RAMSEY FUNCTIONS FOR GENERALIZED PROGRESSIONS

Mano Vikash Janardhanan
School of Mathematics, Indian Institute of Science Education and Research Thiruvanathapuram, Kerala, India.
manovikash@iisertvm.ac.in
Sujith Vijay
School of Mathematics, Indian Institute of Science Education and Research Thiruvanathapuram, Kerala, India.
sujith@iisertvm.ac.in

Received: 1/25/14, Revised: 10/11/14, Accepted: 5/16/15, Published: 5/29/15

Abstract

Given positive integers m and k, a k-term semi-progression of scope m is a sequence $x_{1}, x_{2}, \ldots, x_{k}$ such that $x_{j+1}-x_{j} \in\{d, 2 d, \ldots, m d\}$, for $1 \leq j \leq k-1$, for some positive integer d. Thus an arithmetic progression is a semi-progression of scope 1. Let $S_{m}(k)$ denote the least integer for which every 2 -coloring of $\left\{1,2, \ldots, S_{m}(k)\right\}$ yields a monochromatic k-term semi-progression of scope m. We obtain an exponential lower bound on $S_{m}(k)$ for all $m=O(1)$. Our approach also yields a marginal improvement on the best known lower bound for the analogous Ramsey function for quasi-progressions, which are sequences whose successive differences lie in a small interval.

1. Introduction

In 1927, B.L. van der Waerden [6] proved that given positive integers r and k, there exists an integer $W(r, k)$ such that any r-coloring of $\{1,2, \ldots, W(r, k)\}$ yields a monochromatic k-term arithmetic progression. Even after nearly 90 years, the gap between the lower and upper bounds on $W(r, k)$ remains enormous, with the best known lower bound of the order of r^{k}, whereas the best known upper bound is a five-times iterated tower of exponents (see [1]). Analogues of the Van der Waerden threshold $W(r, k)$ have been studied for many variants of arithmetic progressions, including semi-progressions and quasi-progressions (see [4]).

Let m and k be positive integers. A k-term semi-progression of scope m is a sequence $x_{1}, x_{2}, \ldots, x_{k}$ such that for some positive integer d, we have $x_{j+1}-x_{j} \in$ $\{d, 2 d, \ldots, m d\}$. The integer d is called the low-difference of the semi-progression.

We define $S_{m}(k)$ as the least integer for which any 2-coloring of $\left\{1,2, \ldots, S_{m}(k)\right\}$ yields a monochromatic k-term semi-progression of scope m. Note that $S_{m}(k) \leq$ $W(k)$ with equality if $m=1$.

2. An Exponential Lower Bound for $S_{m}(k)$

Landman [3] showed that $S_{m}(k) \geq\left(2 k^{2} / m\right)(1+o(1))$. We improve this to an exponential lower bound for all $m=O(1)$.

Theorem 1 Let $k \geq 3, m=O(1)$ and $\alpha=\sqrt{2^{m} /\left(2^{m}-1\right)}$. Then $S_{m}(k)>\alpha^{k}$.

Proof. Let $f(N, k, m)$ denote the number of 2-colorings of $[1, N]$ with a monochromatic k-term semi-progression of scope m. (In the remainder of the proof, we only consider k-term semi-progressions of scope m.) Note that $S_{m}(k)$ is the least integer N such that $f(N, k, m)=2^{N}$. We derive an upper bound on $f(N, k, m)$ as follows.

Given a semi-progression $P=\left(a_{1}, a_{2}, \ldots, a_{k}\right)$ of low-difference d, we define the conjugate vector of P as $\left(u_{1}, u_{2}, \ldots, u_{k-1}\right)$ where $u_{i}=\left(a_{i+1}-a_{i}-d\right) / d$. Likewise, the frequency vector of P is defined as $\mathbf{v}=\left(v_{0}, v_{1}, \ldots, v_{m-1}\right)$ where v_{j} is the number of times j occurs in the conjugate vector of P. Note that $\sum_{j=0}^{m-1} v_{j}=k-1$. Finally, the weight of a frequency vector \mathbf{v}, denoted $w(\mathbf{v})$, is defined as $\sum_{j=0}^{m-1} j v_{j}$.

Given a coloring χ, we define the (a, d)-primary semi-progression of χ as the semi-progression P whose conjugate vector is lexicographically least among the conjugate vectors of all semi-progressions (with first term a and low-difference d) that are monochromatic under χ. Let $P=\left(a_{1}, a_{2}, \ldots, a_{k}\right)$ be a semi-progression with first term $a_{1}=a$ and low-difference d. We will give an upper bound for the number of colorings χ such that P is the (a, d)-primary semi-progression of χ.

Since P is monochromatic, all elements of P have the same color under χ. Furthermore, if $\left(v_{0}, v_{1}, \ldots, v_{m-1}\right)$ is the frequency vector of P, it follows from the fact that P is the (a, d)-primary semi-progression of χ that $w(\mathbf{v})$ elements in the arithmetic progression $\{a, a+d, \ldots, a+m(k-1) d\}$ must be of the color different from the color of the elements of P. For example, let $a=17, d=5, m=3, k=6$ and $P=\{17,32,42,47,62,72\}$ with conjugate vector $(2,1,0,2,1)$. If the two colors are red and blue, and the elements of P are all red, then $22,27,37,52,57$ and 67 must all be blue. Indeed, if 57 is red, then the semi-progression $P^{\prime}=\{17,32,42,47,57,62\}$ would have a lexicographically lower conjugate vector $(2,1,0,1,0)$. Thus there are at most 2^{N-11} colorings of $[1, N]$ whose (a, d)-primary semi-progression is P.

Note that there are at most $N^{2} /(k-1)$ choices for the pair (a, d). We say that two progressions P_{1} and P_{2} with the same a and d are equivalent if they have the
same frequency vector. Note that for any a and d, there are at most

$$
M(\mathbf{v})=\frac{\left(v_{0}+v_{1}+\cdots+v_{m-1}\right)!}{v_{0}!v_{1}!\cdots v_{m-1}!}
$$

semi-progressions with frequency vector $\left(v_{0}, v_{1}, \ldots, v_{m-1}\right)$. Adding over all the equivalence classes of semi-progressions, we obtain

$$
f(N, k, m) \leq \frac{N^{2} 2^{N-k+1}}{k-1} \sum_{\substack{v_{0}, v_{1}, \ldots, v_{m-1} \geq 0 \\ v_{0}+v_{1}+, \ldots+v_{m-1}=k-1}} M(\mathbf{v}) 2^{-w(\mathbf{v})}
$$

It follows from the multinomial theorem that

$$
f(N, k, m) \leq \frac{N^{2} 2^{N}}{k-1}\left(\frac{1}{2}+\frac{1}{2^{2}}+\cdots+\frac{1}{2^{m}}\right)^{k-1}
$$

Thus $f(N, k, m)<2^{N}$ for $N=\alpha_{m}^{k}$ where $\alpha_{m}=\sqrt{2^{m} /\left(2^{m}-1\right)}$, completing the proof.

3. Exponential Lower Bounds for $Q_{n}(r, k)$

We now apply the same technique to quasi-progressions. A k-term quasi-progression of low difference d and diameter n is a sequence $\left(a_{1}, a_{2}, \ldots, a_{k}\right)$ such that $d \leq$ $a_{j+1}-a_{j} \leq d+n, 1 \leq j \leq k-1$. Let $Q_{n}(r, k)$ denote the least positive integer such that any r-coloring of $\left\{1,2, \ldots, Q_{n}(r, k)\right\}$ yields a monochromatic k-term quasi-progression of diameter n. It is known (see [5]) that $Q_{1}(2, k)>\beta^{k}$ where $\beta=1.08226 \ldots$ Indeed, β^{4} can be expressed in terms of two algebraic numbers of degrees 2 and 3 , respectively, and is the smallest positive real root of the equation $y^{6}+8 y^{5}-112 y^{4}-128 y^{3}+1792 y^{2}+1024 y-4096=0$. It is also known that $Q_{n}(2, k)=O\left(k^{2}\right)$ for $n>k / 2$ (see [2]). We apply the techniques of the previous section to obtain lower bounds on $Q_{n}(r, k)$. Let $g(r, N, k, n)$ denote the number of r-colorings of $[1, N]$ with a monochromatic k-term semi-progression of diameter n. Note that $Q_{n}(r, k)$ is the least positive integer N such that $g(r, N, k, n)=r^{N}$. We first discuss the simplest non-trivial case, namely $r=2$ and $n=1$.

Theorem 2 Let $k \geq 3$. Then $Q_{1}(2, k)>\beta_{2,1}^{k}$ where $\beta_{2,1}=\sqrt{4-2 \sqrt{2}}=1.08239 \ldots$.
Proof. We define the conjugate vector of a quasi-progression $Q=\left\{a_{1}, a_{2}, \ldots, a_{k}\right\}$ of low-difference d as $\left(u_{1}, u_{2}, \ldots, u_{k-1}\right)$ where $u_{i}=a_{i+1}-a_{i}-d$. Given a coloring χ, we define the (a, d)-primary quasi-progression of χ as the quasi-progression Q whose conjugate vector is lexicographically least among the conjugate vectors of all quasi-progressions (with first term a and low-difference d) that are monochromatic
under χ. Let $Q=\left\{a_{1}, a_{2}, \ldots, a_{k}\right\}$ be a quasi-progression with first term $a_{1}=a$ and low-difference d. We give an upper bound for the number of colorings χ such that Q is the (a, d)-primary quasi-progression of χ.

Since Q is monochromatic, all elements of Q have the same color under χ, say red. Let $\left(u_{1}, u_{2}, \ldots, u_{k-1}\right)$ be the conjugate vector of Q. Observe that if $u_{j}=1$ and $u_{j+1}=0$ for some j, so that $a_{j}, a_{j}+d+1$ and $a_{j}+2 d+1$ are elements of Q, and therefore red, it follows that the color of $a_{j}+d$ is different from red (say blue), as $\left(P \cup\left\{a_{j}+d\right\}\right) \backslash\left\{a_{j}+d+1\right\}$ has a lexicographically lower conjugate vector. We define the weight of Q, denoted $w(Q)$, as the sum of the last element of the conjugate vector of Q, and the number of occurrences of the string " 10 " in the conjugate vector of Q. Note that in view of the above observation, the color of $w(Q)$ integers in the set $\{a, a+d, a+d+1, \ldots, a+(k-1) d, \ldots, a+(k-1)(d+1)\}$ can be inferred to be blue.

We now derive an upper bound on $g(2, N, k, 1)$. There are $N^{2} /(k-1)$ choices for the pair (a, d). Of the 2^{k-1} possible conjugate vectors for a quasi-progression with first term a and common difference d, let w_{ℓ} be the number of conjugate vectors of weight ℓ. Let

$$
S_{t}=\sum_{\ell=0}^{\lceil t / 2\rceil} w_{\ell} 2^{-\ell}
$$

denote the weighted sum of all such vectors of length t. Clearly, $S_{t}=S_{t, 0}+$ $S_{t, 1}$ where $S_{t, 0}$ and $S_{t, 1}$ denote the weighted sum of conjugate vectors that begin with 0 and 1 respectively, with $S_{1,0}=1$ and $S_{1,1}=1 / 2$. It is easy to see that $A\left[S_{t-1,0} S_{t-1,1}\right]^{T}=\left[S_{t, 0} S_{t, 1}\right]^{T}$ where

$$
A=\left[\begin{array}{cc}
1 & 1 \\
1 / 2 & 1
\end{array}\right]
$$

Since $\lambda_{\max }(A)=1+\frac{1}{\sqrt{2}}$, we get

$$
g(2, N, k, 1)<\frac{N^{2} 2^{N-k+1}\left[\left(1+\frac{1}{\sqrt{2}}\right)^{k}+\left(1-\frac{1}{\sqrt{2}}\right)^{k}\right]}{2(k-1)}
$$

Thus $g(2, N, k, 1)<2^{N}$ for $N=\beta_{2,1}^{k}$ where $\beta_{2,1}=\sqrt{4-2 \sqrt{2}}=1.08239 \ldots$ is the smallest positive real root of the equation $y^{4}-8 y^{2}+8=0$. It follows that $Q_{1}(2, k)>\beta_{2,1}^{k}$ yielding a tiny improvement over the lower bound in [5].

In general, since there are $r^{N} r$-colorings of $[1, N]$ and at most $N^{2}(n+1)^{k-1}$ k-term quasi-progressions of diameter n, a lower bound of the form $Q_{n}(r, k) \geq$ $(\sqrt{r /(n+1)})^{k}$ follows immediately from the linearity of expectation. However, this bound is only useful when $n \leq r-2$. Generalizing the approach outlined earlier,
we represent the conjugate vector of Q as an r-ary string, and define the weight $w(Q)$ as the sum of the last element of the conjugate vector of Q, and the number of occurrences of strings of length two of the form " $x y$ ", counted with multiplicity $m(x, y)=\min (x, n-y)$. (Note that $m(x, y)$ denotes the number of conjugate vectors that are lexicographically lower than the given vector and correspond to quasi-progressions that differ from Q in exactly one element.)

As before, let $S_{t, j}$ denote the weighted sum of conjugate vectors of length t beginning with $j, 0 \leq j \leq n$, with $S_{1, j}=\alpha^{j}$ for all j where $\alpha=1-\frac{1}{r}$. Then $A\left[S_{t, 0} \cdots S_{t, n}\right]^{T}=\left[S_{t+1,0} \cdots S_{t+1, n}\right]^{T}$ where

$$
A_{r, n}=\left[\begin{array}{ccccc}
1 & 1 & \cdots & 1 & 1 \\
\alpha & \alpha & \cdots & \alpha & 1 \\
\alpha^{2} & \alpha^{2} & \cdots & \alpha & 1 \\
\vdots & \vdots & \vdots & \vdots & \vdots \\
\alpha^{n} & \alpha^{n-1} & \cdots & \alpha & 1
\end{array}\right]
$$

Note that the $(i, j)^{t h}$ entry of the matrix $A_{r, n}$ is $\alpha^{m(i-1, j-1)}=\alpha^{\min (i-1, n+1-j)}$. Then $Q_{n}(r, k)>\beta^{k}$ where $\beta=\beta_{r, n}=\sqrt{r / \lambda_{\max }\left(A_{r, n}\right)}$. Note that for each r, there are only finitely many values for which $\beta_{r, n}>1$. The first few such values are shown in the following table.

n	1	2	3	4	5	6
$\beta_{2, n}$	1.08239	<1	<1	<1	<1	<1
$\beta_{3, n}$	1.28511	1.11226	1.02236	<1	<1	<1
$\beta_{4, n}$	1.46410	1.24686	1.12770	1.05338	1.00384	<1

Acknowledgement We thank the referee for several useful comments and suggestions.

References

[1] W. T. Gowers, A new proof of Szemerédi's theorem. Geom. Funct. Anal. 11, 2001.
[2] A. Jobson, A. Kezdy, H. Snevily and S. C. White, Ramsey functions for quasi-progressions with large diameter. J. Comb. 2 (2011), 557-573.
[3] B. M. Landman, Monochromatic sequences whose gaps belong to $\{d, 2 d, \ldots, m d\}$. Bull. Aust. Math. Soc. 58 (1998), 93-101.
[4] B. M. Landman and A. Robertson, Ramsey Theory on the Integers. American Mathematical Society, Providence, 2004.
[5] S. Vijay, On a variant of Van der Waerden's Theorem. Integers 10 (2010), A17, 5pp. (electronic).
[6] B. L. van der Waerden, Beweis einer Baudetschen Vermutung. Nieuw Arch. Wiskd. 15 (1927), 212-216.

