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Abstract
We investigate an infinite class of polynomial sequences at(n; z) with integer pa-
rameter t � 1, which reduce to the well-known Stern (diatomic) sequence when
z = 1 and are (0, 1)-polynomials when t � 2. These sequences are related to the
theory of hyperbinary expansions. The main purpose of this paper is to obtain
various irreducibility and factorization results, most of which involve cyclotomic
polynomials.

1. Introduction

The Stern sequence, also known as Stern’s diatomic sequence, is one of the most re-
markable integer sequences in number theory and combinatorics. Using the notation
{a(n)}n�0, it can be defined by a(0) = 0, a(1) = 1, and for n � 1 by

a(2n) = a(n), a(2n + 1) = a(n) + a(n + 1). (1.1)

Numerous properties and references can be found, e.g., in [16, A002487] or [18]. The
most remarkable properties are the following: The quotients a(n)/a(n + 1), n � 1,
give an enumeration without repetitions of all the positive rationals; and a(n + 1)
gives the number of hyperbinary expansions of n (see, e.g., [2]).

The current paper deals with the following generalization of the Stern polynomi-
als of [6], recently introduced by the authors in [5] in connection with a complete
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characterization of hyperbinary expansions. Given an integer t � 1, we define
at(0; z) = 0, at(1; z) = 1, and for n � 1 we let

at(2n; z) = at(n; zt), (1.2)
at(2n + 1; z) = z at(n; zt) + at(n + 1; zt). (1.3)

For t = 2 this definition reduces to that of the polynomials of [6] (see also [3]
and [7]). Polynomials closely related to a1(n; z) were studied in [1] and [20], and
generalizations of a1(n; z) and related sequences were considered in [13] and [14].

Comparing (1.2) and (1.3) with (1.1), we immediately see that for all integers
t � 1 and n � 1 we have

at(n; 0) = 1, at(n; 1) = a(n), (1.4)

and by iterating (1.2) and considering (1.3) we see that

at(n; z) = 1 if and only if n = 2m, m � 0. (1.5)

The first polynomials at(n; z), for n  20, are listed in Table 1.

n at(n; z) n at(n; z)
1 1 11 1 + z + zt+1 + zt2 + zt2+1

2 1 12 1 + zt2

3 1 + z 13 1 + z + zt + zt2+1 + zt2+t

4 1 14 1 + zt + zt2+t

5 1 + z + zt 15 1 + z + zt+1 + zt2+t+1

6 1 + zt 16 1
7 1 + z + zt+1 17 1 + z + zt + zt2 + zt3

8 1 18 1 + zt + zt2 + zt3

9 1 + z + zt + zt2 19 1 + z + zt+1 + zt2 + zt2+1 + zt3 + zt3+1

10 1 + zt + zt2 20 1 + zt2 + zt3

Table 1: at(n; z), 1  n  20.

Table 1 indicates that each at(n; z) is a (0, 1)-polynomials in z, and that the
exponents of z are (0, 1)-polynomials in t. These facts, and other results on the
structure of the polynomials at(n; z), were proved in [5].

The present paper deals with the question of reducibility and irreducibility of
the polynomials at(n; z), including explicit factorizations in some cases. Section 2
is devoted to “short polynomials,” namely those with two to five terms. In Section 3
we use a classical result of Lazarus Fuchs to obtain factorizations of an auxiliary
polynomial sequence. This is then applied to some of the results in Section 4, where
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we study two particular classes of generalized Stern polynomials with increasing
numbers of terms. In Section 5, we address the question of multiple roots of these
last two classes of polynomials, and we conclude the paper with a few further
remarks in Section 6.

2. Short Polynomials

In [3] we investigated reducibility and irreducibility of the Stern polynomials a2(n; z)
of 2, 3, and 4 terms. In this section we will extend these results to all binomials,
trinomials and quadrinomials among the generalized Stern polynomials at(n; z), and
in addition we will prove some results on pentanomials. As we did in [3], we use
the following result of Stern [21, p. 202] (see also [12]): Given an integer k � 2,
the number of integers n in the interval 2k�1  n  2k for which a(n) = k is '(k),
where ' denotes Euler’s totient function. Furthermore, it is the same number in
any subsequent interval between two consecutive powers of 2. Since for t � 2 the
at(n; z) are (0, 1)-polynomials, by (1.4) and (1.2) this means that we can explicitly
write down all binomials, trinomials, quadrinomials and pentanomials among the
at(n; z) for t � 2, of which there are '(2) + · · ·+ '(5) = 9 di↵erent classes. We will
deal with them in sequence.

2.1. Binomials

Since at(3; z) = 1 + z for all t � 1, by (1.2) all binomials are given by

at(3 · 2k; z) = 1 + ztk

. (2.1)

For k = 0 this is trivially irreducible.

Proposition 2.1. For k � 1 the binomial at(3 · 2k; z) is irreducible if and only if
t � 1 is a power of 2.

Proof. When t = 1, this is trivially true, so let t � 2. Using a well-known argument,
we note that if t is not a power of 2, then t = uv with v � 3 odd. Then by (2.1),

at(3 · 2k; z) = 1 +
⇣
zukvk�1

⌘v
= (1 + y)(1� y + y2 � · · · + yv�1),

where y := zukvk�1
. This gives a nontrivial factorization. On the other hand, when

t = 2⌫ for an integer ⌫ � 1, then we have

at(3 · 2k; z) = 1 + z2⌫k

= �2⌫k+1(z)

which, as a cyclotomic polynomial, is irreducible.



INTEGERS: 15 (2015) 4

2.2. Trinomials

We see from Table 1 that the two trinomials between n = 4 and n = 8 are

at(5; z) = 1 + z + zt, at(7; z) = 1 + z + zt+1,

which means that all generalized Stern trinomials are given by

at(5 · 2k; z) = 1 + ztk

+ ztk+1
= 1 +

⇣
ztk

⌘
+

⇣
ztk

⌘t
, (2.2)

at(7 · 2k; z) = 1 + ztk

+ z(t+1)tk

= 1 +
⇣
ztk

⌘
+

⇣
ztk

⌘t+1
. (2.3)

When t = 1, we see that both polynomials, 1 + 2z and 1 + z + z2, respectively, are
irreducible. We therefore assume that t � 2.

Proposition 2.2. Let k � 0 and t � 2 be integers.

(a) If t ⌘ 0, 1 (mod 3), then at(5 · 2k; z) is irreducible.

(b) If t ⌘ 2 (mod 3), we have (z2 + z + 1) | at(5 · 2k; z); that is, at(5 · 2k; z) is
reducible in this case, with the exception of a2(5; z) = z2 + z + 1.

Proof. By a theorem of Selmer [19, Theorem 1], 1 + z + zt is irreducible when
t ⌘ 0, 1 (mod 3), but is divisible by 1 + z + z2 when t ⌘ 2 (mod 3). By a theorem
of Tverberg [22], a trinomial of the type zn ± zm ± 1 is irreducible if it has no zero
of modulus 1. If it does have zeros of modulus 1, they can be collected to give a
rational factor. Now, since ztk

has modulus 1 if and only if z does, the polynomial
at(5 · 2k; z) in (2.2) has the same property as does 1 + z + zt, which corresponds to
the case k = 0. Finally, the exceptional case a2(5; z) comes from z2 + z + 1 being
its own irreducible factor.

Proposition 2.3. Let k � 0 and t � 2 be integers.

(a) If t ⌘ 0, 2 (mod 3), then at(7 · 2k; z) is irreducible.

(b) If t ⌘ 1 (mod 3), we have (z2 + z + 1) | at(7 · 2k; z); that is, at(7 · 2k; z) is
reducible in this case.

The proof of this result is completely analogous to that of Proposition 2.2, ap-
plying the theorems of Selmer and Tverberg to (2.3).

2.3. Quadrinomials

We see from Table 1 that the two quadrinomials between n = 8 and n = 16 are

at(9; z) = 1 + z + zt + zt2 , at(15; z) = 1 + z + zt+1 + zt2+t+1,
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and accordingly, all generalized Stern quadrinomials are given by

at(9 · 2k; z) = 1 + ztk

+ ztk+1
+ ztk+2

, (2.4)

at(15 · 2k; z) = 1 + ztk

+ z(t+1)tk

+ z(t2+t+1)tk

. (2.5)

Once again, we treat the case t = 1 separately, noting that a1(9 · 2k; z) = 1 + 3z,
which is trivially irreducible, while a1(15 · 2k; z) = 1+ z + z2 + z3 = (1+ z)(1+ z2).

To deal with the quadrinomials in (2.4) and (2.5) for t � 2, we use the following
theorem of Finch and Jones [9]:

The polynomial xa + xb + xc + 1 is reducible if and only if exactly one of the
integers a/2⌫ , b/2⌫ , c/2⌫ is even, where gcd(a, b, c) = 2⌫m with m odd.

We are now ready to state and prove the next two results.

Proposition 2.4. For all integers k � 0 and t � 2, the quadrinomial at(9 · 2k; z)
is irreducible.

Proof. We use the theorem of Finch and Jones with a = tk, b = tk+1, c = tk+2. If
t is odd, then ⌫ = 0 and all three of a, b, c are odd.

If t is even, set t = 2µu with u odd. Then

a = 2kµuk, b = 2(k+1)µuk+1, c = 2(k+2)µuk+2.

So gcd(a, b, c) = 2kµuk, and a/2kµ is odd while b/2kµ and c/2kµ are even. Hence in
both cases at(9 · 2k; z) is irreducible.

Proposition 2.5. Let k � 0 and t � 2 be integers.

(a) If t is even then at(15 · 2k; z) is irreducible.

(b) If t is odd then at(15 · 2k; z) is divisible by 1 + ztk
.

Proof. In view of (2.5) we apply the theorem of Finch and Jones with a = tk,
b = (t + 1)tk, c = (t2 + t + 1)tk. If t is even, say t = 2µu with u odd, then all three
of a/2kµ, b/2kµ, c/2kµ are odd, which means that at(15 · 2k; z) is irreducible.

If t is odd then clearly a and c are odd, while b is even. But also, if we rewrite

at(15 · 2k; z) = 1 +
⇣
ztk

⌘
+

⇣
ztk

⌘t+1
+

⇣
ztk

⌘t2+t+1
,

it is obvious that it vanishes for ztk
= �1 when t is odd.

2.4. Pentanomials

In the case of pentanomials, i.e., polynomials with five terms, there do not seem to
exist suitable irreducibility results (over Q) in the literature. This is perhaps not



INTEGERS: 15 (2015) 6

surprising, as the authors of [9] and [19] remark on the tedium and complexity of
obtaining results on quadrinomial. In this subsection we will therefore state only
some reducibility results which follow from more general results in the next section.

The four principal pentanomials among the generalized Stern polynomials are
easily identified as

at(11; z) = 1 + z + zt+1 + zt2 + zt2+1,

at(13; z) = 1 + z + zt + zt2+1 + zt2+t,

at(17; z) = 1 + z + zt + zt2 + zt3 ,

at(31; z) = 1 + z + zt+1 + zt2+t+1 + zt3+t2+t+1;

for the first three see Table 1. Note that this list does not contradict Stern’s result
quoted at the beginning of this section since at(22; z) = at(11; zt) and at(26; z) =
at(13; zt) are also pentanomials when t � 2, for a total of four in the interval
24  n  25.

In the result below we make use of the fact that for a prime p the pth cyclotomic
polynomial is

�p(z) = 1 + z + z2 + · · · + zp�1.

Proposition 2.6. Let t � 2 be an integer.

(a) If t ⌘ 2, 3 (mod 5), then �5(z) divides at(17; z).

(b) If t ⌘ 1 (mod 5), then �5(z) divides at(31; z).

Both parts are direct consequences of Propositions 3.1 and 3.2, respectively.
We observed that at(17; z) and at(31; z) appear to be irreducible in the remaining
residue classes for t, and that at(11; z) and at(13; z) appear to be irreducible for all
t � 2.

Finally, for the sake of completeness we mention that a1(11; z) = a1(13; z) =
1 + 2z + 2z2, a1(17; z) = 1 + 4z, and a1(31; z) = 1 + z + z2 + z3 + z4 are all
irreducible.

3. Auxiliary Polynomials and a Theorem of Fuchs

In preparation for some results in the next section we define, for integers t � 2 and
k � 1,

P (t)
k (z) := z + zt + zt2 + · · · + ztk�1

. (3.1)

These polynomials are closely related to the polynomials at(2k � 1; z), as we shall
see later. The purpose of this section is to apply a useful and interesting result of
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Fuchs [10], given in more modern language by Evans [8] and quoted here in di↵erent
notation. We follow the development in [4], which dealt with the special case t = 2.

We fix an integer t � 2, and for an integer n � 2 with gcd(n, t) = 1 we let �t(n)
be the order of t modulo n, i.e., �t(n) is the smallest positive exponent � for which
t� ⌘ 1 (mod n).

Proposition 3.1. Let t � 2 be an integer. Then for n � 2, gcd(n, t) = 1, we have
that

�n(z)
���P (t)

�t(n)(z) if and only if �t(n) = p�t(n
p ) for some p | n. (3.2)

This result is supplemented by the following lemma. In the case t = 2 this
reduces to Lemma 2.1 in [4], with the proof being very similar.

Lemma 3.1. Let t � 2 be an integer. Then for any n � 1,

if �n(z)
���P (t)

k (z) then �n(z)
���P (t)

k` (z) for all integers ` � 1. (3.3)

Proof. We use (3.1) and rearrange the sum as

P (t)
k` (z) =

`�1X
j=0

⇣
ztjk

+ ztjk+1
+ ztjk+2

+ · · · + ztjk+k�1
⌘

=
`�1X
j=0

✓⇣
ztjk

⌘t0

+
⇣
ztjk

⌘t1

+
⇣
ztjk

⌘t2

+ · · · +
⇣
ztjk

⌘tk�1◆
.

Now if ⇣n is a primitive nth root of unity then, since we know that n and t are
relatively prime, ⇣tjk

n is also a primitive nth root of unity. Therefore, when z = ⇣n,
by the hypothesis in (3.3) each of the ` summands in the last summation vanishes,
and so does P (t)

k` (⇣n); this proves the lemma.

We will now show that the condition in (3.2), namely

�t(n) = p�t(n
p ) for p | n, p - t, (3.4)

puts further restrictions on n and on �t(n).

Lemma 3.2. Let t � 2 be a fixed integer. If there is a prime p - t and an integer
n � 1 such that (3.4) holds, then

(a) p2 | n;

(b) p�t(p) | �t(n);

(c) n | p(t�t(p)m � 1) for some integer m � 1;
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(d) pu(p)+1 | n, where u(p) is the highest power of p dividing t�t(p)m � 1.

Proof. (a) We are going to use the fact that for relatively prime positive integers
a, b with gcd(a, b) = 1 we have

�t(ab) = �t(a)�t(b). (3.5)

Indeed, if we raise the congruences

t�t(a) ⌘ 1 (mod a), t�t(b) ⌘ 1 (mod b)

to the powers �t(b) and �t(a), respectively, then by the Chinese Remainder Theorem
we have

t�t(a)�t(b) ⌘ 1 (mod ab).

By the minimality of the order we immediately get (3.5).
Now suppose that p | n but p2 - n; then clearly gcd(p, n/p) = 1. By (3.5) we

then have
�t(n) = �t(pn

p )  �t(p)�t(n
p ),

and since �t(p)  p� 1, this contradicts (3.4), and our assumption p2 - n was false.
(b) By part (a) we can write

n

p
= p⌫n0, where ⌫ � 1, p - n0.

By definition of �t(n
p ) we have

t�t(n/p) ⌘ 1 (mod p⌫n0) (3.6)

and therefore, in particular,

t�t(n/p) ⌘ 1 (mod p).

By the minimality of the order �t(p) this means that �t(p) | �t(n/p), and thus
p�t(n/p) is a multiple of p�t(p). This, with (3.4), proves part (b).

(c) We use (3.6) again, which shows that n
p divides

t�t(n/p) � 1 = t�t(n)/p � 1 = t�t(p)m � 1

for some m � 1, by part (b). This proves part (c).
(d) The exponent ⌫ in (3.6) is the same as u(p) in the statement of the result

since �t(n/p) = �t(p)m. The result then follows again from (3.6).

We now use this lemma to obtain a divisibility result that is more explicit than
Proposition 3.1.
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Proposition 3.2. Let t � 2 be an integer and p - t a prime. Then for all m � 1
we have that

�p

⇣
zt�t(p)m�1

⌘
divides P (t)

�t(p)pm(z). (3.7)

Proof. From (3.1) we get, setting � := �t(p) for simplicity:

P�pm(z) =
�pm�1X

j=0

ztj

=
�m�1X
j=0

⇣
ztj

+ zt�m+j

+ zt2�m+j

+ · · · + zt(p�1)�m+j
⌘

(3.8)

=
�m�1X
j=0

ztj
⇣
1 + ztj(t�m�1) + ztj(t2�m�1) + · · · + ztj(t(p�1)�m�1)

⌘
.

We now use the fact that

�p(zt�m�1)
⇣
zt�m�1 � 1

⌘
= zp(t�m�1) � 1, (3.9)

which follows from the basic identity �p(z) = (zp� 1)/(z� 1). Our goal is to show
that each of the �m terms in large parentheses on the rightmost side of (3.8) is
divisible by the leftmost term of (3.9); this would prove (3.7). To do so, we reduce
each term on the right of (3.8) modulo the polynomial on the right of (3.9). This
can be achieved by reducing the exponents modulo p(t�m� 1); that is, we consider,
for ⌫ = 1, 2, . . . , p� 1,

tj(t⌫�m� 1) = tj(t�m� 1)(t(⌫�1)�m + t(⌫�2)�m + · · ·+ t�m + 1) (mod p(t�m� 1)).

Dividing everything by t�m � 1, the right-hand side becomes

tj(t(⌫�1)�m + t(⌫�2)�m + · · · + t�m + 1) ⌘ tj⌫ (mod p)

since, by definition of �, we have t� ⌘ 1 (mod p). Now, given any integer j, the
term tj⌫ runs through a reduced residue system modulo p as ⌫ does. Hence

1 + ztj(t�m�1) + ztj(t2�m�1) + · · · + ztj(t(p�1)�m�1) (mod zp(t�m�1) � 1)

is the same for any j, with the terms (other than the initial “1”) permuted. We
therefore may as well assume that j = 0, and we will show that

1 + zt�m�1 + zt2�m�1 + · · · + zt(p�1)�m�1 ⌘ �p(zt�m�1)

= 1 + zt�m�1 + z2(t�m�1) + · · · + z(p�1)(t�m�1) (mod zp(t�m�1) � 1).

To do this, we show that for ⌫ = 1, 2, . . . , p� 1 the corresponding exponents satisfy

t⌫�m � 1 ⌘ ⌫(t�m � 1) (mod p(t�m � 1)). (3.10)
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Factoring the left-hand side, as we did before, and rearranging, we see that (3.10)
is equivalent to

(t�m � 1)
h
t(⌫�1)�m + t(⌫�2)�m + · · · + t�m + 1� ⌫

i
⌘ 0 (mod p(2tm � 1)).

This is true since the expression in square brackets vanishes modulo p. The proof
is now complete.

To illustrate Proposition 3.2, we state the smallest cases, p = 2 and p = 3, as
corollaries. First, we note that �2(z) = z + 1 and �t(2) = 1 for all odd t.

Corollary 3.1. For all m � 1 and odd t � 3 we have

ztm�1 + 1
���P (t)

2m(z).

Next, we use the facts that �3(z) = z2 + z + 1 and �t(3) = 1 or 2, according as
t ⌘ 1 or 2 (mod 3). Proposition 3.2 then gives the following result.

Corollary 3.2. Let t � 2 with 3 - t. Then

z2(tm�1) + ztm�1 + 1
���P (t)

3m(z)

holds for all m � 1 when t ⌘ 1 (mod 3), and for all even m � 2 when t ⌘ 2
(mod 3).

4. The Polynomials at(2k ± 1; z)

In this section we deal with two special infinite classes of generalized Stern poly-
nomials, each with increasing numbers of terms. Using simple inductions based on
the identity (1.3), it is easy to see that

at(2k + 1; z) = 1 + z + zt + zt2 + · · · + ztk�1
, (4.1)

at(2k � 1; z) = 1 + z + zt+1 + zt2+t+1 + · · · + ztk�2+tk�3+···+t+1. (4.2)

4.1. The Polynomials at(2k + 1; z)

In [3] we proved a result on the reducibility and factors of at(2k + 1; z) for t = 2.
Here we are going to extend this result to arbitrary integers t � 2.

Proposition 4.1. Let t � 2 be an integer, and let p � 3 be a prime which has t as
a primitive root. Then

(1 + z + z2 + · · · + zp�1)
��at(2p�1 + 1; z).

In particular, at(2p�1+1; z) is reducible in this case, with the exception of a2(5; z) =
1 + z + z2.
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Proof. If t is a primitive root of p, then t0, t1, . . . , tp�2 is a reordering of 1, 2, . . . , p�1
(mod p). Therefore with (4.1) we have

at(2p�1 + 1; z) = 1 +
p�2X
j=0

ztj ⌘ 1 +
p�1X
j=1

zj (mod zp � 1).

Since (zp�1 + · · ·+ z + 1)(z� 1) = zp� 1, this shows that a(2p�1 + 1; z) is divisible
by zp�1 + · · · + z + 1. When t = 2 and p = 3, we see that a2(5; z) = 1 + z + z2 is
its own irreducible factor.

When p = 5, it is easy to verify that t = 2 and t = 3 are primitive roots modulo
5, and so are all other positive integers t ⌘ 2, 3 (mod p). Hence Proposition 2.6(a)
follows immediately from Proposition 3.1.

The next smallest case is p = 7, and its primitive roots are t = 3 and t = 5. Thus
we get the following analogue of Proposition 2.6(a).

Corollary 4.1. If t ⌘ 3, 5 (mod 7), then �7(z) divides at(65; z).

Obviously, for any odd prime p we could write down such a statement, where
according to the theory of primitive roots there are '(p�1) relevant residue classes
of t (mod p).

4.2. The Polynomials at(2k � 1; z)

We begin by proving an easy analogue of Proposition 3.1.

Proposition 4.2. Let p � 3 be a prime and t � 2 be an integer satisfying t ⌘ 1
(mod p). Then

(1 + z + z2 + · · · + zp�1) |at(2p � 1; z).

In particular, at(2p � 1; z) is reducible in this case.

Proof. When t ⌘ 1 (mod p), then for j � 1 we have tj�1 + · · ·+ t + 1 ⌘ j (mod p),
and so by (4.2),

at(2p � 1; z) ⌘ 1 + z + z2 + · · · + zp�1 (mod zp � 1).

The conclusion now follows as in the proof of Proposition 3.1.

It is clear that Proposition 2.6(b) is a special case of this result.

In preparation for the next results we use tj�1 + · · ·+ t+1 = (tj � 1)/(t� 1) (for
j � 1) to rewrite the identity (4.2) as

zat(2k � 1; zt�1) = z + zt + zt2 + · · · + ztk�1
, (4.3)
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and by (3.1) we have
P (t)

k (z) = zat(2k � 1; zt�1). (4.4)

In order to apply Proposition 3.2, we use the notation

[j]t :=
tj � 1
t� 1

= tj�1 + · · · + t + 1.

Then, by replacing zt�1 by z, we immediately get the following result from Propo-
sition 3.2 and from (4.4).

Proposition 4.3. Let t � 2 be an integer and p - t a prime. Then for all m � 1
we have

�p(z[�t(p)m]t)
���at(2�t(p)pm � 1; z) . (4.5)

The polynomial on the right of (4.5) is reducible, with the exception of the case
m = 1, p = 2, and odd t � 3.

Before proving this, we state some special cases. First, when t ⌘ 1 (mod p),
then �t(p) = 1, and we get the following consequence of (4.5).

Corollary 4.2. Let p be a prime and t � 2 an integer with t ⌘ 1 (mod p). Then
for all m � 1 we have

�p(z[m]t) |at(2pm � 1; z) . (4.6)

The polynomial on the right of (4.6) is reducible, with the exception of the case
m = 1, p = 2, and odd t � 3, in which case at(3; z) = 1 + z is its own cyclotomic
factor.

Proof. Only the statement concerning reducibility remains to be shown. The factor
on the left of (4.6) has p terms, while the polynomial at(2pm � 1; z) has pm terms
(see (4.2)); this forces m = 1. Next, the degree of �p(z[1]t) = �p(z) is p� 1, while
that of at(2p � 1; z) is 1 + t + · · · + tp�2, again by (4.2). Since t > 1, this forces p
to be 2, which proves the assertion.

We note that the case m = 1 and p � 3 reduces to Proposition 4.2, thus giving
a di↵erent proof of that result.

Proof of Proposition 4.3. Once again, only the reducibility assertion remains to be
shown. With a similar argument as in the previous proof, we note that the cyclo-
tomic factor on the left of (4.5) has p terms, while the Stern polynomial on the right
of (4.5) has �t(p)pm terms. This forces m = 1 and �t(p) = 1, which is a special case
of Corollary 4.2. The assertion now follows from the proof of Corollary 4.2.

In analogy to Corollaries 3.1 and 3.2 we immediately get the following special
cases.
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Corollary 4.3. For all m � 1 and odd t � 3 we have

z[m]t + 1
��at(22m � 1; z) .

As a consequence, the polynomial at(22m � 1; z) is reducible, with the exception of
the case m = 1.

Corollary 4.4. Let t � 2 with 3 - t. Then

z2[m]t + z[m]t + 1
��at(23m � 1; z)

holds for all m � 1 when t ⌘ 1 (mod 3), and for all even m � 2 when t ⌘ 2
(mod 3). The polynomial at(23m � 1; z) is reducible.

Example 1. Let t = 5; then we can use Corollary 4.3 with m = 3 and Corollary 4.4
with m = 2 to find factors of a5(26 � 1; z). We compute

z[3]5 + 1 = z31 + 1 = (z + 1)(z30 � z29 + z28 � · · ·� z + 1) = �2(z)�62(z),

z2[2]5 + z[2]5 + 1 = z12 + z6 + 1 = (z6 + z3 + 1)(z6 � z3 + 1) = �9(z)�18(z).

By (4.2), the polynomial a5(26�1; z) has degree 54 +53 +52 +5+1 = 781 (see also
[5] for a general formula for the degree of at(n; z)). A computation shows that the
four factors above are the only cyclotomic factors; the 738-degree noncyclotomic
part is irreducible and has no zeros of modulus 1.

Example 2. To find cyclotomic factors of a4(230 � 1; z), we can once again use
Corollary 4.4, while Corollary 4.3 does not apply. However, Proposition 4.3 can be
used with p = 5, if we note that �4(5) = 2 since 42 ⌘ 1 (mod 5). Then (4.5) with
m = 3 shows that

�5(z1365) | a4(230 � 1; z)

since [6]4 = (46 � 1)/3 = 1365. Now, since

�5(z1365)(z1365 � 1) = z5·1365 � 1, (4.7)

we can apply the fundamental identity

zn � 1 =
Y
d|n

�d(z) (4.8)

(twice) to find that
�5(z1365) =

Y
d2A

�d(z),

where A := {25, 75, 175, 325, 525, 975, 2275, 6825}.
Next, Corollary 4.4 with m = 10 (which is actually a special case of Proposi-

tion 4.3 with p = 3) shows that

z2[10]4 + z[10]4 + 1 | a4(230 � 1; z),
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and with [10]4 = 349 525 and using analogues to (4.7) and (4.8), we find that

z2[10]4 + z[10]4 + 1 =
Y
d2B

�d(z),

where B := {3, 15, 33, 75, 93, 123, 165, 465, 615, 825, 1 023, 1 353, 2 325, 3 075, 3 813,
5 115, 6 765, 19 065, 25 575, 33 825, 41 943, 95 325, 209 715, 1 048 575}. The polynomial
a4(230 � 1; z), which has degree 1

3 (429 � 1), is therefore divisible by all cyclotomic
polynomials �d(z) with d 2 A [B.

5. Derivatives and Multiple Factors

We note that in Example 2 above the subscript d = 75 occurs in both sets A and B.
Does this mean that a4(230� 1; z) is divisible by �75(z)2? In [4] we showed that no
polynomial a2(2k � 1; z) is divisible by the square of a cyclotomic polynomial. We
will use the same method as in [4] to prove the following extension of this result.

Proposition 5.1. No polynomial at(2k ± 1; z), t � 2 and k � 1, is divisible by the
square of a cyclotomic polynomial.

The main ingredient in the proof is the following result on the distribution of
zeros (in this case critical points) of polynomials.

Proposition 5.2. All the critical points of the polynomials at(2k ± 1; z), t � 2 and
k � 1, lie in the interior of the unit circle.

Proof. By (4.1) we have

d

dz
at(2k + 1; z) = 1 + tzt�1 + t2zt2�1 + · · · + tk�2ztk�2�1 + tk�1ztk�1�1.

Now set
Q(z) := tk�1ztk�1�1, P (z) :=

d

dz
at(2k + 1; z)�Q(z).

Then for |z| = 1 we have |Q(z)| = tk�1, while

|P (z)|  1 + t + t2 + · · · + tk�2 =
tk�1 � 1

t� 1
< |Q(z)|,

where the last inequality holds for t � 2. Hence by Rouché’s theorem (see, e.g.,
[15, p. 2]), the polynomial P (z) + Q(z)(= d

dz at(2k + 1; z)) has the same number of
zeros inside the unit circle as does Q(z), namely tk�1�1, which is all of them. This
completes the proof for at(2k + 1; z).

Next, by (4.3) we have

at(2k � 1; zt�1) = 1 + zt�1 + zt2�1 + · · · + ztk�2�1 + ztk�1�1,
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and the same method as used above for at(2k + 1; z) shows that the critical points
of at(2k � 1; zt�1) lie inside the unit circle. As a consequence, the polynomial
at(2k � 1; z) has the same property. Indeed, if a critical point of at(2k � 1; z) were
to lie on or outside the unit circle, then by the chain rule this would also be the
case for at(2k � 1; zt�1), a contradiction. The proof is now complete.

Proof of Proposition 5.1. We assume that some �d(z)2 divides a certain at(2k ±
1; z). But then the zeros of �d(z), which by definition are roots of unity, would be
critical points of at(2k ± 1; z), which contradicts Proposition 5.2.

In [4] we proved that P (2)
k+1(z), in the present paper defined by (3.1), has an

irreducible derivative whenever k is a power of a prime. We will now see that this
result can be considerably extended.

Proposition 5.3. Let t = p↵1
1 . . . p↵r

r , r � 1, where p1, . . . pr are distinct primes and
↵j � 1 for 1  j  r. If ↵j | t for at least one j, 1  j  r, then d

dz at(2k+1 + 1; z)
and d

dz P (t)
k+1(z) are irreducible whenever k = q� for some prime q - t� 1 and � � 1.

Proof. By (4.1) and (4.4) with (4.3), the polynomials at(2k+1 + 1; z) and P (t)
k+1(z)

have the same derivative

F (z) := 1 + tzt�1 + t2zt2�1 + · · · + tkztk�1. (5.1)

We now use the method of Newton polygons (see, e.g., [17, p. 55]), as we did in [4]
for t = 2. Let j be such that ↵j | t, and for simplicity of notation we set ↵ := ↵j ,
p := pj . With this prime p as base, the points of the polynomial F (z) are, by (5.1),

(0, 0), (t� 1,↵), (t2 � 1, 2↵), (t3 � 1, 3↵), . . . , (2k � 1, k↵).

Here (a, b) is a point in this sequence if the coe�cient of za of the polynomial F (z)
is exactly divisible by pb. Zero coe�cients are not listed as points.

Since j↵/(tj � 1) is a strictly decreasing sequence for j � 1, all the points for
1  j  k� 1 lie strictly above the line segment connecting (0, 0) with (tk � 1, k↵).
Therefore the Newton polygon for F (z) with prime p is just this line segment, as
required by the irreducibility criterion. Another condition is that gcd(tk�1, k↵) = 1.
Since by hypothesis ↵ | t, this reduces to gcd(tk � 1, k) = 1. Let k = q� for a prime
q; then by Fermat’s little theorem we have tq ⌘ t (mod q), and upon iterating,

tq
� ⌘ t (mod q), or tk � 1 ⌘ t� 1 (mod q).

Therefore, if q - t� 1, then gcd(tk � 1, k) = 1, and the proof of the irreducibility of
F (z) is complete.

As an immediate consequence of Proposition 5.3, we get the following result,
which supplements Proposition 5.1 as it addresses the question of multiple factors
that are not cyclotomic polynomials.
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Proposition 5.4. Let t = p↵1
1 . . . p↵r

r , r � 1, where p1, . . . pr are distinct primes
and ↵j � 1 for 1  j  r. If ↵j | t for at least one j, 1  j  r, then at(2k+1 +1; z)
and at(2k+1� 1; z) have no multiple roots whenever k = q� for some prime q - t� 1
and � � 1.

Proof. If at(2k+1 +1; z) had a multiple root, then this polynomial and its derivative
would have this root in common. However, since by Proposition 5.3 the derivative
is irreducible, it would be a divisor of at(2k+1 + 1; z). This is impossible, as can be
seen by comparing (2.1) with (4.1).

Similarly, we see that P (t)
k+1(z) has no multiple roots under the given conditions.

As a consquence of this and (4.4), the polynomial at(2k+1�1; z) also has no multiple
root.

Clearly, most integers t satisfy the condition “↵j | t for at least one j” in Propo-
sitions 5.3 and 5.4. In fact, a quick calculation shows that only 24 values of t  1000
do not, those up to 100 being t = 8, 9, 25, 32, 49, 64, and 81. In particular, these
exceptions include all squares of odd integers.

6. Further Remarks

Since this paper deals with Stern polynomials, it should be mentioned that a poly-
nomial extension of the Stern sequence, di↵erent from that in [6], was independently
introduced by Klavžar et al. [11]. Interestingly, their sequence of polynomials, which
are not (0, 1)-polynomials, is also related to hyperbinary expansions of n.

Combining results from Sections 2 and 4 with further computations, we observe
that the only subscripts n < 100 for which at(n; z) is reducible for some t  19 are
3, 5, 7, 15, 17, 27, 31, 35, 45, 51, 55, 63, 65, 75, 85, and 99; there is a total of 82
such odd subscripts n < 1000.
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