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Abstract
Let d > 0 be a squarefree integer and a be an integer, which is not �1 nor a
square. Let P(a,d)(x) be the number of primes p  x such that p ⌘ 1 mod d and
a(p�1)/d ⌘ 1 mod p. Numerical data indicate that the function as approximately
equal to a constant multiple of ⇡(x)/(d'(d)) for su�ciently large x, where ⇡(x)
is the number of primes up to x and '(d) is the Euler-' function. The involved
constant multiple depends on both a and d. In this paper we obtain an average
order of the function and explore some properties of the primes counted by the
function.

1. Introduction

For a squarefree integer d > 0 and an integer a, which is not �1 nor a perfect square,
let P(a,d) = {primes p : p ⌘ 1 mod d and a(p�1)/d ⌘ 1 mod p} and P(a,d)(x) =
#{p 2 P(a,d) : p  x}. Note that P(a,d) is the set of rational primes which split
completely in the field L = Q[ d

p
a, d
p

1], or the set of rational primes whose conjugacy
class of Frobenius automorphisms of L over Q contains only the identity element in
the Galois group Gal(L/Q).

E↵ective estimates of P(a,d)(x) are critical to the derivation of Artin’s conjecture
(see [4, 7]). The conjecture asserts that, if a is the integer mentioned above, then
the number of prime moduli up to x, for which integer a is a primitive root, is
proportional to the number of primes up x. Hooley proved this conjecture [4] under
the assumption of the extended Riemann Hypothesis (ERH). Many other results
(see [2, 3, 4, 11]) were achieved in favor of the conjecture. One may refer to Murty
[10] for a survey of the conjecture. In his conditional proof of Artin’s conjecture [4],
Hooley obtained the following sharp estimate for P(a,d)(x) under ERH for Dedekind
zeta functions over the Kummerian field L:

P(a,d)(x) =
"(d)

d'(d)
li(x) + O(x

1
2 log(dx)) (1)
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if a is squarefree (see [4] for other cases). To describe "(d), let us write a = a1 · a2
2

where a1 is squarefree. Then "(d) = 2 if a1 ⌘ 1 mod 4 and 2a1 divides d, and
"(d) = 1 otherwise. It is suggested in [7] that a uniform upper bound of P(a,d)(x),
such as P(a,d)(x) ⌧ li(x)/d'(d) or P(a,d)(x) ⌧ ⇡(x)/d'(d), could lead to another
proof of the conjecture.

What else can be said about P(a,d)(x)? First, an unconditional estimate of
P(a,d)(x) can be found in [6], but the range allowed for d would be much smaller and
the estimate for the error terms would be less sharp than those in (1). Secondly,
numerical verification of (1) with x = 108, 3  a  51 and 3  d  97 (where both
a and d are squarefree) indicates that the absolute di↵erence between P(a,d)(x) and
"(d)

d'(d)⇡(x) is on average less than 1.37% of P(a,d)(x) and the maximum di↵erence is
less than 9.24% of P(a,d)(x).

The goal of the article is to investigate P(a,d)(x) on average and some properties
of primes in P(a,d). First we will prove the following lemma.

Lemma 1 (see [5, 9]). Let a be an integer not divisible by p and p ⌘ 1 mod d.
Then

1
d

X
� mod p
ord (�) | d

�(a) =

(
1, if a

p�1
d ⌘ 1 mod p

0, otherwise .

Thus we can write

P(a,d)(x) =
X
px

p⌘1 mod d

1
d

X
� mod p
ord(�) | d

�(a)

=
1
d

⇡(x; 1, d) +
1
d

X
px

p⌘1 mod d

X
�6=�0 mod p

ord(�) | d

�(a), (2)

where ⇡(x; 1, d) is the number of primes up to x which are congruent to 1 modulo d.
If a1 ⌘ 1 mod 4 and 2a1 | d then there is another character � within the inner sum
of (2) for which �(a) = 1. Indeed, this �(a) is the Legendre symbol

⇣
a
p

⌘
, which is

equal to ✓
a1

p

◆
=

✓
p

a1

◆

by the law of quadratic reciprocity and the condition a1 ⌘ 1 mod 4.
⇣

p
a1

⌘
= 1 since

a1 | p� 1. Thus (2) can be written as

P(a,d)(x) =
2
d

⇡(x; 1, d) +
1
d

X
px

p⌘1 mod d

X
�6=�0,�1 mod p

ord(�) | d

�(a), (3)
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where �1 is the Legendre symbol for modulus p. The first terms of (2) and (3)
are the same as the major term of (1). Thus the rest sums in (2) and (3) are
O(x 1

2 log(dx)) + O(li(x) � ⇡(x)) according to (1). In the next section we obtain
a heuristic argument of why such an upper bound for the error terms should be
within expectation. It would be desirable to prove that the sums in (2) and (3) are
o
⇣

⇡(x)
d'(d)

⌘
unconditionally. Instead we can prove a similar result like this on average,

namely the following theorem.

Theorem 2. Let d be a positive squarefree integer such that d  x
1
2 . Let E(x, y) =

y�1/21 if y  x2/3 and E(x, y) = x�1/6 log x if y > x2/3. Then, for su�ciently large
x, we have

1
y

X
2ay

P(a,d)(x) =
⇡(x; 1, d)

d
+ O

✓
x · E(x, y)
'(d) log x

◆

provided that y � exp(3(log x log log x) 1
2 ) if y  x2/3. The involved constant in the

error term above is independent of d.

The result that can be achieved in the theorem is due to the counting function by
the character sum in Lemma 1, which makes it possible to apply Stephens’ method
first used in [11] on average results of Artin’s conjecture. The exponent � 1

21 in
E(x, y) = y�

1
21 when y  x2/3 can be reduced to any number bigger than � 3

16 if
we require y > x� for some positive number �. The similar method can also be used
to obtain a non-trivial estimate for

P
ay

�
P(a,d)(x)� ⇡(x; 1, d)/d

�2.
From the above results it seems reasonable to conjecture that each individual

P(a,d)(x) would follow the estimate of its average in Theorem 2, or a much weaker
form P(a,d)(x)⌧ ⇡(x)

d'(d) (such as P(a,d)(x)  3⇡(x)
d'(d) uniformly for every a and d). The

weaker form may be helpful to deduce Artin’s conjecture unconditionally (see [7]).
The author is grateful to the referee for valuable comments, and suggestions for

sharper error term in Theorem 2.

2. Properties and Preliminaries

Proof of Lemma 1. Let g be a primitive root modulo p. Then a ⌘ gr mod p for
some integer r, and thus a

p�1
d ⌘ 1 mod p is equivalent to d | r. Let � be a Dirichlet

character modulo p whose order divides d. Then �(g) is a d-th root of unity. We
can write �(g) = e

2⇡ik
d for 0  k  d � 1. As k runs through all integers in the

range, we get all the characters whose orders divide d. Therefore,

X
� mod p
ord (�) | d

�(a) =
d�1X
k=0

e
2⇡ikr

d ,
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which is 0 if d - r, and d if d | r. This concludes the proof.

We can look at the phenomenon in Lemma 1 from another perspective. Let Z(d)
p

be the set of all elements bd where b 2 Z⇤p = (Z/pZ)⇤. Obviously Z(d)
p is a subgroup of

Z⇤p. If a 2 Z(d)
p , then �(a) = 1 for all characters � mod p with ord (�)|d. Conversely

if the condition holds, then d | r since we can take k = 1 where r and k are defined
in the above proof. Thus a 2 Z(d)

p . Therefore, we proved

Proposition 3. Let Z(d)
p = {bd : b 2 (Z/pZ)⇤}. Then a 2 Z(d)

p if and only if
�(a) = 1 for all the characters � mod p with ord (�)|d.

Since d | r is equivalent to a
p�1

d ⌘ 1 mod p, one can deduce Lemma 1, using the
above proposition, and that Z(d)

p = {a : a
p�1

d ⌘ 1 mod p}. Thus the order of Z(d)
p

is (p � 1)/d if d | p � 1. The chance that integer a, not divisible by p, is in Z(d)
p is

((p�1)/d)/(p�1) = 1/d if d | p�1 and
⇣

a
p

⌘
6= 1 (in the case where 2 | d and

⇣
a
p

⌘
= 1,

the chance becomes 2/d). Thus the chance that prime p satisfies p ⌘ 1 mod d and
a

p�1
d ⌘ 1 mod p is "(d)/(d�(d)) by distribution of primes in arithmetic progression.

This presents a heuristic explanation of why P(a,d)(x) ⇠ "(d)⇡(x)/(d'(d)) for large
x.

Let us consider a homomorphism from Z⇤p to itself ' : a 7�! a
p�1

d . Obviously
ker(') = Z(d)

p , and thus Z⇤p/Z(d)
p ' '(Z⇤p), a cyclic subgroup of Z⇤p of order d. This

proves the following fact.

Lemma 4. Let p be a prime such that d | p � 1. Then, for each a 2 Z⇤p, a
p�1

d

is a d-th root of unity modulo p and is uniquely determined by the coset of Z(d)
p

containing a.

Let p ⌘ 1 mod d be a fixed prime. By Lemma 4, natural numbers a, for which
a

p�1
d ⌘ 1 mod p, are evenly distributed in the sense that there are always (p� 1)/d

such integers in each interval of length p. Conversely, for a fixed integer a, the
conjecture below Theorem 2 asserts that the primes p for which p ⌘ 1 mod d and
a

p�1
d ⌘ 1 mod p are also distributed evenly in the sense that the ratio of P(a,d)(x)

and ⇡(x) approaches "(d)/(d'(d)) as x goes to infinity. Here let us assume that
2 - d, which yields "(d) = 1. The two phenomena on distribution are connected
through the identity X

px
p⌘1 mod d

X
az

tp(a) =
X
az

X
px

p⌘1 mod d

tp(a)

where tp(a) = 1 if a
p�1

d ⌘ 1 mod p and tp(a) = 0 otherwise. Because, by the
distribution phenomena, the left side becomes

P
px

p⌘1 mod d

p�1
d · z

p ⇠
z⇡(x)
d'(d) if x is

large and z � x, while the right side becomes
P

az
⇡(x)
d'(d) ⇠

z⇡(x)
d'(d) . According to
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Lemma 4, for a fixed prime p, the number of natural numbers a in each interval of
length p, for which a

p�1
d is a fixed d-th root of unity modulo p, is also (p � 1)/d.

It is not known whether or not a similar phenomenon on distribution holds for the
primes p  x, for which a

p�1
d mod p is any fixed d-th root of unity modulo p.

Next let us consider integer r, for which a ⌘ gr mod p. Suppose that g̃ is another
primitive root modulo p. Then a ⌘ g̃r0 mod p for another integer r0 and g ⌘ g̃s mod
p where gcd(s, p�1) = 1. Obviously gcd(r, p�1) = gcd(r0, p�1). What can we say
about the GCD? Let set S = {r 2 N : a ⌘ gr mod p and g is a primitive root mod
p}. Then S has a least element. Let us call it ra although it also depends on p.

Theorem 5. Let ra be the integer defined above for a not divisible by p. Then
ra | p� 1. Thus ra = gcd(r, p� 1) if a ⌘ gr mod p and g is a primitive root mod p.

Proof. Let a be a fixed integer not divisible by p. Since gcd(r, p � 1) remains the
same if g is a primitive root mod p and a ⌘ gr mod p, we only need to show that
ra | p� 1, which yields ra = gcd(r, p� 1).

Suppose that a ⌘ gr mod p and g is a primitive root for p. If we can write
r = s · r1 where gcd(s, p� 1) = 1, then g1 = gs is another primitive modulo p and
a ⌘ gs·r1 ⌘ gr1

1 mod p.
If ra has a nontrivial factor coprime to p � 1, then the above process yields

another primitive root for which the exponent for a mod p would be smaller than
ra, a contradiction. Thus every prime factor of ra is a factor of p� 1. If ra - p� 1,
there must be a prime factor q of ra such that the exponent of q in p� 1 is smaller
than the exponent of q in ra. Let q1, q2, · · · , qt be all the prime factors of ra such
that their exponents in ra are the same as their exponents in p� 1. Consider

ra + q1 · · · qt(p� 1) = v.

Obviously each prime factor of ra divides v, and each prime factor of gcd(v, p� 1)
divides ra. In addition, each qi has the same exponent in the prime factorizations
of v and ra. For each other prime factor l of ra, the exponent of l in the prime
factorization of v is the smaller exponent between the exponents of l in the prime
factorizations of ra and p� 1. Thus we can write

v = s · r0

where gcd(s, p� 1) = 1 and r0 has no prime factors coprime to p� 1.
Note that each prime factor of r0 divides ra, and the exponent of the prime factor

in r0 does not exceed that of the prime factor in ra. Thus r0 | ra. It can also be
noted that r0 < ra because the exponent of prime q in the prime factorization of
p � 1 is strictly smaller than the exponent of q in the prime factorization of ra by
the above assumption. On the other hand, since a ⌘ gra ⌘ gv = gs·r0 mod p for
some primitive root g modulo p, the process in the second paragraph of the proof
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implies r0 2 S, contradiction to the minimum of ra in S. Therefore, we have proved
that ra | p� 1, and the theorem.

Lemma 6 (see [11]). Let r be any natural number and x, y be positive real numbers.
Then

X
nx

X0

� mod n

������
X
ay

�(a)

������
2r

⌧ (x2 + yr)yr
�
ln(eyr�1)

�r2�1
, (4)

where
P0 means that the summation is taken over primitive characters only, and

the involved constant is independent of r.

3. Proof of Theorem 2

By (2),

1
y

X
ay

P(a,d)(x) =
1
y

X
px

p⌘1 mod d

X
ay

1
d

X
� mod p
ord (�) | d

�(a)

=
1
y

X
px

p⌘1 (d)

X
ay

�0(a)
d

+
1
y

X
px

p⌘1 (d)

X
ay

X
�6=�0 (p)
ord (�) | d

�(a)
d

, (5)

where (d) means mod d and the same for (p). The inner sum of the first double
sum of (5) is ([y]� [y/p])/d, and thus the double sum becomes

⇡(x; 1, d)
d

+ O

✓
log log x

d

◆
+ O

✓
⇡(x; 1, d)

d · y

◆
. (6)

Next let us focus on the triple sum in (5), which can be written as

X
px

p⌘1 (d)

X
�6=�0 (p)
ord (�) | d

1
d

X
ay

�(a)⌧
X
px

p⌘1 (d)

X
�6=�0 (p)
ord (�) | d

1
d

������
X
ay

�(a)

������ . (7)

Let us denote the last triple sum by S. By the Pólya-Vinogradov inequality [1], we
have

S 
X
px

p⌘1 (d)

d� 1
d

· p 1
2 log p  x

1
2 log x · ⇡(x; 1, d).

If y > x
2
3 , by the Brun-Titchmarsh inequality ⇡(x; 1, d)⌧ x

'(d) log x/d
(see [8])

and d  x
1
2 , we have

S

y
= O

✓
x5/6

'(d)

◆
. (8)
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If y  x
2
3 , we apply Hölder’s inequality and obtain

S2r 

0
BB@

X
px

p⌘1 (d)

X
�6=�0 (p)
ord (�) | d

✓
1
d

◆ 2r
2r�1

1
CCA

2r�1

·
X
px

p⌘1 (d)

X
�6=�0 (p)
ord (�) | d

������
X
ay

�(a)

������
2r

for any integer r � 1. Let s1 and s2 be the two factor on the right side. Then

s1 =

0
BB@

X
px

p⌘1 (d)

d� 1
d

· 1
d1/(2r�1)

1
CCA

2r�1

 ⇡(x; 1, d)2r�1

d
.

Since each non-principal character modulo p is a primitive character,

s2 
X
px

p⌘1 (d)

X
�6=�0 (p)

������
X
ay

�(a)

������
2r

⌧ (x2 + yr)yr
�
log(eyr�1)

�r2�1

by Lemma 6. Choose r =
h

2 log x
log y

i
+ 1. Then yr�1  x2 < yr. Combining it with

s1 and s2, we have

S

y
⌧ 1

d
1
2r

⇡(x; 1, d)1�
1
2r

�
log(ex2)

� r2�1
2r

⌧ 1
'(d)

·
✓

x

log x

◆1� 1
2r �

log(ex2)
� r2�1

2r . (9)

Here we use the Brun-Titchmarsh inequality ⇡(x; 1, d)⌧ x

'(d) log x/d
and d  x

1
2 .

The involved constants in (9) are independent of r and d.
Since y  x2/3 we have r � 4 and r2�1

2r  5
8 (r � 1)  5 log x

4 log y , which yields

S

y
 1

d(1/2r)
⇡(x; 1, d)1�

1
2r

�
log(ex2)

�(5 log x)/(4 log y)

⌧ 1
'(d)

·
✓

x

log x

◆1� 1
2r �

log(ex2)
�(5 log x)/(4 log y)

. (10)

But r  8 log x
3 log y . Thus if we require log y > 3(log x log log x)1/2, then

� 1
2r

(log x� log log x) +
5 log x

4 log y
log log(ex2)

 � 3
16

log y +
1
8

log log x +
5 log x

4 log y
log log(ex2)  � 1

21
log y
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when x is large enough. By (10), we have S/y = O
⇣

x·y�1/21

'(d) log x

⌘
. Combining this

result with (5), (6), (7) and (8), we have proved Theorem 2.
It should be noted that if we require that y > x� for some positive number �,

then both positive terms in the second line of the above display are less than a
constant multiple of log log x. Thus exponent � 1

21 of y in the estimate for S/y can
be reduced to any number bigger than � 3

16 .
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