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Abstract
Let G be an additively written abelian group, let A,B ⊆ G be finite and nonempty,
and consider their sumset A + B = {a + b | a ∈ A and b ∈ B}. Vosper proved
a theorem which characterizes all pairs (A,B) for which |A + B| < |A| + |B| in
the special case when |G| is prime. Kemperman extended this characterization to
arbitrary abelian groups. Here we give a new proof of Lev’s version of Kemperman’s
Theorem.

1. Introduction

Throughout this paper we shall assume that G is an additively written abelian
group. For subsets A,B ⊆ G, we define the sumset of A and B to be A + B =
{a+ b | a ∈ A and b ∈ B}. If g ∈ G we let g + A = {g}+ A and A+ g = A+ {g}.
The complement of A is the set A = G \A, and we let −A = {−a | a ∈ A}.

The classical direct problem for addition in groups is to find lower bounds on
the size of A+ B. If G ∼= Z (or more generally, G is torsion-free) it is not difficult
to argue that |A + B| ≥ |A| + |B| − 1 holds for every pair of finite nonempty sets
(A,B). In 1813 Cauchy proved that this assertion remains true when the order of
G is prime and A + B &= G. This result was rediscovered by Davenport in 1935,
and it is now known as the Cauchy-Davenport theorem.
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Theorem 1.1 (Cauchy [1] - Davenport [2]). If p is prime and A,B ⊆ Z/pZ are
nonempty, then

|A+B| ≥ min{p, |A|+ |B|− 1}.

For arbitrary abelian groups we can not expect to have such a lower bound.
For instance, if H is a finite proper nontrivial subgroup of G, and A = B = H ,
then we will have A + B = H . So any generalization of Theorem 1.1 will have to
take subgroup structure into account. Next we introduce an important theorem
of Kneser which yields a generalization of Cauchy-Davenport to arbitrary abelian
groups.

We define the stabilizer of a subset A ⊆ G, denoted GA, to be the subgroup of
G defined by GA = {g ∈ G | g +A = A}. Note that A is a union of GA-cosets, and
GA is the maximal subgroup of G with this property. For a subgroup H ≤ G, we
say that a subset A is H-stable if A+H = A (equivalently, H ≤ GA).

Theorem 1.2 (Kneser [8], version I). If A and B are finite nonempty subsets of G
and H = GA+B , then

|A+B| ≥ |A+H |+ |B +H |− |H |. (1)

To further illuminate the bound in Kneser’s theorem, let us introduce some fur-
ther notation. Whenever H ≤ G we let ϕG/H denote the canonical homomorphism
from G to the quotient group G/H . Now for H = GA+B let Ã = ϕG/H(A) and
B̃ = ϕG/H(B). By definition we have |A + B| = |Ã + B̃||H |, |A + H | = |Ã||H |
and |B + H | = |B̃||H |. Using these simple equalities, we can express (1) as
|Ã+ B̃| ≥ |Ã|+ |B̃|− 1, an expression similar to the lower bound from the Cauchy-
Davenport Theorem.

Define the deficiency of a pair (A,B) to be δ(A,B) = |A|+ |B|− |A+B|. We will
say that a pair (A,B) is deficient if δ(A,B) > 0. The Cauchy-Davenport Theorem
implies that every deficient pair (A,B) of nonempty sets with A+B &= Z/pZ satisfies
δ(A,B) = 1. Meanwhile, Kneser’s theorem asserts that for a deficient pair (A,B)
of finite nonempty sets in G, the pair (Ã, B̃) of G/H as defined above, will be
deficient with deficiency δ(Ã, B̃) = 1. Indeed, as it is not difficult to see, Kneser’s
Theorem is equivalent to the assertion (appearing below as Proposition 2.1 (2))
that every deficient pair (A,B) of finite nonempty sets in G satisfies |A + B| =
|A+H |+ |B +H |− |H | with H = GA+B.

Now we shall turn our attention to the structure of deficient pairs. One simple
construction for a deficient pair (A,B) is to choose A,B so that min{|A|, |B|} = 1.
A second, more interesting construction is to choose A and B to be arithmetic
progressions with a common difference. In 1956 Vosper proved the following theorem
which characterizes deficient pairs in groups of prime order, and these structures
feature prominently in his result.
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Theorem 1.3 (Vosper [12, 13], version I). If p is prime and (A,B) is a deficient
pair of nonempty subsets of Z/pZ, then one of the following holds.

1. |A|+ |B| > p and A+B = Z/pZ.

2. |A|+ |B| = p and |A+ B| = p− 1.

3. min{|A|, |B|} = 1.

4. A and B are arithmetic progressions with a common difference.

In 1960 Kemperman proved a structure theorem which characterizes deficient
pairs in an arbitrary abelian group. Although this theorem was published few years
after Vosper’s, it took some time before it achieved the recognition and attention it
deserved. This resulted in part from the inherent complexity of deficient pairs, and
in part from the difficult nature of Kemperman’s paper. Recently, this situation
has improved considerably thanks to the work of Grynkiewicz [3, 4], Lev [9], and
Hamidoune [5, 6]. Grynkiewicz recasts Kemperman’s Theorem and then takes a
step further by characterizing those pairs (A,B) with |A+B| = |A|+ |B|. Lev gives
a more convenient “top-down” version of Kemperman’s Theorem which we shall
adopt here. Finally, Hamidoune showed that all of these results could be achieved
using the isoperimetric method.

Here we shall give a new proof of Kemperman’s theorem based on some recent
work of the second author which generalizes Kemperman’s Theorem to arbitrary
groups. Although this generalization leans heavily on the isoperimetric method, we
shall not adopt these techniques here. Instead we will exploit Kneser’s theorem,
thus making our proof rather closer in spirit to Kemperman’s original than to any
of these more recent works. Our paper also differs with the existing literature in
our statement of Kemperman’s Theorem. The main difference here is that we will
work with triples of subsets instead of pairs, and this has the effect of reducing the
number of configurations we need to consider.

The remainder of this paper is organized as follows. Over the next two sections,
we reduce the original classification problem to a classification problem for certain
types of triples of subsets. Section 4 contains our new statement of Kemperman’s
theorem, and the remaining sections are devoted to its proof.

2. Maximal Pairs

For two pairs of sets (A,B) and (A∗, B∗), we say that (A∗, B∗) is a superpair of
(A,B) and write (A,B) ⊆ (A∗, B∗) if A ⊆ A∗ and B ⊆ B∗. If (A,B) is a pair
of subsets of an abelian group, then we call (A,B) maximal if the only superpair
(A∗, B∗) of (A,B) with A∗ +B∗ = A+B is given by (A∗, B∗) = (A,B). Our main
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goal in this section is to reduce the original problem to that of classifying maximal
deficient pairs.

However, we shall first address some of the uninteresting constructions of deficient
pairs. For instance, in the context of a general finite abelian group, consider the
behaviour appearing in the first outcome of Theorem 1.3. If A,B ⊆ G satisfy
|A| + |B| > |G|, then every g ∈ G satisfies B ∩ (g − A) &= ∅, and it follows that
A + B = G. So every such pair (A,B) will be deficient. On the other hand, the
deficient pairs (A,B) with A+B = G are precisely those for which |A|+ |B| > |G|.
Another rather uninteresting construction of a deficient pair (A,B) is to take exactly
one of A or B to be empty. Accordingly, we will call a pair (A,B) trivial if A = ∅,
B = ∅, or A + B = G, and we will generally restrict our attention to nontrivial
pairs.

Next we turn our attention to the notion of maximality.

Proposition 2.1. Let (A,B) be a deficient pair of nonempty sets in G, and let
H = GA+B. Then, setting A∗ = A+H and B∗ = B +H, we have:

1. A∗ +B∗ = A+B,

2. |A∗ +B∗| = |A∗|+ |B∗|− |H | and,

3. (A∗, B∗) is maximal.

Proof. The first part follows immediately from A+B +H = A+B. For the other
parts, observe that our assumptions together with Kneser’s Theorem imply

|A∗|+ |B∗| > |A+B| ≥ |A∗|+ |B∗|− |H |.

Since all of the sets in this inequality are unions of H-cosets, the sizes are all
multiples of |H |, and this yields the second part.

For the third part, suppose that (A′, B′) is a superpair of (A∗, B∗) with A∗+B∗ =
A′ +B′. Then by the second part and Kneser’s Theorem we have

|A∗|+ |B∗|− |H | = |A∗ +B∗| = |A′ +B′| ≥ |A′|+ |B′|− |H |.

This implies (A′, B′) = (A∗, B∗), so (A∗, B∗) is maximal.

Next we show that the problem of classifying deficient pairs reduces to that
of classifying maximal deficient pairs. Indeed, every deficient pair is obtained by
removing a small number of elements from a maximal deficient pair.

Proposition 2.2. For every pair of finite nonempty subsets (A,B) of G the fol-
lowing are equivalent.

1. The pair (A,B) is deficient.
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2. There exists a maximal deficient superpair (A∗, B∗) ⊇ (A,B) for which |A∗ \
A|+ |B∗ \B| < |GA∗+B∗ |, and A∗ +B∗ = A+B.

Proof. First we suppose that (1) holds and define H = GA+B , A∗ = A + H and
B∗ = B+H . Proposition 2.1 implies that (A∗, B∗) is a maximal deficient superpair
of (A,B), and |A∗|+ |B∗| = |A+B|+ |H |. Now the following equation shows that
(2) holds

|A∗ \A|+ |B∗ \B| = |A∗|+ |B∗|− |A|− |B|
= |A+B|+ |H |− |A|− |B|
< |H |.

If (2) holds, then set H = GA∗+B∗ , let z ∈ A∗ +B∗ and choose a ∈ A∗ and b ∈ B∗

with a + b = z. Now, for every h ∈ H the elements a′ = a + h and b′ = b − h
satisfy a′ ∈ A∗ and b′ ∈ B∗ and a′ + b′ = z. So, z has at least |H | distinct
representations as a sum of an element in A∗ and an element in B∗. It follows
from this and |A∗ \ A| + |B∗ \ B| < |H | that A + B = A∗ + B∗. This gives us
|A+B| = |A∗ +B∗| = |A∗|+ |B∗|− |H | > |A|+ |B|, so (A,B) is deficient and (1)
holds.

3. Trios

In the study of deficient pairs, there is a third set which appears naturally in con-
junction with A and B, namely C = −A+B. Observe that if G is finite and (A,B)
is a deficient pair in G, then we have:

• 0 &∈ A+B + C

• |A|+ |B|+ |C| > |G|.

In this case we see that the pair (B,C) is deficient since B + C is disjoint from
−A (so |B + C| ≤ |G| − |A| < |B| + |C|) and similarly (A,C) is deficient. So, in
other words, taking the set C as defined above gives us a triple of sets so that every
two of them form a deficient pair. Accordingly we now extend our definitions from
pairs to triples. To allow for infinite groups we shall permit sets which are infinite
but cofinite.

Definition 3.1. If A,B,C ⊆ G satisfy 0 &∈ A+B+C and each of A, B, C is either
finite or cofinite, then we say that (A,B,C) is a trio. The trio is trivial if at least
one of A, B, or C is empty.

Note that a nontrivial trio has at most one infinite set.
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Definition 3.2. We define the deficiency of the trio (A,B,C) to be the parameter
δ(A,B,C) determined as follows. IfG is finite, then δ(A,B,C) = |A|+|B|+|C|−|G|
(equivalently, δ(A,B,C) is equal to the sum of the sizes of any two of the sets minus
the size of the complement of the third). If exactly one of A,B,C is infinite, then
we let n be the size of the complement of this set, let #,m be the sizes of the other
two sets, and define δ(A,B,C) = #+m− n. If two of A,B,C are infinite (in which
case the third set is empty) then δ(A,B,C) = ∞, and finally if G is infinite but
A,B and C are all finite, then δ(A,B,C) = −∞. We will say that a trio (A,B,C)
is deficient if δ(A,B,C) > 0.

Observe that these definitions for trios naturally extend our notions for pairs.
More precisely, if A,B ⊆ G are finite, and C = −A+B then (A,B,C) is a trio and
we have

• δ(A,B) = |A|+ |B|− |A+B| = |A|+ |B|− |C| = δ(A,B,C)

• (A,B) is deficient if and only if (A,B,C) is deficient.

• (A,B) is trivial if and only if (A,B,C) is trivial.

The following easy observation gives a general connection between the deficiency
of a pair of sets and the deficiency of a trio containing these two sets.

Observation 3.3. If (A,B,C) is a trio and A,B are finite, then δ(A,B) ≥
δ(A,B,C) with equality precisely when C = −A+B.

Proof. By the definition of a trio, C must be disjoint from −(A+B) which implies
C ⊆ −A+B. Thus δ(A,B) = |A| + |B| − |A + B| ≥ |A| + |B| − |C| = δ(A,B,C)
with equality precisely when C = −A+B, as desired.

Vosper’s Theorem has a convenient restatement in terms of trios, as the extra
symmetry in a trio eliminates one of the outcomes (and assuming nontriviality
eliminates another).

Theorem 3.4 (Vosper, version II). If (A,B,C) is a nontrivial deficient trio in
Z/pZ and p is prime, then one of the following holds.

1. min{|A|, |B|, |C|} = 1.

2. A, B, and C are arithmetic progressions with a common difference.

Similar to pairs, we define the supertrio relation (A,B,C) ⊆ (A∗, B∗, C∗) if
A ⊆ A∗, B ⊆ B∗, and C ⊆ C∗, and call a trio (A,B,C) maximal if the only
supertrio (A∗, B∗, C∗) ⊇ (A,B,C) is (A,B,C) itself. By definition, every trio
(A,B,C) must satisfy C ⊆ −A+B, B ⊆ −A+ C and A ⊆ −B + C. If one of
these containments is proper, say C ⊂ −A+B, then we may replace C with the set
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−A+B to obtain a proper supertrio. It follows that the trio (A,B,C) is maximal
if and only if C = −A+B, B = −A+ C and A = −B + C. Note that if we begin
with an arbitrary trio (A,B,C) and perform this replacement operation on each
of the three terms (if possible), the resulting trio will be maximal. In particular,
every trio is contained in a maximal one. The next observation, which follows
immediately from our definitions, highlights a key relationship between maximal
pairs and maximal trios.

Observation 3.5. Let A,B,C ⊆ G and assume A,B are finite. Then the following
are equivalent.

1. (A,B) is a maximal deficient pair and C = −A+B.

2. (A,B,C) is a maximal deficient trio.

The above observation further reduces the general classification problem to that
of determining all maximal deficient trios. Next we give a version of Kneser’s
Theorem for trios which illustrates a key property of maximal deficient trios, and
prove the equivalence of the two versions.

Theorem 3.6 (Kneser, version II). If (A,B,C) is a maximal deficient trio in G,
then GA = GB = GC and δ(A,B,C) = |GC |.

Proof of Equivalence. To see that version I implies version II, let (A,B,C) be a
maximal deficient trio. If (A,B,C) is trivial, then one of A,B,C is empty and by
maximality the other two must equal G; the result follows from this. Otherwise we
may assume that A,B are both finite. It follows from maximality that GA = GB =
GC . Since GA+B = GC , the second part of Proposition 2.1 implies δ(A,B,C) =
|A|+ |B|− |C| = |A|+ |B|− |A+B| = |GC | as desired.

For the other direction, let A,B ⊆ G be finite and nonempty and define C =
−A+B and H = GC = GA+B . Observe that every supertrio of (A,B,C) has the
form (A∗, B∗, C), and choose (A∗, B∗, C) to be a maximal supertrio of (A,B,C).
Note that by maximality GA∗ = GB∗ = H . Now version II of Kneser’s Theorem
implies δ(A∗, B∗, C) ≤ |H | (as either (A∗, B∗, C) is deficient and this holds with
equality, or (A∗, B∗, C) is not deficient and δ(A∗, B∗, C) ≤ 0). Since A +H ⊆ A∗

and B + H ⊆ B∗ we have |A + H | + |B + H | − |A + B| ≤ |A∗| + |B∗| − |C| =
δ(A∗, B∗, C) ≤ |H | as desired.

4. Basic Deficient Trios

Note that if (A,B,C) is a trio, then any permutation of these three sets yields a
new trio. In addition, for every g ∈ G we have that (A + g,B − g, C) is a trio. It
is immediately seen that these operations preserve nontriviality, maximality, and
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pure beat pure chord
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R
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4R

H H H

A B A+B

Figure 1: Structure Atlas

deficiency, and we say that two trios are similar if one can be turned into the other
by a sequence of these operations.

Next we will introduce some terminology to describe the types of behaviour
present in the structure of nontrivial maximal deficient trios. We begin with a
structure which generalizes those deficient pairs (A,B) with min{|A|, |B|} = 1 by
allowing for subgroups.

Definition 4.1. Let H < G be finite. A trio Υ is a pure beat relative to H if Υ is
similar to a trio (A,B,C) which satisfies the following:

1. A = H ,

2. GB = H , and

3. C = −A+B &= ∅.

An arithmetic progression with head a, difference g, and tail a + ng is a set of
the form {a, a+ g, . . . , a + ng}. We say that the progression is nontrivial if it has
size at least two.

Definition 4.2. Let H < G be finite with G/H cyclic. A trio Υ is a pure chord
relative to H , if there exist R ∈ G/H which generates G/H and a trio (A,B,C)
similar to Υ for which the following hold.
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1. A and B are H-stable,

2. φG/H(A) and φG/H(B) are non-trivial arithmetic progressions in G/H with
head H and difference R, and

3. C = −A+B is not contained in a single H-coset.

It follows immediately from our definitions and Observation 3.5 that every pure
beat or pure chord relative to H is a maximal deficient trio with deficiency |H |.

For each of these two basic structures, there is a variant which allows for recur-
sive constructions of maximal deficient trios. Before introducing these variants, we
require another bit of terminology. For every set A ⊆ G there is a unique minimal
subgroup H for which A is contained in an H-coset. We denote this H-coset by [A]
and call it the closure of A. So, for instance, [A] ∈ G/H means that A is contained
in an H-coset, and is not contained in a coset of a smaller subgroup.

Definition 4.3. A trio Υ is an impure beat relative to H < G, if there is a trio
(A,B,C) similar to Υ for which

1. [A] = H ,

2. B \H is H-stable,

3. C \H = −A+B \H , and

4. A &= ∅, B ∩H &= ∅, and C ∩H &= ∅.

In this case (A,B ∩ H,C ∩ H) is a trio in H which we call a continuation of Υ.
Note that the subgroup H appearing in this definition is permitted to be infinite in
contrast to the previous two definitions and the following one. It follows from our
definitions that this continuation will be nontrivial and will be maximal whenever
Υ was maximal. Furthermore, we have |C \H | = |B \H | from which it follows that
the deficiency of the continuation is equal to that of the original trio Υ.

Definition 4.4. Let H < G be finite and assume G/H is cyclic. A trio Υ is an
impure chord relative to H , if there exist R ∈ G/H which generates G/H and a
trio (A,B,C) similar to Υ satisfying

1. A \H and B \H are H-stable,

2. φG/H(A) and φG/H(B) are nontrivial arithmetic progressions with head H
and difference R,

3. C \H = −A+B \H &= ∅, and

4. C ∩H is nonempty.
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As before, (A ∩H,B ∩H,C ∩H) is a trio in H which we call a continuation of Υ.
Also as before, this continuation is nontrivial by definition, and will be maximal
whenever Υ is maximal. Our definitions imply that |C \H| = |A\H |+ |B \H | and
it follows from this that the deficiency of the continuation is equal to that of Υ.

With this, we can finally present the restatement of Kemperman’s structure
theorem than we are going to prove in this paper.

Theorem 4.5 (Kemperman). Let Υ1 be a maximal nontrivial deficient trio in
G1. Then there exists a sequence of trios Υ1,Υ2, · · · ,Υm in respective subgroups
G1 > G2 > · · · > Gm satisfying

1. Υi is an impure beat or an impure chord with continuation Υi+1 for 1 ≤ i ≤
m− 1, and

2. Υm is either a pure beat or a pure chord.

5. Incomplete Closure

In this section we focus our attention on deficient pairs and trios which contain a set
A for which [A] &= G. In particular, we shall prove a stability lemma which shows
that every maximal deficient trio containing such a set must be a pure or impure
beat. We begin with a lemma which was proved for general groups by Olson [11],
but which follows from Kneser’s Theorem for abelian groups (as observed by Lev
[9]).

Lemma 5.1. Let A,B be nonempty finite subsets of G and assume that A+B &= G
and [A] = G. Then |A+B| ≥ 1

2 |A|+ |B|.

Proof. By Theorem 1.2, H = GA+B satisfies |A+B| ≥ |A+H |+ |B+H |− |H | and
H &= G since A+B &= G. Since A is not contained in any H-coset, |A+H |− |H | ≥
1
2 |A+H | ≥ 1

2 |A|. Combining these two inequalities yields the desired bound.

For a set A ⊆ G and a subgroup H ≤ G, we say that A is H-quasistable if there
exists R ∈ G/H so that A \ R is H-stable. Note that an H-stable set is also H-
quasistable. Members of a pure beat or chord relative to H < G are H-stable. The
impure versions comprise H-quasistable sets, and their continuations are composed
of partial H cosets.

Lemma 5.2. Let (A,B) be a deficient pair and assume A &= ∅, and [A] ∈ G/H
for some H < G. Then A + B is H-quasistable. Furthermore, if H is finite, then
δ(H,B) ≥ δ(A,B).
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Proof. By replacing A by g+A for a suitable g ∈ G, we may assume that [A] = H .
Let R1, . . . , Rk ∈ G/H be the H-cosets which have nonempty intersection with B,
and for every 1 ≤ i ≤ k let Bi = B ∩Ri. Now we have two inequalities,

1. |A+Bi| ≥ |Bi| and

2. if A+Bi &= Ri, then |A+Bi| ≥ 1
2 |A|+ |Bi|,

the second of which follows from the previous lemma. Since A + B is the disjoint
union

⋃k
i=1(A + Bi), it follows that there is at most one 1 ≤ i ≤ k for which

A+Bi &= Ri, so A+B is H-quasistable.

For the last part, we may assume that H is finite and that A + Bi = Ri for all
2 ≤ i ≤ k. Since |A+B1| ≥ |A| we find

δ(A,B) = |A|+ |B|−
k∑

i=1

|A+Bi| ≤ |B|− (k − 1)|H | = δ(H,B)

which completes the proof.

We are now ready to prove our stability lemma for trios which contain a set with
closure not equal to G.

Lemma 5.3 (Beat Stability). If (A,B,C) is a nontrivial, maximal, deficient trio
and [A] ∈ G/H for some H < G, then (A,B,C) is either a pure or impure beat
relative to H.

Proof. By possibly moving from (A,B,C) to a similar trio, we may assume that
[A] = H < G and that B is finite. Note that A must also be finite, since otherwise
H would be infinite and G \A would also be infinite. By Observation 3.5 (A,B) is
a deficient pair, so by Lemma 5.2, A + B is H-quasistable. If A + B is H-stable,
then H is finite and it follows from maximality that A = H and H = GB = GC

so (A,B,C) is a pure beat. Otherwise, we may assume (by possibly passing to a
similar trio) that ∅ &= (A + B) ∩H &= H and it then follows from maximality that
(A,B,C) is an impure beat.

6. Purification

In this section we will develop a process we call purification which will allow us to
make a subtle modification to a deficient trio to obtain a new trio with deficiency
no smaller than the original. This will be a key tool in the remainder of the paper.

We have already defined notions of deficiency for pairs of finite sets and for trios.
It is also convenient to have a notion of deficiency for a single finite set. If ∅ &= A ⊂ G
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is finite we define the deficiency of A to be

δ(A) = max
B⊂G:A+B $=G

δ(A,B).

Here we only consider finite nonempty sets B. Note that this is indeed well defined
since for every B ⊆ G we have δ(A,B) = |A|+ |B|− |A+B| ≤ |A| so the maximum
in the formula will be obtained. The following theorem of Mann shows that there
is always a finite subgroup which achieves this maximum.

Theorem 6.1 (Mann). If A ⊂ G is finite and nonempty, there exists a finite
subgroup H < G with δ(A,H) = δ(A) and A+H &= G.

Proof. Choose ∅ &= B ⊆ G so that δ(A,B) = δ(A) and A + B &= G. Now set
H = GA+B and apply Kneser’s Theorem to obtain

δ(A,B) = |A|+ |B|− |A+B|
≤ |A|+ |B|− |A+H |− |B +H |+ |H |
≤ |A|− |A+H |+ |H |
= δ(A,H).

Finally, A+H ⊆ A+B +H &= G since H = GA+B.

Next we establish a lemma which is a key part of purification.

Lemma 6.2. Let H < G and A ⊂ G be finite and assume (A,H) is deficient. If
B &= ∅, and B ⊆ H, then δ(A,B) ≤ δ(A,H).

Proof. We may assume that (A,B) is deficient, as otherwise the result holds im-
mediately. Choose K ≤ H so that [B] ∈ G/K and note that Lemma 5.2 im-
plies δ(A,B) ≤ δ(A,K). Since K ≤ H , to complete the proof, it suffices to show
δ(A,K) ≤ δ(A,H) under the assumption K < H .

Define S = (A + H) \ A and let S′ = {g ∈ S | g + K ⊆ S} and S′′ = S \ S′.
Since (A,H) is deficient |S′| ≤ |S| = |A +H | − |A| < |H |, and then we must have
|S′| ≤ |H |− |K| (since |S′|, |H |, and |K| are all multiples of |K|). Thus

δ(A,H) = |H |− |S| ≥ |K|− |S′′| = |K|− |(A+K) \A| = δ(A,K)

which completes the proof.

Lemma 6.3 (Trio Purification). Let (A,B,C) be a deficient trio in G, let H ≤ G,
and assume A and H are finite and (A,H) is deficient. If R ∈ G/H satisfies
∅ &= R ∩B &= R and S = −A+R, then δ(A,B ∪R,C ∩ S) ≥ δ(A,B,C).
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Proof. Since (A,B,C) and (A,R, S) are trios, it follows that both (A,B∪R,C ∩S)
and (A,B ∩ R,C ∪ S) are trios. It is possible for B or C or neither to be infinite,
but in all of these cases the following equations hold.

δ(A,B ∪R,C ∩ S) = δ(A,B,C) + |R \B|− |C \ S|
δ(A,B ∩R,C ∪ S) = δ(A,R, S)− |R \B|+ |C \ S|.

Now summing these yields

δ(A,B ∪R,C ∩ S) + δ(A,B ∩R,C ∪ S) = δ(A,B,C) + δ(A,R, S).

Choose g ∈ G so thatR = H+g. Then by the previous lemma we have δ(A,B∩R) =
δ(A, (B ∩R)− g) ≤ δ(A,H) = δ(A,R). Combining this with Observation 3.3 then
gives us δ(A,R, S) = δ(A,R) ≥ δ(A,B ∩ R) ≥ δ(A,B ∩ R,C ∪ S). Together with
the above equation, this yields the desired result.

The above lemma also applies to pairs to yield the following.

Lemma 6.4 (Pair Purification). Let A,B ⊆ G and H < G be finite and assume
both (A,B) and (A,H) are deficient. Then for every R ∈ G/H with B ∩R &= ∅ we
have δ(A,B ∪R) ≥ δ(A,B).

Proof. Define C = −A+B and set S = −A+R. Then by Observation 3.3 and the
previous lemma,

δ(A,B) = δ(A,B,C) ≤ δ(A,B ∪R,C ∩ S) ≤ δ(A,B ∪R).

7. Near Sequences

The goal of this section is to establish two important lemmas concerning a type
of set called a near sequence. The first is a stability lemma which will show that
whenever (A,B,C) is a maximal deficient trio with some additional properties, and
A is a near sequence, then (A,B,C) must be a pure or impure chord. The second
will show that whenever (A∗, B∗, C∗) is a pure or impure chord, of which (A,B,C)
is a deficient subtrio, then every finite set among (A,B,C) must be a near sequence.

We begin by introducing a few important definitions. For this purpose we shall
assume that H < G is a finite subgroup and R ∈ G/H generates the group G/H .

Definition 7.1. We say that A ⊆ G is an R-sequence with head S and tail S+ kR
if A = ∪k

i=0(S + iR).
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Definition 7.2. We say that A ⊆ G is a near R-sequence if A+H is an R-sequence
and |(A+H) \A| < |H |.

Definition 7.3. We say that A ⊆ G is a fringed R-sequence if

1. A+H is an R-sequence, and

2. if A+H has head S and tail T , then either A \ S or A \ T is H-stable.

If A is an R-sequence, near R-sequence, or fringed R-sequence, we say that A is
proper if |A| ≥ 2|H |, and we call it nontrivial if |A| > |H |. Note that each finite
set in a pure chord is a sequence and each finite set in an impure chord is a fringed
sequence. Next we prove a technical lemma where fringed sequences emerge.

Lemma 7.4. Let (A,B) be a nontrivial deficient pair, and assume that A is a
nontrivial near R-sequence for R ∈ G/H, and that B is not contained in any H-
coset. If there exists an R-sequence B∗ with B ⊆ B∗ and A+B∗ &= G, then A+B
is a fringed R-sequence.

Proof. Suppose (for a contradiction) that the lemma fails, and let A,B be a coun-
terexample for which |B| is minimum. By shifting A (i.e., replacing A by A + g
for some g ∈ G) and B we may assume that A+H =

⋃!
i=0 iR and B∗ =

⋃m
i=0 iR.

For convenience let us define Ai = A ∩ iR and Bi = B ∩ iR for every i ∈ Z. By
replacing B∗ with a smaller R-sequence, we may assume that B0 &= ∅ and Bm &= ∅.
We first prove a series of three claims.

Claim 1. Bi &= ∅ for 0 ≤ i ≤ m.

It follows from repeatedly applying our pair purification lemma to H-cosets R ∈
G/H for which ∅ &= R∩B &= R that (A,B+H) is deficient and thus (A+H,B+H)
is deficient. It follows from this that the sets Ã, B̃ ⊆ Z given by Ã = {0, 1, . . . , #}
and B̃ = {i ∈ Z | iR∩B &= ∅} satisfy (Ã, B̃) deficient. It follows, e.g., from Lemma
1.3 of Nathanson[10], that B̃ is the interval {0, 1, . . .m} which implies the claim.

Claim 2. A+B does not contain
⋃!+m−1

i=1 iR.

Suppose for a contradiction that this claim fails. Let K0 = GA0+B0 and K1 =
GA!+Bm . We haveK0,K1 < H since A+B is not a fringed sequence. Now applying
Kneser’s Theorem to the sumsets A0 +B0 and A! +Bm we find

|A+B| = (#+m− 1)|H |+ |A0 +B0|+ |A! +Bm|
≥ (#+m− 1)|H |+ |A0|+ |A!|+ |B0|+ |Bm|− |K0|− |K1|
≥ ((#− 1)|H |+ |A0|+ |A!|) + ((m− 1)|H |+ |B0|+ |Bm|)
= |A|+ |B|

which gives us the desired contradiction.
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Claim 3. m = 1

As usual, we suppose for a contradiction that m > 1. First consider the set
B′ = B\Bm. It follows easily from the inequality |A!+Bm| ≥ |Bm| that δ(A,B′) ≥
δ(A,B) > 0 so (A,B′) is deficient. By the minimality of our counterexample, it
follows that A+B′ must contain

⋃!+m−2
i=1 iR. Similarly, (A,B\B0) is a deficient pair

and hence contains
⋃!+m−1

i=2 iR. Putting these together, we find
⋃!+m−1

i=1 iR ⊆ A+B,
contradicting Claim 2.

With these claims in place, we are ready to complete the proof. By the pair
purification lemma, (A,B ∪R) and (A,B ∪H) are deficient. Thus

0 < δ(A,B ∪R) = |A|+ |B0|− #|H |− |A0 +B0| (2)

0 < δ(A,B ∪H) = |A|+ |B1|− #|H |− |A! +B1| (3)

We also have

|A|− |A0 +B0|− |A! +B1| ≤ |A|− |A0|− |A!| ≤ (# − 1)|H | (4)

Now summing equations (2) and (3) and substituting (4) yields

0 < |A|+ |B0|+ |B1|− (#+ 1)|H |. (5)

It follows from Claim 2 that we may choose a point z ∈
(⋃!

i=1 iR
)
\ (A + B).

Assuming z ∈ iR, we have B0 ∩ (z − Ai) = ∅ and B1 ∩ (z − Ai−1) = ∅. These
together with |A \ (Ai−1 ∪ Ai)| ≤ (#− 1)|H | then imply

|B0|+ |B1| ≤ 2|H |− |Ai−1|− |Ai| ≤ (#+ 1)|H |− |A| (6)

Inequalities (5) and (6) are contradictory, and this completes the proof.

Lemma 7.5. Let (A,B,C) be a nontrivial deficient trio with A,B finite, and as-
sume that every supertrio (A,B∗, C∗) ⊇ (A,B,C) satisfies (A,B∗, C∗) = (A,B,C).
Let H < G, let R ∈ G/H and assume A is a nontrivial proper near R-sequence. If
neither B nor C is contained in an H-coset, then B and C are fringed R-sequences.

Proof. Suppose (for a contradiction) that there is a counterexample to the lemma
using the set A, and then choose B and C so that (A,B,C) is a counterexample
for which

1. δ(A,B,C) is maximum.

2. |{S ∈ G/H | ∅ &= S ∩ B &= S}|+ |{S ∈ G/H | ∅ &= S ∩ C &= S}| is minimum.
(subject to 1).

Observe that if B is a fringed R-sequence, we can automatically conclude that
C = −(A+B) is a fringed R-sequence by the maximality of C.
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Claim 1. There does not exist an R-sequence D with A +D &= G so that B ⊆ D
or C ⊆ D. So, in particular, G must be finite.

If such a set D exists with B ⊆ D, then by applying the previous lemma we
deduce that A+B is a fringed R-sequence. But then, the maximality of B implies
that B is a fringed R-sequence. Similarly, if such a set D exists with C ⊆ D, then
G is finite and A + C is a fringed R-sequence. But then B = −A+ C is also a
fringed R-sequence.

Claim 2. There does not exist S ∈ G/H with S ⊆ B or with S ⊆ C.

If S ∈ G/H satisfies S ⊆ B then Claim 1 is violated by D = −S +A since
C ⊂ D. A similar argument holds if S ⊆ C.

Since G is finite by Claim 1, we will show that both B and C (hence C) are
fringed R-sequences. Without loss of generality, |C| ≥ |B|. In particular, |C| > |H |
since |G \A| ≥ 2|H | and (A,B,C) is deficient.

Using Claim 2, choose an H-coset S ∈ G/H so that ∅ &= B ∩S &= S. Now setting
B′ = B∪S and C′ = C∩−A+ S, Lemma 6.2 implies δ(A,B′, C′) ≥ δ(A,B,C) and
it follows that |C \ C′| ≤ |B′ \ B| < |H |. Since |C| > |H | we have that C ′ &= ∅, so
(A,B′, C′) is a nontrivial deficient trio. Choose B′′, C′′ maximal so that (A,B′′, C′′)
is a supertrio of (A,B′, C′).

If B′′ &= B′ or C′′ &= C′ then δ(A,B′′, C′′) > δ(A,B,C) so by the first criteria in
our choice of counterexmple, the lemma holds for (A,B′′, C′′). On the other hand,
if B′′ = B′ and C′′ = C′ then the quantity in our second optimization criteria
improves, so again we find that the lemma holds for (A,B′′, C′′).

If C′′ is not contained in a single H-coset, then B′′ is a fringed sequence, but
then Claim 1 is violated by D = B′′ +H since B ⊂ D. So, we may assume that
C′′ ⊆ T for some T ∈ G/H . Now let U ∈ G/H satisfy U ⊆ −A+ T and suppose
for a contradiction that B ∩ U = ∅. In this case (A,B′ ∪ U,C′) is a trio and our
pair purification lemma implies

δ(A,B′, C′) + |H | = δ(A,B′ ∪ U,C′) ≤ δ(A,C′) ≤ δ(A,H) ≤ |H |

which is a contradiction. It follows that every H-coset contained in −A+ T must
have nonempty intersection with B.

With this knowledge, we now return to our original trio (A,B,C) and modify it
to form a new trio by setting C′′′ = C∪T and B′′′ = B∩−A+ T . It follows from our
trio purification lemma that (A,B′′′, C′′′) is a trio with δ(A,B′′′, C′′′) ≥ δ(A,B,C).
Furthermore, since −A+ T contains at least two H-cosets, the set B′′′ cannot be
contained in a single H-coset. Now, by repeating the argument from above, we may
extend (A,B′′′, C′′′) to a trio with the second and third sets maximal, and then the
lemma will hold for this new trio. This then implies that C′′′ is contained in an
R-sequence which violates Claim 1. This completes the proof.
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Lemma 7.6 (Sequence Stability). Let (A,B,C) be a maximal deficient trio with
[A] = [B] = [C] = G. If A is a proper near sequence, then (A,B,C) is either a pure
or an impure chord.

Proof. Let A be a proper near R-sequence for R ∈ G/H and assume (without
loss) that B is finite. By the previous lemma we deduce that B is a fringed R-
sequence. However, then by maximality A is also a fringed R-sequence. Again using
maximality, we conclude that (A,B,C) is either a pure or impure chord relative to
H .

Lemma 7.7. Let (A,B,C) be a deficient trio of which (A∗, B∗, C∗) is a maximal
deficient supertrio. If (A∗, B∗, C∗) is a pure or impure chord, and A is finite, then
A is a proper near sequence.

Proof. If (A∗, B∗, C∗) is a pure chord relative to H ≤ G then δ(A∗, B∗, C∗) = H
and since (A,B,C) is deficient, we must have |A∗ \A| < |H |. Since A∗ is finite, it is
a proper R-sequence for some R ∈ G/H and it follows immediately that A is a near
R-sequence. Next suppose that (A∗, B∗, C∗) is an impure chord relative to H ≤ G.
In this case, there exists a subgroup K < H so that K = GA∗ = GB∗ = GC∗ . Now
since (A,B,C) is deficient, it follows that |A∗ \ A| < |K|. Since A∗ is a proper
fringed R-sequence for some R ∈ G/H , we again find that A is a proper near
R-sequence.

8. Proof

In this section we prove Kemperman’s Theorem.

Proof of Theorem 4.5. Suppose (for a contradiction) that the theorem fails and let
(A,B,C) be a counterexample with |A| ≤ |B| ≤ |C| so that

1. if there is a finite counterexample, then |G| is minimum;

2. C is minimum (subject to 1);

3. the number of terms in ([A], [B], [C]) equal to G is maximum (subject to 1,
2).

We shall establish properties of our trio with a series of claims.

Claim 1. The group H = GA = GB = GC is trivial.

Otherwise we obtain a smaller counterexample by passing to the quotient group
G/H and the trio

(
ϕG/H(A),ϕG/H (B),ϕG/H (C)

)
.

Claim 2. None of the sets A, B, or C is contained in a proper coset.
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Suppose for a contradiction that A,B or C is contained in a proper coset, and
apply Lemma 5.3. If (A,B,C) is a pure beat, we have an immediate contradiction.
Otherwise, we may assume that (A,B,C) is an impure beat relative to H with
continuation (A′, B′, C′). If H is finite, then (A′, B′, C′) contradicts our choice of
(A,B,C) for the first criteria. Otherwise H is infinite, and we may assume (without
loss) that C′ is infinite.

Now, A and B are finite andH-quasiperiodic, so both A and B are both contained
in a single H-coset. Hence criteria (1) and (2) agree on (A,B,C) and (A′, B′, C′).
Furthermore, only one term in ([A], [B], [C]) is equal to G, but by construction, one
of A′, B′ has closure H , and [C′] = H (since C′ is cofinite). Therefore (A′, B′, C′)
is a counterexample which contradicts our choice.

Claim 3. A is not a proper near sequence.

Otherwise it follows from Lemma 7.6 that either (A,B,C) is a pure or impure
chord. In the former case we have an immediate contradiction. In the latter a
continuation (A′, B′, C′) contradicts our choice of (A,B,C).

Claim 4. If D ⊆ G satisfies (A,D) deficient and |D| > 1
2 |A| then [D] = G.

Suppose (for a contradiction) that (A,D) is deficient and |D| > 1
2 |A| and that

[D] = H+x for H < G. If A contains points in at least three H-cosets, then A+D
is H-quasiperiodic by Lemma 5.2 so |A+D| ≥ 2|H |+ |D| ≥ 3|D| ≥ |D|+ |A| which
contradicts the assumption that (A,D) is deficient. It then follows from Claim 2
that A must contain points in exactly two H-cosets. Now, if |A| ≤ |H | then we
have |A+D| ≥ |H |+ |D| ≥ |A|+ |D| which is contradictory. Otherwise, |A| > |H |
and A contains points in exactly two H-cosets, but then A is a near R-sequence for
some R ∈ G/H and this contradicts Claim 3.

Claim 5. There does not exist a nontrivial finite subgroup H < G so that (A,H)
is deficient.

Suppose for a contradiction that (A,H) is deficient with {0} < H < G. By
Claim 1 we may choose an H-coset R ∈ G/H so that ∅ &= C ∩R &= R. Now setting
C ′ = C∪R and B′ = B∩−A+R our trio purification lemma implies δ(A,B′, C′) ≥
δ(A,B,C). It follows from this that 0 ≤ |C′ \ C| − |B \ B′| < |H | − |B \ B′|. If
|A+H | = 2|H | then A is a near sequence which contradicts Claim 3. Therefore, we
have |A|+ |H | > |A+H | ≥ 3|H |. This gives us |B′| > |B|− |H | ≥ |A|− |H | ≥ 1

2 |A|
so by Claim 4 we have that [B′] = G.

Now we let (A∗, B∗, C∗) be a maximal supertrio of (A,B′, C′). Since (A∗, B∗, C∗)
is maximal with δ(A∗, B∗, C∗) ≥ δ(A,B′, C′) ≥ δ(A,B,C) and |C∗| < |C|, the
theorem holds for (A∗, B∗, C∗). Therefore, (A∗, B∗, C∗) must either be a pure or
impure chord (since [A] = [B] = [C] = G). Now Lemma 7.7 implies that A is a
proper near sequence, but this contradicts Claim 3.
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Claim 6. Let D ⊆ G be finite and assume that (A,D) is nontrivial and deficient.
Then δ(A,D) = 1 and further, either |D| = 1 or [D] = G.

It follows immediately from Claim 5 and Mann’s theorem that δ(A,D) = 1.
Suppose for contradiction that [D] = H + x for {0} < H < G. Then Lemma 5.2
implies that A + D is H-quasistable. Since [A] = G, it follows that H is finite.
Again, by Lemma 5.2, δ(A,H) ≥ δ(A,D), contradicting Claim 5.

Claim 7. B is not a Sidon set: |(g +B) ∩B| > 1 for some g ∈ G \ {0}.

Suppose (for a contradiction) that B is a Sidon set. We must have |A| ≥ 3
as otherwise either [A] &= G or A is a near sequence. Choose distinct elements
a1, a2, a3 ∈ A. Now we have

|A+B| ≥ |(a1 + B) ∪ (a2 +B) ∪ (a3 +B)| ≥ 3|B|− 3 ≥ |A|+ |B|

which is contradictory.

With this last claim in place, we are now ready to complete the proof. Since B
is not a Sidon set, we may choose g ∈ G \ {0} so that B′ = B ∩ (g + B) satisfies
|B′| ≥ 2. Set C′ = C ∪ (−g + C) and B′′ = B ∪ (g + B) and C′′ = C ∩ (−g + C).
It now follows from basic principles that (A,B′, C′) and (A,B′′, C′′) are trios and

δ(A,B′, C′) + δ(A,B′′, C′′) = 2δ(A,B,C). (7)

If C′′ = ∅ then G must be finite and we have |C′| = 2|C|, so

δ(A,B′, C′) = |A|+ |B′|+ |C′|− |G|
≥ |A|+ 2 + 2|C|− |G|
> |A|+ |B|+ |C|− |G|
= δ(A,B,C)

which contradicts Claim 6. Therefore C′′ &= ∅ and then both (A,B′, C′) and
(A,B′′, C′′) are nontrivial. Then, (7) and Claim 6 imply that δ(A,B′, C′) =
δ(A,B′′, C′′) = 1 and that (A,B′, C′) and (A,B′′, C′′) are both maximal. Since
|G\C′| < |G\C| the theorem holds for the trio (A,B′, C′). Since |B′| ≥ 2, Claim 6
implies that [B′] = G. However, then (A,B′, C′) must be a pure or impure chord,
and then Lemma 7.7 implies that A is a near sequence which contradicts Claim 3.
This completes the proof.
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