in Table 2, column “one point” refers to the running time of
finding one lattice point count, while column “estimate” is an estimate for how long
it would take to find the Ehrhart polynomial by interpolation. We see that the
CTEuclid6 algorithm is fast for finding the number of integer points in a knapsack,
but this would lead to a slow method for finding the Ehrhart polynomial.

The pSn algorithm of [31] computes the entire denumerant by using a partial

12Maple usage: CTEuclid(F (α)(x)/xb, t, [x]); where b = α1 + · · ·+ αN+1.
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fraction decomposition based method.13 More precisely the quasi-polynomials are
represented as a function f(t) given by q polynomials f [1](t), f [2](t), . . . , f [q](t) such
that f(t) = f [i](t) when t ≡ i (mod q). To find the coefficients of the f [i] their
method finds the first few terms of the Maclaurin expansion of the partial fraction
decomposition to find enough evaluations of those polynomials and then recovers
the coefficients of each the f [i] as a result of solving a linear system. This algorithm
goes back to Cayley and it was implemented in Maple. Looking at Table 2, we see
that the pSn method is competitive with LattE Knapsack for knapsacks 1, 2, . . . , 6,
and beats LattE Knapsack in knapsack 10. However, the pSn method is highly
sensitive to the number of digits in the knapsack coefficients, unlike ourM-Knapsack
and LattE Knapsack methods. For example, the knapsacks [1, 2, 4, 6, 8] takes 0.320
seconds to find the full Ehrhart polynomial, [1, 20, 40, 60, 80] takes 5.520 seconds,
and [1, 200, 600, 900, 400] takes 247.939 seconds. Similar results hold for other three-
digit knapsacks in dimension four. However, the partition knapsack [1, 2, 3, . . . , 50]
only takes 102.7 seconds. Finally, comparing the two Maple scripts, the LattE Top-
Ehrhart method outperforms the M-Knapsack method.

Table 2 ignores one of the main features of our algorithm: that it can compute
just the top k terms of the Ehrhart polynomial. In Table 3, we time the computation
for finding the top three and four terms of the Ehrhart polynomial on the knapsacks
in Table 1. We immediately see that our LattE Knapsack method takes less than
one thousandth of a second in each example. Comparing the two Maple scripts, M-
Knapsack greatly outperforms LattE Top-Ehrhart . Hence, for a fixed k, the LattE
Knapsack is the fastest method.

In summary, the LattE Knapsack is the fastest method for computing the top k
terms of the Ehrhart polynomial. The LattE Knapsack method can also compute
the full Ehrhart polynomial in a reasonable amount of time up to around dimension
25, and the number of digits in each knapsack coefficient does not significantly
alter performance. However, if the coefficients each have one or two digits, the pSn
method is faster, even in large dimensions.

13Maple usage: QPStoTrunc(pSn(〈knapsack list〉,n,j),n); where j is the smallest value in
{100, 200, 500, 1000, 2000, 3000} that produces an answer.
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Table 1: Ten selected instances

Problem Data

#1 [8, 12, 11]
#2 [5, 13, 2, 8, 3]
#3 [5, 3, 1, 4, 2]
#4 [9, 11, 14, 5, 12]
#5 [9, 10, 17, 5, 2]
#6 [1, 2, 3, 4, 5, 6]
#7 [12223, 12224, 36674, 61119, 85569]
#8 [12137, 24269, 36405, 36407, 48545, 60683]
#9 [20601, 40429, 40429, 45415, 53725, 61919, 64470, 69340, 78539, 95043]
#10 [5, 10, 10, 2, 8, 20, 15, 2, 9, 9, 7, 4, 12, 13, 19]

Table 2: Computation times in seconds for finding the full Ehrhart polynomial using
five different methods

Table 3: Computation times in seconds for finding the top three and four terms of
the Ehrhart polynomial
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