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Abstract
Resolving a question of Banero, we show that for every integer K > 1, there exists
a word with additive complexity identically K. This result is perhaps surprising in
light of the rather strong restriction on the existence of words with constant abelian
complexity, given in the work of Currie and Rampersad. To prove our result we
generalize the notion of a sturmian word. We also pose some questions regarding
the existence and structure of words with fixed additive complexity.

1. Introduction

The study of words with bounded abelian complexity was initiated by Richomme,
Saari and Zamboni [9]. They conjectured that, for a positive integer K, recurrent
words of constant abelian complexity identically K exist if and only if K  4. This
conjecture was proved by Currie and Rampersad [5]. Banero [3] asked for what
K there exist words of fixed additive complexity, and gave constructions of words
with fixed odd complexity. We show that, in sharp contrast to the case of abelian
complexity, there exist recurrent words with additive complexity exactly K for every
K.

2. Definitions and Results

An infinite word w, will be understood to be an infinite sequence wn, n 2 N, with
wn 2 A where A is a finite set. We will say w is a word over the alphabet A. In
this paper, we will only consider words over alphabets A of integers.

A block b of a word w is a sequence of consecutive elements of w, that is b =
wk · · ·wk0 for k  k0. For a block b = wk · · ·wk0 of w, we define

P
b :=

Pk0

i=k wi.
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Finally, define a word w to be recurrent if every block that occurs in w occurs
infinitely many times.

The abelian complexity of an infinite word was defined in Currie and Rampersad
[5] as follows. Suppose that w is an infinite word on alphabet A = {a1, . . . , an} and
that b is a block of w. Define the composition vector of b to be the vector C(b) 2 Zn

such that the ith coordinate counts the number of occurrences of the symbol ai in
the block b. We now define the abelian complexity of w, denoted �ab(w;n), as

�ab(w;n) = |{C(b) : b is a block of w of length n}| .

Richomme, Saari and Zamboni [9] asked the following question: for what K is
there an infinite, word with abelian complexity exactly K? That is, for what K
is there a word with �ab(w;n) = K, for all n 2 N? This question was resolved by
Currie and Rampersad [5] with the following result.

Theorem 1. There exists a recurrent word with abelian complexity exactly K 2 N
if and only if K  3.

To study a Ramsey-type problem posed by Halbeisen and Hungerbühler [6],
Ardal, Brown, Jungić and Sahasrabudhe [1] defined the additive complexity of a
infinite word. The additive complexity of an infinite word w over a finite set of
integers is the function �+(w, n) that counts the number of distinct sums obtained
by summing n consecutive symbols of w. More precisely, write w = w1w2 · · · then
define

�+(w;n) =

�����
(

l+n�1X
i=l

wi : l 2 N
)����� .

Banero [3] asked for what K is there a recurrent word with constant additive
complexity exactly K. In this note we answer this question. Somewhat surprisingly,
the situation is quite di↵erent from that of abelian complexity.

Theorem 2. For every K 2 N,K > 1, there is a recurrent word of additive com-
plexity exactly K.

We note that the restriction to recurrent words is needed to make the problem
interesting. In particular, the rather dull word

w = 012 · · · (K � 2)(K � 1)(K � 1)(K � 1) · · ·

has additive (and abelian) complexity exactly K.
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3. d-Dimensional Sturmian Words

We first recall the definition of sturmian words. Let ↵ > 0 be an irrational real
number and let � be an arbitrary real. Define the sturmian word w(↵; �) = w1w2 · · ·
as the sequence wn = b↵(n + 1) + �c � b↵n + �c for n = 1, 2, . . .. In what follows,
we shall always take � = 0 and write w(↵) = w(↵, 0). Sturmian words have been
well studied and are known by several equivalent definitions. We refer the reader
to [7] ,[8], and the references therein, for further information.

The construction we give can be viewed as a generalization of sturmian words.
We define these words in such a way that their connection to additive complexity
is clear. Suppose that one slides an interval of length l /2 Z along the real numbers.
Observe that this interval will cover either blc or blc+1 integer points. In a similar
way, we may imagine d distinct intervals of lengths l1, . . . , ld 62 Z independently
sliding on the real numbers. We can make a similar observation regarding the
number of integer points covered. For emphasis, we make this observation precise.

Observation 1. If l1, . . . , ld 62 Z and t1, . . . , td 2 R then

dX
i=1

|[ti, ti + li] \ Z| =
dX

i=1

blic+ a,

where a 2 {0, . . . , d}. Moreover, for each a 2 {0, . . . , d} one can find values
t01, . . . , t

0
d 2 R such that

P
i |[t0i, t0i + li] \ Z| =

P
iblic+ a.

To prove Theorem 2, we aim to “discretize” the above observation in an appro-
priate way. The following basic result of Kronecker will allow us to do just this.

Theorem 3. Let ↵1, . . . ,↵d 2 R be such that 1,↵1, . . . ,↵d are linearly independent
over Q. Then {({n↵1}, . . . , {n↵d})}n2N is dense in (R/Z)d, where {x} denotes the
fractional part of x.

We are now in a position to give our construction. Given ↵1, . . . ,↵d 2 R with
1,↵1, . . . ,↵d linearly independent over Q, we define a d-dimensional sturmian word
w = w(↵1, . . . ,↵d) (= w1w2, · · · ) by

wn =
dX

i=1

|[n↵i, (n + 1)↵i) \ Z)| =
dX

i=1

b(n + 1)↵ic �
dX

i=1

bn↵ic.

We now turn to analyse the additive complexity of d-dimensional sturmian words.

Lemma 1. For d > 1, let w be a d-dimensional sturmian word. Then �+(w;n) =
d + 1.
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Proof. Let w be a d-dimensional sturmian word and let b(n, k) = wn · · ·wn+k be a
block of w. Notice that

X
b(n, k) =

dX
i=1

|[n↵i, (n + k + 1)↵i) \ Z)| . (1)

Observation 1 tells us that this sum takes at most d + 1 di↵erent values. So
�+(w;n)  d + 1. To prove the converse, fix some value a 2 {0, . . . , d}. From
Observation 1 again, we know that there exists (t1, . . . , td) 2 Rd so that

X
i

|[ti, ti + (k + 1)↵i) \ Z)| =
X

i

blic+ a. (2)

Also notice that shifting the intervals integer amounts preserves the equality in (2).
That is, if M1, . . . ,Md 2 Z we have

X
i

|[ti + Mi, ti + (k + 1)↵i + Mi) \ Z)| =
X

i

blic+ a.

We observe that the equality at (2) is also preserved by small perturbations. In
other words, there exist ✏1, . . . , ✏d > 0 so that for 0  �i < ✏i we have that

X
i

|[ti � �i, ti + (k + 1)↵i � �i) \ Z)| =
X

i

blic+ a.

Now, by Kronecker’s theorem, we know that there exists an n and M1, . . . ,Md 2 Z
so that ti + Mi � ✏i < n↵i < ti + Mi, for all i = 1, . . . , d.

Thus there is an n with

X
b(n, k) =

dX
i=1

|[n↵i, (n + k + 1)↵i)] \ Z| =
X

i

|[ti � �i, ti + (k + 1)↵i � �i) \ Z)|

=
X

i

blic+ a ,

where 0  �i < ✏i. This shows that �+(w;n) � d + 1 as desired.

4. Uniform Recurrence

In the previous section we established that �+(n;w) = d + 1 where w is a d-
dimensional sturmian word. To complete the proof of Theorem 2 we must show that
w is recurrent. We shall in fact prove more, namely that d-dimensional sturmian
words are uniformly recurrent.
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Fix an infinite word w = w1w2 · · · and for n, l � 1 set b(n, l) = wn · · ·wn+l�1.
We define the distance between two blocks b(n, l) and b(n0, l0) to be |n � n0|. An
infinite word w is said to be uniformly recurrent if every block b that occurs in w,
occurs infinitely often and the gap between consecutive occurrences of b is bounded
by a constant depending only on b. More formally, for a block b occurring in w,
define R(b, w) to be the supremum over all distances of consecutive occurrences of
the block b in w. A word is said to uniformly recurrent if R(b, w) < 1 for all blocks
b appearing in w.

In the discussion that follows, we will just consider the case d = 1. Let 0 < ↵ < 1
be an irrational and we consider constructing the word w = w(↵). As we have
described above, w(↵)n is simply the number of integer points intersected by the
interval [n↵, (n+1)↵). Thus, we imagine moving a interval while leaving the integer
lattice fixed. Alternatively, one can construct w(↵) by fixing the interval [0,↵) and
moving the integer lattice in the opposite direction in increments of size ↵. In
symbols we have

wn = |[0,↵) \ (Z� n↵) |.

In what follows, this seems to be the natural way of thinking about w(↵).
Given infinite words w,w0 on an alphabet A, we define the product word w⇥w0 to
be the infinite word on A⇥A defined by

(w ⇥ w0)n = (wn, w0
n).

It is immediate that this operation ⇥ on words is associative so we may speak of
words of the form w1 ⇥ · · · ⇥ wn without ambiguity. To show that w(↵1, . . . ,↵n)
is uniformly recurrent we shall show that the product word w(↵1)⇥ · · ·⇥ w(↵d) is
uniformly recurrent.

In the proof of the lemma that follows, we shall need the following variant of an
old and basic lemma of Dirichlet. Given 0 < � < 1 and x 2 (R/Z)N define a �-box
of x to be a set B� ✓ (R/Z)N , with x 2 B� and of the form B� = I1 ⇥ · · · ⇥ IN

where each of the Ii are intervals (open, closed, half closed or half-open) of length
�.

Lemma 2. Let ↵1, . . . ,↵N be real numbers and let 0 < � < 1 and k 2 N. Then
for any �-box B� of 0 there exists n 2 N such that k < n < (1

� )N + k and
({n↵1}, . . . , {n↵N}) 2 B�.

Lemma 3. Let ↵1, . . . ,↵d 2 R and let w(↵1), . . . , w(↵d) be 1-dimensional sturmian
words. Then w(↵1)⇥ · · ·⇥ w(↵d) is uniformly recurrent.
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Proof. Set w = w(↵1)⇥ · · · ⇥ w(↵d) and fix a block b = b(n0, l) = wn0 · · ·wn0+l�1

of !. We may assume that 0 < ↵i < 1 for i = 1, . . . , d. We need to show that
R(b, w) (the maximum distance between consecutive occurrences of b) exists, for all
blocks b occurring in w. To see this we will define a transformation T on the space
X = (R/Z)ld and a point x 2 X. The block b(n, l) will be determined by what
region of X that the point Tn(x) lies in. In what follows we will often think of the
space (R/Z)ld as (R/Z)l ⇥ · · ·⇥ (R/Z)l.
We start by defining the maps Ti : (R/Z)l ! (R/Z)l for i = 1, . . . , d by

Ti(x1, . . . , xl) = (x1 + ↵i, x2 + ↵i, . . . , . . . , xl + ↵i)

We then define T = T1 ⇥ · · ·⇥ Td and take

x = (0,↵1, 2↵1, . . . , (l � 1)↵1, 0,↵2, 2↵2 . . . , (l � 1)↵2, . . . , 0,↵d, 2↵d . . . , (l � 1)↵d)

Now for each i = 1, . . . , d, define an i-region of (R/Z)l to be a set of the form
Ri = I1 ⇥ · · · ⇥ Il where Ij 2 {[0,↵i), [↵i, 1)} for j = 1, . . . , l. Notice that the
collection of i-regions forms a partition of (R/Z)l. Now define a partition P of X
as

P = {A1 ⇥ · · ·⇥Ad : Ai is an i� region}

The crucial observation is that b(n, l) is determined entirely by the region of P
that Tn(x) falls into. So set I 2 P to be the region for which Tn0(x) falls into.
The problem of bounding the recurrence time of b(n0, l) is reduced to bounding the
number of applications of T to the point Tn0(x) that are required to return to I.
Now, to bound this return time, choose a �-box B� for some � > 0 so that Tn0(x) 2
B� ✓ I. We now shift this box to the origin, i.e. put

B0
� = B� � Tn0(x).

By Lemma 2, for k 2 N we have an integer nk satisfying k < nk  (1
� )ld + k with

Tnk(0) 2 B0
�.

Thus Tnk(0) + Tn0(x) 2 D�. Recalling the definition of T , we see that this implies
that Tnk+n0(x) 2 B�. This means that b(nk + n0, l) is identical to b(n0, l). Hence
we can conclude that R(b)  2(1

� )ld and that w(↵1) ⇥ · · · ⇥ w(↵d) is uniformly
recurrent.

Lemma 4. Let ↵1, . . . ,↵d, 1 2 R be linearly independent over Q and let w(↵1, . . . ,↵d)
be the corresponding d-dimensional sturmian word. The word w(↵1, . . . ,↵d) is uni-
formly recurrent.
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Proof. Simply notice that we may obtain the d-dimensional sturmian word by sum-
ming the coordinates of the product word w(↵1)⇥ w(↵2)⇥ · · ·⇥ w(↵d), which we
know to be uniformly recurrent.

5. Some Further Questions

Banero [3] pointed out that one can actually construct recurrent words of fixed
odd complexity with a di↵erent construction. Indeed, enumerate all words of finite
length on the alphabet {0, . . . , n}, and form an infinite word w by concatenating
all of the finite words in the order specified by the enumeration. Then apply the
morphism defined by

0 ! (0)(2n) 1 ! (1)(2n� 1) · · · n ! (n)(n).

It is easy to check that the resulting word has additive complexity exactly 2n +
1. This construction suggests that recurrent words with fixed additive complexity
are much more abundant than the class of generalized sturmian words. Can a
construction of this form be generalized to give constructions of words with fixed
even complexity?

Before we ask our second question, we make an observation. Above we defined
the nth symbol of w(↵1, . . . ,↵n) as

dX
i=1

b(n + 1)↵ic �
dX

i=1

bn↵ic.

However, if we define w = (wn)n by

wn =
dX

i=1

b(n + 1)↵i + �ic �
dX

i=1

bn↵i + �ic,

where �1, . . . , �n 2 R then one can show, by modifying our proof of Theorem 2,
that w is also uniformly recurrent with additive complexity exactly d+1. Are there
any uniformly recurrent words not of this type that have fixed additive complexity?
The fact that there are no other such words for n = 1 is (in a slightly di↵erent form)
the well known theorem of Hedlund and Morse. See [8] for the original proof and
[7] for a modern presentation of this result.
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