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ON DIVISIBILITY OF GENERALIZED FIBONACCI NUMBERS
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Abstract
It is well-known that p divides some Fibonacci numbers Fn for any prime number
p. Moreover, it is also known that any Lucas number Ln cannot be divided by
5. Let p be a prime number and d(p) be the smallest positive integer n for which
p | Fn. In this article, we consider the generalized Fibonacci sequence {Gn}, which
satisfies the Fibonacci recurrence relation, but with arbitrary initial conditions. We
define an equivalence relation among the sequences {Gn} and give all equivalence
classes {Gn}, whose representatives {Gn} satisfy p - Gn for any n 2 N. From the
result, we know that if p ⌘ ±1 (mod 5), then there are infinitely many generalized
Fibonacci sequences {Gn} that satisfy p - Gn for any n 2 N, and if p ⌘ ±2 (mod 5)
and d(p) = p+1, then for any generalized Fibonacci sequences {Gn}, we have p|Gn

for some n 2 N.

1. Introduction and Main Result

We define the generalized Fibonacci sequence {Gn} by

G1, G2 2 Z and Gn+2 = Gn+1 + Gn for any n � 1.

Many interesting properties of the sequences are known ([2, especially see §7 and
§17]). We fix a prime number p and let d(p) be the order of appearance of p for
the Fibonacci sequence {Fn}, which is defined as the smallest positive integer n
such that Fn ⌘ 0 (mod p). By the periodicity modulo p ([2, §35]), we have Fn ⌘ 0
(mod p) if and only if n ⌘ 0 (mod d(p)). Furthermore, we know d(p)  p + 1 from
the well-known properties of Fibonacci numbers.

1This work was supported by JSPS KAKENHI Grant Numbers 26400015.
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Lemma 1. ([2, §34, Theorem 34.8])

(1) If p ⌘ ±1 (mod 5), then we have Fp�1 ⌘ 0 (mod p).

(2) If p ⌘ ±2 (mod 5), then we have Fp+1 ⌘ 0 (mod p).

For any integer G that is not divisible by p, we denote an inverse element modulo
p by G�1(2 Z) (i.e., GG�1 ⌘ 1 (mod p)). Let {Gn} and {G0

n} be generalized
Fibonacci sequences that satisfy p - G1, G2 and p - G0

1, G
0
2. If G2G

�1
1 ⌘ G0

2G
0
1
�1

(mod p), then we write {Gn} ⇠ {G0
n}. This relation ⇠ is an equivalence relation.

We denote the quotient set of this relation by

Xp = {{Gn} | generalized Fibonacci sequences that satisfy p - G1, G2}/ ⇠ .

By the definition of the relation ⇠, each class {Gn} 2 Xp contains infinitely
many generalized Fibonacci sequences. The number of equivalence classes {Gn} of
Xp is |Xp| = |F⇥p | = p� 1. Furthermore, we define the subset Yp of Xp by

Yp = {{Gn} 2 Xp | p - Gn for any n 2 N}.

We know that Yp is well-defined; the condition “p - Gn for any n 2 N” does not
depend on a representative {Gn} by the following lemma.

Lemma 2. Assume p - G1, G2, p - G0
1, G

0
2, and {Gn} ⇠ {G0

n}. Then we have
p - Gn if and only if p - G0

n for any n 2 N.

For any positive integers i which satisfy i 6⌘ 0 (mod d(p)), let gi (0  gi  p� 1)
be the integer such that gi ⌘ Fi+1F

�1
i (mod p). The next lemma is the key to

proving our main theorem. The key lemma shows that the ratios of successive
Fibonacci numbers modulo p have the period d(p).

Lemma 3. Let i and j be positive integers which satisfy i, j 6⌘ 0 (mod d(p)). We
have gi = gj if and only if i ⌘ j (mod d(p)).

We denote the generalized Fibonacci sequence {Gn} such that G1 = a, and G2 =
b (a, b 2 Z) by {G(a, b)}. For example, {Fn} = {G(1, 1)} and {Ln} = {G(1, 3)}.
We can write Xp = {{G(1, k)} | 1  k  p� 1}. Our main theorem is as follows.

Theorem 1. (1) Yp = Xp � {{G(1, gi)} | 1  i  d(p)� 2}.

(2) |Yp| = p + 1� d(p).

The next corollary immediately follows from Theorem 1, Lemma 1, and d(5) = 5.

Corollary 1. (1) |Y5| = 1.

(2) If p ⌘ ±1 (mod 5), then there are infinitely many generalized Fibonacci se-
quences {Gn} that satisfy p - Gn for any n 2 N.
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(3) If p ⌘ ±2 (mod 5) and d(p) = p + 1, then for any generalized Fibonacci
sequence {Gn}, we have p|Gn for some n 2 N.

If p ⌘ ±2 (mod 5), then we have d(p)  p + 1 by Lemma 1 (2). Furthermore,
we get d(p)|p+1 by a brief discussion (cf. [3, Lemma 2.2 (c)]). We give a necessary
condition for d(p) = p + 1 below. We obtained the following lemma from a private
discussion with Yasuhiro Kishi.

Lemma 4. Let p be an odd prime number. If d(p) = p + 1, then we have p ⌘ 3
(mod 4).

Proof. Applying the property Fn+m = FmFn+1 + Fm�1Fn for (n,m) =
�p�1

2 , p+1
2

�
and (n,m) =

�p+1
2 , p+3

2

�
, we get F 2

p+1
2

+ F 2
p�1
2

= Fp and F 2
p+3
2

+ F 2
p+1
2

= Fp+2. By
our assumption d(p) = p + 1, Lemma 1, and d(5) = 5, we have p ⌘ ±2 (mod 5).
On the other hand, we get Fp ⌘ �1 (mod p) ([1, Theorem 6]), and also Fp+2 ⌘ �1
(mod p) since Fp+1 ⌘ 0 (mod p). Hence we get F 2

p+1
2

+ F 2
p�1
2
⌘ �1 (mod p) and

F 2
p+3
2

+ F 2
p+1
2
⌘ �1 (mod p). Furthermore, since

�1 ⌘ F 2
p+3
2

+ F 2
p+1
2

(mod p) =
⇣
F p+1

2
+ F p�1

2

⌘2
+ F 2

p+1
2

⌘ 2F p+1
2

F p�1
2
� 1 + F 2

p+1
2

(mod p),

we conclude F p+1
2

⇣
2F p�1

2
+ F p+1

2

⌘
⌘ 0 (mod p) and hence F p+1

2
⌘ �2F p�1

2
(mod p)

by our assumption that d(p) = p+1. We get �1 ⌘ F 2
p+1
2

+F 2
p�1
2
⌘ 5F 2

p�1
2

(mod p).
If we assume p ⌘ 1 (mod 4), then we have

 5F 2
p�1
2

p

!
=
✓

5
p

◆
=
⇣p

5

⌘
=
✓
±2
5

◆
= �1 and

✓
�1
p

◆
= 1.

These contradict 5F 2
p�1
2
⌘ �1 (mod p). Hence we get p ⌘ 3 (mod 4).

The primes p which satisfy p < 100 and the condition d(p) = p + 1 are p =
3, 7, 23, 43, 67, 83.

2. Proofs

First, we prove Lemma 2 and Lemma 3.

Proof of Lemma 2. Let a be the integer which satisfies a ⌘ G2G
�1
1 ⌘ G0

2G
0
1
�1

(mod p) and 1  a  p � 1, and {An} be the generalized Fibonacci sequence de-
fined by A1 = 1 and A2 = a. Then, we have Gn ⌘ AnG1 and G0

n ⌘ AnG0
1 (mod p)
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for all n 2 N. As p does not divide G1 and G0
1, we have p|Gn if and only if p|G0

n. 2

Proof of Lemma 3. We consider two subsequences of Fn mod p :

Fi, Fi+1 ⌘ giFi, Fi+2 ⌘ (1 + gi)Fi, Fi+3 ⌘ (1 + 2gi)Fi, · · · ,

Fj , Fj+1 ⌘ gjFj , Fj+2 ⌘ (1 + gj)Fj , Fj+3 ⌘ (1 + 2gj)Fj , · · · .

Assume gi = gj and let k be a positive integer. Because p does not divide Fi and
Fj , we have Fi+k ⌘ 0 (mod p) if and only if Fj+k ⌘ 0 (mod p). We conclude that
i + k ⌘ j + k (mod d(p)) for some k 2 N, and obtain i ⌘ j (mod d(p)).

Conversely, we assume i ⌘ j (mod d(p)). Let {In} and {Jn} be the generalized
Fibonacci sequences which are defined as I1 = J1 = 1 and I2 = gi, J2 = gj . We
denote the above two subsequences mod p by

Fi, Fi+1 ⌘ I2Fi, Fi+2 ⌘ I3Fi, Fi+3 ⌘ I4Fi, · · · ,

Fj , Fj+1 ⌘ J2Fj , Fj+2 ⌘ J3Fj , Fj+3 ⌘ J4Fj , · · · .

By the assumption that i ⌘ j (mod d(p)), for any positive integer k, we have
i + k ⌘ 0 (mod d(p)) if and only if j + k ⌘ 0 (mod d(p)). Therefore, we have
Fi+k ⌘ 0 (mod p) if and only if Fj+k ⌘ 0 (mod p). Since p does not divide Fi and
Fj , we get Ik+1 ⌘ 0 (mod p) if and only if Jk+1 ⌘ 0 (mod p). By the formulas

Ik+1 = Fk�1I1 +FkI2 = Fk�1 +Fkgi and Jk+1 = Fk�1J1 +FkJ2 = Fk�1 +Fkgj ,

we have Fkgi ⌘ Fkgj (mod p). Since k 6⌘ 0 (mod d(p)) by i, j 6⌘ 0 (mod d(p)), we
have gi ⌘ gj (mod p). Furthermore, since 0  gi, gj  p� 1, we get gi = gj . 2

Proposition 1. Assume p - G1, G2. For all positive integers n which satisfy n 6⌘ 2
(mod d(p)), we have p | Gn if and only if �G1G

�1
2 ⌘ gn�2 (mod p).

Proof. This follows from the well-known formula Gn = Fn�2G1 + Fn�1G2.

Proposition 2. Assume p - G1, G2. We have p|Gn for some n 2 N if and only if
�G1G

�1
2 ⌘ gi (mod p) for some i which satisfies 1  i  d(p)� 2.

Proof. If n ⌘ 2 (mod d(p)), then we have Gn = Fn�2G1 + Fn�1G2 ⌘ Fn�1G2 6⌘ 0
(mod p). Furthermore, if i = d(p) � 1, then we have �G1G

�1
2 6⌘ gi (mod p) as we

have assumed p - G1 and gd(p)�1 ⌘ Fd(p)F
�1
d(p)�1 ⌘ 0 (mod p). Hence it su�ces to

show that we have p|Gn for some n 2 N which satisfies n 6⌘ 2 (mod d(p)) if and
only if �G1G

�1
2 ⌘ gi (mod p) for some i which satisfies 1  i  d(p) � 1. This

follows from Proposition 1 and Lemma 3.
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Next, we prove the main theorem.

Proof of Theorem 1. (1) Since the Fibonacci numbers satisfy Fn+m = FmFn+1 +
Fm�1Fn, we have 0 ⌘ Fd(p) = Fi+(d(p)�i) = Fd(p)�iFi+1 + Fd(p)�i�1Fi (mod p) for
any i (1  i  d(p) � 2). Therefore, gi ⌘ �g�1

d(p)�i�1 (mod p). By Lemma 3 and
Proposition 2, we have

Yp = Xp � {{Gn} 2 Xp | p|Gn for some n 2 N}

= Xp � {{G(1, k)} | 1  k  p� 1, �k�1 ⌘ gi (mod p)
for some i (1  i  d(p)� 2)}

= Xp � {{G(1, k)} | 1  k  p� 1, �k�1 ⌘ gd(p)�i�1 (mod p)
for some i (1  i  d(p)� 2)}

= Xp � {{G(1, k)} | 1  k  p� 1, k ⌘ �g�1
d(p)�i�1 (mod p)

for some i (1  i  d(p)� 2)}

= Xp � {{G(1, gi)} | 1  i  d(p)� 2}.

(2) By Lemma 3, we know gi 6= gj if 1  i, j  d(p) � 2 and i 6= j. Hence we
conclude |Yp| = |Xp|� (d(p)� 2) = (p� 1)� (d(p)� 2) = p + 1� d(p). 2

3. Examples

p d(p) Yp

3 4 ;
5 5 {Ln} (= {G(1, 3)})
7 8 ;
11 10 {G(1, 4)}, {G(1, 8)}

{G(1, 3)}, {G(1, 4)}, {G(1, 5)}, {G(1, 7)}, {G(1, 9)}, {G(1, 10)},
13 7 {G(1, 11)}

{G(1, 3)}, {G(1, 4)}, {G(1, 6)}, {G(1, 7)}, {G(1, 9)}, {G(1, 11)},
17 9 {G(1, 12)}, {G(1, 14)}, {G(1, 15)}
19 18 {G(1, 5)}, {G(1, 15)}

Table 1. Yp for small prime numbers p
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