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Abstract
Let sq(n) denote the sum of the digits in the q-ary expansion of a nonnegative
integer n, and let p1(x), p2(x) be polynomials in Z[x] with distinct positive degrees.
If p1(n) � 1 and p2(n) � 1 for all positive integers n, then for any " > 0, we give
lower bounds of the number of n  N such that sq(p1(n))/sq(p2(n)) < ".

1. Introduction

For any integer q � 2, let nonnegative integer

n =
kX

i=0

↵i(n)qi, ↵i(n) 2 {0, 1, . . . , q � 1}.

Denote by sq(n) =
kP

i=0
↵i(n) the sum of digits of n in base q. The study of the sum of

digits mainly focuses on the sum of digits of some special sequences of integers, the
average sum of the digits of integers, the asymptotic formula of the weighted sum-
of-digits function, and the ratio of the sum of digits of polynomial values. For the
study of the sum of digits of some special sequences of integers, several researchers
investigated the properties of sq of primes [14], polynomials [5, 7, 9, 11, 15, 16, 19],
Fibonacci numbers [21] and Bernoulli numbers [2]. For the study of the average sum
of the digits of integers, one may refer to [1, 4, 6, 17]. For the study of the asymptotic
formula of the weighted sum-of-digits function, one may refer to [12, 18]. For the
study of the ratio of the sum of digits of polynomial values, several researchers
investigated the problems and a lot of academic achievements have been achieved.
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In 1978, Stolarsky [20] showed that

lim inf
n!1

s2(n2)
s2(n)

= 0

and conjectured that

lim inf
n!1

s2(nh)
s2(n)

= 0

for any integer h � 2.
In 2011, Hare, Laishram and Stoll [10] proved that for any integer q � 2 and for

any polynomial p(x) =
tP

i=0
cixi 2 Z[x] with t � 2 and ct > 0,

lim inf
n!1

sq(p(n))
sq(n)

= 0.

In 2014, Madritsch and Stoll [13] proved that✓
sq(p1(n))
sq(p2(n))

◆
n�1

is dense in R+, where p1(x), p2(x) are polynomials in Z[x] of distinct positive
degrees with p1(N), p2(N) ✓ N.

In this paper, we always assume that

p1(x) =
hX

i=0

aix
i 2 Z[x], p2(x) =

lX
i=0

bix
i 2 Z[x]

with h � 1, l � 1, ah > 0 and bl > 0.
By employing the methods in [10] and [20], the following theorems are proved.

Theorem 1. Let deg p1 > deg p2. If p1(n) � 1 and p2(n) � 1 for any positive
integer n, then for any " > 0, there exists a positive constant C1, dependent only
on ", q, p1(x) and p2(x), such that����

⇢
n  N :

sq(p1(n))
sq(p2(n))

< "

����� � C1N
↵

for all su�ciently large integers N , where ↵ = "(2h(l + 3)(h(l + 3) + 1) + ")�1.

Theorem 2. Let deg p1 < deg p2. If p1(n) � 1 and p2(n) � 1 for any positive
integer n, then for any " > 0, there exists a positive constant C2, dependent only
on ", q, p1(x) and p2(x), such that����

⇢
n  N :

sq(p1(n))
sq(p2(n))

< "

����� � C2 log N

for all su�ciently large integers N .
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2. Preliminary Lemmas

Let [a, b] denote the interval of integers n such that a  n  b. For convenience,
we write f(s) ⇣ g(s) (s 2 S) if f(s) and g(s) are positive for all s 2 S and
c1g(s)  f(s)  c2g(s) for all s 2 S, where c1 and c2 are two positive constants.

Lemma 1. (See [10, Proposition 2.1]) For any integers a, b, k with 1  b < qk

and a, k � 1, we have
sq(aqk + b) = sq(a) + sq(b),

sq(aqk � b) = sq(a� 1) + (q � 1)k � sq(b� 1).

Lemma 2. Let n be a positive integer. Then for any integer q � 2, we have

sq(n)  (q � 1)(1 + logq n).

Proof. Let n = ↵tqt + · · · + ↵1q + ↵0 with

↵i 2 {0, 1, . . . , q � 1}, i = 0, 1, . . . , t, ↵t 6= 0.

Then

sq(n) =
tX

i=0

↵i  (q � 1)(t + 1)  (q � 1)(1 + logq n).

Lemma 3. (See [8, Bose-Chowla Theorem] or [3] ) Let d � 2 be an integer, and
let M be a power of a prime. Then there exist integers y1, y2, . . . , yM+1 with 1 
y1 < y2 < · · · < yM+1 = Md such that all sums

yj1 + yj2 + · · · + yjd , 1  j1  j2  · · ·  jd  M + 1

are distinct.

Lemma 4. Let l be a positive integer, and let

tm(x) = m + mx� x2 � x3 � · · ·� xl+1 + mxl+2 + mxl+3

be a polynomial in Z[x]. For any positive integer i, let

(tm(x))i =
(l+3)iX
j=0

a(i,m)
j xj .

Then
(a) for all positive integers m and i, we have

|a(i,m)
j |  (4m + l)i, 0  j  (l + 3)i.
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(b) there exists a positive constant c0, dependent only on l, such that for any
integer m with m � c0 and any integer i with 1  i  l,

a(i,m)
j ⇣ mi if and only if j 2 [

0ki
([0, i] + (l + 2)k),

and

�a(i,m)
j ⇣ mi�1 if and only if j 2 [

0ki�1
([i + 1, l + 1] + (l + 2)k).

(c) for any integer i with i > l, there exists a positive constant c1, dependent
only on i, such that for any integer m with m � c1,

a(i,m)
j ⇣ mi, 0  j  (l + 3)i.

Proof. (a) Let

fm(x) = m + mx + x2 + x3 + · · · + xl+1 + mxl+2 + mxl+3

and

(fm(x))i =
(l+3)iX
j=0

b(i,m)
j xj .

Since

|a(i,m)
j |  b(i,m)

j ,

(l+3)iX
j=0

b(i,m)
j = (4m + l)i,

it follows that
|a(i,m)

j |  (4m + l)i.

(b) We will complete the proof by induction on i. It is easy to see that Lemma
4 (b) is true for i = 1, 2. Suppose that Lemma 4 (b) is true for an integer i with
2  i < l. Let

(tm(x))i(m + mx) =
(l+3)i+1X

j=0

c(i,m)
j xj ,

(tm(x))i(mxl+2 + mxl+3) =
(l+3)(i+1)X

j=l+2

d(i,m)
j xj ,

and

(tm(x))i(�x2 � x3 � · · ·� xl+1) =
(l+3)i+l+1X

j=2

e(i,m)
j xj .

By the induction hypothesis, for all su�ciently large integers m, it is easy to get
that

c(i,m)
j ⇣ mi+1 if and only if j 2 [

0ki
([0, i + 1] + (l + 2)k),



INTEGERS: 15 (2015) 5

�c(i,m)
j ⇣ mi if and only if j 2 [

0ki�1
([i + 2, l + 1] + (l + 2)k),

d(i,m)
j ⇣ mi+1 if and only if j 2 [

1ki+1
([0, i + 1] + (l + 2)k),

�d(i,m)
j ⇣ mi if and only if j 2 [

1ki
([i + 2, l + 1] + (l + 2)k),

and
�e(i,m)

j ⇣ mi, 2  j  (l + 3)i + l + 1.

Therefore, for all su�ciently large integers m, we have

a(i+1,m)
j ⇣ mi+1 if and only if j 2 [

0ki+1
([0, i + 1] + (l + 2)k),

and
�a(i+1,m)

j ⇣ mi if and only if j 2 [
0ki

([i + 2, l + 1] + (l + 2)k).

(c) From the proof of Lemma 4 (b), we see that Lemma 4 (c) is true for i = l+1.
A proof is similar to the proof of Lemma 4 (b) by induction on i � l + 1. This
completes the proof of Lemma 4.

3. Proof of Theorem 1

Proof. Let tm(x) and a(i,m)
j (0  j  (l + 3)i) be as in Lemma 4, a(0,m)

0 = 1,
a(i,m)

j = 0 (j > (l + 3)i) and let

p1(tm(x)) =
X

0ih(l+3)

f (m)
i xi,

p2(tm(x)) =
X

0il(l+3)

g(m)
i xi,

and
� = max{|a0|, |a1|, . . . , |ah|, |b0|, |b1|, . . . , |bl|}.

Then

f (m)
j =

hX
i=0

aia
(i,m)
j , 0  j  h(l + 3) (1)

and

g(m)
j =

lX
i=0

bia
(i,m)
j , 0  j  l(l + 3). (2)

Since l2 + 2l � 1 > (l + 3)(l � 1), we have

a(i,m)
l2+2l�1 = 0, i  l � 1.
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By (2) and Lemma 4 (b), noting that l2 +2l� 1 = l +1+(l +2)(l� 1), there exists
a positive constant m0, dependent only on p2(x), such that

g(m)
l2+2l�1 = bla

(l,m)
l2+2l�1 < 0 (3)

for all integers m � m0. Since h > l, it follows from Lemma 4 (b) and Lemma 4
(c) that there exists a positive constant m

0
1, dependent only on h, such that

a(h,m)
j ⇣ mh

and
a(i,m)

j = O(mh�1) (i  h� 1)

for all integers m � m
0
1. So there exists a positive constant m

00
1 , dependent only on

p1(x), such that
f (m)

j > 0, 0  j  h(l + 3)

for all integers m � m
00
1 . Thus, by Lemma 4 (a) and (1), there exists a positive

constant m1, dependent only on p1(x) and p2(x) with m1 � l, such that

0 < f (m)
j  �

X
0ih

(4m + l)i  2�(5m)h, 0  j  h(l + 3) (4)

and
|g(m)

j |  �
X

0il

(4m + l)i  2�(5m)l, 0  j  l(l + 3) (5)

for all integers m � m1. By Lemma 4 (b) and (2), there exists a positive constant
m2, dependent only on p2(x), such that g(m)

0 > 0 and g(m)
1 > 0 for all integers

m � m2. For all integers m with m � m0, by (3), at least one coe�cient of
p2(tm(x)) is negative. For m � max{m0,m2}, let j be the least positive integer with
g(m)

j < 0. Then 2  j  l2 + 2l � 1. If m � max{m0,m1} and qk�2 > (2�(5m)l)2,
then, by Lemma 1 and (5), we have

sq(p2(tm(qk))) (6)

= sq(g
(m)
0 + g(m)

1 qk + g(m)
2 q2k + · · · + g(m)

l(l+3)q
kl(l+3))

= sq(g
(m)
0 ) + sq(g

(m)
1 + g(m)

2 qk + · · · + g(m)
l(l+3)q

kl(l+3)�k)

� sq(g
(m)
1 + g(m)

2 qk + · · · + g(m)
l(l+3)q

kl(l+3)�k)
� · · ·
� sq(g

(m)
j + g(m)

j+1q
k + · · · + g(m)

l(l+3)q
kl(l+3)�jk)

� (q � 1)k � sq(�g(m)
j � 1)

� (q � 1)k � (q � 1)(logq(�g(m)
j � 1) + 1)

� (q � 1)k � (q � 1)(logq(2�(5m)l) + 1)

>
1
2
(q � 1)k.
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If qk > 2m, then, by the definition of tm(x), we have

mq(l+3)k < tm(qk) < 2mq(l+3)k < q(l+4)k. (7)

If qk > 2�(5m)l and m � m1, then, by (4) and Lemma 1, we have

sq(p1(tm(qk))) (8)

= sq(f
(m)
0 + f (m)

1 qk + f (m)
2 q2k + · · · + f (m)

h(l+3)q
kh(l+3))

= sq(f
(m)
0 ) + sq(f

(m)
1 + f (m)

2 qk + · · · + f (m)
h(l+3)q

kh(l+3)�k)
= · · ·
= sq(f

(m)
0 ) + sq(f

(m)
1 ) + · · · + sq(f

(m)
h(l+3))

 (h(l + 3) + 1)(q � 1)(1 + logq(2�(5m)h)).

Let m3 = max{m0,m1,m2, l}. For any integers m and k with m � m3 and
k � [2 logq(2�(5m)l) + 2], by (6) and (8), we have

sq(p1(n))
sq(p2(n))


2(h(l + 3) + 1)(1 + logq(2�(5m)h))

k
, (9)

where n = tm(qk).
Without loss of generality, we can assume that 0 < "  1. Let m be an integer

with m � m3,

k(m) =

"
2(h(l + 3) + 1)(1 + logq(2�(5m)h)))

"

#
+ 1,

and n(m) = tm(qk(m)). Then k(m) � [2 logq(2�(5m)l) + 2]. By (9), we have

sq(p1(n(m)))
sq(p2(n(m)))

< ". (10)

Now we prove that all n(m) (m � m3) are distinct. Suppose that m00 > m0 � m3.
Then k(m00) � k(m0). If k(m00) = k(m0), then

n(m00) = n(m0) + (m00 �m0)(1 + qk(m0) + q(l+2)k(m0) + q(l+3)k(m0)) > n(m0).

If k(m00) > k(m0), then

n(m00)
n(m0)

� m00q(l+3)k(m00)

2m0q(l+3)k(m0)
>

q(l+3)(k(m00)�k(m0))

2
> 1.
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By the definitions of tm(x) and k(m), we have

n(m) = tm(qk(m)) < 2mq(l+3)k(m)

 2mq(l+3)(2(h(l+3)+1)"�1+1)q2(l+3)(h(l+3)+1)"�1 logq(2�(5m)h)

= 2mq(l+3)(2(h(l+3)+1)"�1+1)(2�(5m)h)2(l+3)(h(l+3)+1)"�1

< mq3(l+3)(h(l+3)+1)"�1
(10�m)2h(l+3)(h(l+3)+1)"�1

< (10�qm)2h(l+3)(h(l+3)+1)"�1+1.

Hence, if
m3  m  C

0

1N
↵, (11)

then n(m)  N , where C
0
1 = (10�q)�1, and

↵ = "(2h(l + 3)(h(l + 3) + 1) + ")�1.

Since m3 is positive constant dependent only on p1(x) and p2(x), by (11), there
exists a positive constant C1, dependent only on ", q, p1(x) and p2(x) such that

����
⇢

n  N :
sq(p1(n))
sq(p2(n))

< "

�����
�

���nm : m3  m  C
0

1N
↵
o���

� C
0

1N
↵ �m3

> C1N
↵

for all su�ciently large integers N . This completes the proof of Theorem 1.

4. Proof of Theorem 2

Proof. We follow the proof of Hare, Laishram and Stoll [10]. Let b be a positive

integer, p1(x + b) =
hP

i=0
uixi and p2(x + b) =

lP
i=0

vixi. Then all

ui =
X

0kh�i

ak+i

✓
k + i

i

◆
bk, 0  i  h

and
vi =

X
0kl�i

bk+i

✓
k + i

i

◆
bk, 0  i  l

are positive integers for all su�ciently large integers b. Without loss of generality,
we may assume that all the coe�cients of p1(x) and p2(x) are positive integers. Let
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� = max{a0, a1, . . . , ah, b0, b1, . . . , bl}. Let M be a prime, d = l and y1, y2, . . . , yM+1

be as in Lemma 3. Let

TM (x) =
M+1X
i=1

xyi ,

and
p2(TM (x)) =

X
0jlM l

q(M)
j xj .

Then

p2(TM (x)) =
X

0il

bi(xy1 + xy2 + · · · + xyM+1)i (12)

=
X

0il

bi

X
h1+h2+···+hM+1=i

i!
h1!h2! · · ·hM+1!

xh1y1+h2y2+···+hM+1yM+1 .

By Lemma 3, for any fixed integer i with 0  i  l, we have all sums

h1y1 + h2y2 + · · · + hM+1yM+1

with
h1 + h2 + · · · + hM+1 = i, hj � 0, 1  j  M + 1

are distinct. Then for any nonnegative integer i  lM l, we have

0 < q(M)
i 

X
0jl

bjj!  �(l + 1)!. (13)

By (12), we have ���n0  j  lM l : q(M)
j > 0

o��� (14)


X

0il

X
h1+h2+···+hM+1=i

1


X

0il

✓
M + i

M

◆
=

✓
M + l + 1

M + 1

◆
.

Let n = TM (qk) and k0 = [logq(�(l + 1)!)] + 1. Then for any integer k � k0, we
have qk > �(l + 1)!. Since all coe�cients of

xh1y1+h2y2+···+hM+1yM+1

with
h1 + h2 + · · · + hM+1 = l, hj � 0, 1  j  M + 1

are positive integers and all sums

h1y1 + h2y2 + · · · + hM+1yM+1
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with
h1 + h2 + · · · + hM+1 = l, hj � 0, 1  j  M + 1

are distinct, by Lemma 1, we have

sq(p2(n)) �
X

h1+h2+···+hM+1=l

1 =
✓

M + l

M

◆
. (15)

By (13) and Lemma 2, for any nonnegative integer i  lM l, we have

sq

⇣
q(M)
i

⌘
 (q � 1)(1 + logq �(l + 1)!). (16)

By (14), (16), and Lemma 1, noting that qk > �(l + 1)!, we have

sq(p2(n)) =
X

0jlM l

q(M)
j >0

sq

⇣
q(M)
j

⌘


X

0jlM l

q(M)
j >0

(q � 1)
⇣
log q(M)

j + 1
⌘

 (q � 1)(1 + logq(�(l + 1)!))
✓

M + l + 1
M + 1

◆
.

As a similar argument for p1(x), we have

sq(p1(n))  (q � 1)(1 + logq(�(h + 1)!))
✓

M + h + 1
M + 1

◆
. (17)

By (15) and (17), we have

sq(p1(n))
sq(p2(n))


(q � 1)(1 + logq(�(h + 1)!))

�M+h+1
M+1

�
�M+l

M

� (18)


(q � 1)l!(1 + logq(�(h + 1)!))

h!(M + 1)l�h
,

where n = TM (qk).
For any " > 0 and for any integer k � k0, by (18), there exists a prime M0 such

that
sq(p1(n))
sq(p2(n))

< "

for all integers n = TM0(qk). By n = TM0(qk) < qk(M l
0+1), we see that, if

k  log N

(M l
0 + 1) log q

,
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then n  N . Since TM0(qk) (k � k0) are distinct, there exists a positive constant
C2, dependent only on ", q, p1(x) and p2(x) such that

����
⇢

n  N :
sq(p1(n))
sq(p2(n))

< "

�����
�

����
⇢

k : k0  k  log N

(M l
0 + 1) log q

�����
� C2 log N

for all su�ciently large integers N . This completes the proof of Theorem 2.
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