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HOMOTOPY TRANSITION COCYCLES

JAMES WIRTH and JIM STASHEFF

(communicated by Hvedri Inassaridze)

Abstract
For locally homotopy trivial fibrations, one can define tran-

sition functions

gαβ : Uα ∩ Uβ → H = H(F )

where H is the monoid of homotopy equivalences of F to itself
but, instead of the cocycle condition, one obtains only that
gαβgβγ is homotopic to gαγ as a map of Uα ∩ Uβ ∩ Uγ into H.
Moreover, on multiple intersections, higher homotopies arise
and are relevant to classifying the fibration.

The full theory was worked out by the first author in his
1965 Notre Dame thesis [17]. Here we present it using language
that has been developed in the interim. We also show how this
points a direction ‘on beyond gerbes’.

1. Introduction

In the theory of fibre bundles E → B, a key role is played by transition functions
gαβ : Uα∩Uβ → G with respect to an open cover {Uα} of B. Here G is the structural
group of the bundle and acts as a group of transformations on the fibre F . One of
the striking properties of transition functions is the cocycle condition

gαβgβγ = gαγ on Uα ∩ Uβ ∩ Uγ .

For fibrations, the situation is more complicated. Assuming the fibration is locally
homotopy trivial, one can define transition functions

gαβ : Uα ∩ Uβ → H = H(F )

where H is the monoid of homotopy equivalences of F to itself but instead of the
cocycle condition, one obtains only that gαβgβγ is homotopic to gαγ as a map of
Uα ∩ Uβ ∩ Uγ into H. Moreover, on multiple intersections, higher homotopies arise
and are relevant to classifying the fibration.

The full theory was worked out by the first author in his Notre Dame thesis
[17]. The intervening years have provided a language which helps organize the
technicalities, though in no way eliminating them. If {Uα} is the open covering,
the disjoint union

∐
Uα can be given a rather innocuous structure of a topological
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category U , i.e., Ob U =
∐
Uα and Mor U =

∐
Uα ∩ Uβ that is x ◦ y = x = y

is defined iff x ∈ Uα, y ∈ Uβ and x = y. Regarding G or H as a category with
one object in the standard way, the one cocycle condition says that the transition
functions define a continuous functor. The web of higher homotopies appropriate
to a fibration are precisely equivalent to a functor up to strong homotopy, also
known as a homotopy coherent functor, which does arise in other contexts involving
topological categories [4].

Lest the above give the impression that we have only to translate naturally occur-
ring homotopies into a fancy language, we point out that some powerful topology is
necessary to construct fibrations or equivalences of fibrations from the homotopy co-
cycle data. In particular, the first author’s patching/glueing/recollement (mapping
cylinder) theorem, which is of fundamental importance in more general fibration
theories, is essential [17].

Recent developments in higher homotopy theory and especially higher gauge
theory [1] have inspired us to produce this belated and somewhat updated public
version of the first author’s work. Preliminary versions and a talk at the University
of Pennsylvania have led us to work of Breen [2, 3] and of Simpson and Hirschowitz
[7] which have intriguing points of contact with Wirth’s much earlier thesis. Breen
was well aware at the time of [2] of the relation to higher homotopy theory in the
context of locally homotopy trivial fibrations. On the other hand, gerbes are closely
related to a special case of the homotopy transition cocycles we consider. We restrict
our point of view to the original topological setting of Wirth’s dissertation, leaving
to the future further development of the higher homotopy cocycle point of view,
especially in relation to algebraic geometry, that is, further ‘pursuing stacks’.

In Section 1, we begin with a swift review of standard material about fibrations
and see how the higher order transition homotopies occur naturally. In Section 2,
we review the realization of a topological category C as a space, observe that for
a numerable cover {Uα} of B, the realization |U| has the homotopy type of B [9]
and show how a functor up to strong homotopy is sufficient to induce a map of
realizations. Thus a fibration E → B produces a map B

'→ |U| → |H| = BH, the
classifying space of H = H(F ) as a topological monoid.

Our emphasis is on the cocycle point of view, although such classifying maps can
also be constructed by studying the action of the based loop space ΩB of the base
B on the fibre F , that is, in terms of an A∞-map of ΩB to H(F ) [11, 10].

In Section 3, we do the topology, showing how to construct a fibration from the
higher order transition functions. The usual universal example over BH is only a
quasi-fibration. Although this could be improved to a fibration by Fuchs’ technique
[6], Wirth’s construction provides a perspicuous alternative.

In Section 4, we confront the full classification theorem: Equivalent fibrations
correspond to homotopic functors up to strong homotopy which in turn correspond
to homotopic classifying maps. In terms of transition functions, this appears as a
direct though complicated generalization of cocycles up to cobounding cocycles.

In Section 5, Wirth’s concept of a “fibration theory” is axiomatized. Here too
the patching theorem is crucial.

Finally, in section 6, we show the relation of our approach to foliations and Hae-
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fliger structures. We also discuss briefly how gerbes provide a particular instantiation
of homotopy transition cocycles of a particular ‘truncated’ type, leaving for further
development the relation to the work of Breen and of Simpson and Hirschowitz.

2. Fibrations and transition functions

Since we wish to look at things from a homotopy invariant, not geometric, point
of view, a natural class of fibrations to consider is that of Dold fibrations, those
with the WCHP (Weak Covering Homotopy Property)[5].

Definition 2.1. A map p : E → B has the WCHP if for every homotopy H :
X × I → B and h : X → E such that ph(x) = H(x, 0), there exists a homotopy
H̃ : X× [−1, 1]→ E such that H̃(x,−1) = h(x) and pH̃(x, t) = H(x, t) for t ∈ [0, 1]
while pH̃(x, t) = H(x, 0) for t ∈ [−1, 0].

In other words, H is covered by a homotopy whose initial position is vertically
homotopic to h.

On the other hand, since our emphasis will be on local data such as transition
functions, it is more appropriate to consider locally homotopy trivial fibrations.

Definition 2.2. A map p : E → B is locally homotopy trivial over an open covering
{Uα} if there exist maps hα and kα such that the following diagrams commute:

p−1(Uα)

hα

−→
←−
kα

Uα × F

(1)
↘ ↙ (2)

Uα

and hα and kα are mutual fibre homotopy inverses.

The two are related by the following:

Theorem 2.3 (Dold). Let B be a topological space which admits a numerable
covering {Uα} such that each inclusion Uα ⊂ B is nullhomotopic, then p has the
WCHP if and only if p is fiber homotopy trivial over each Uα.

Let H(F ) be the monoid of all homotopy equivalences of F to itself.

Definition 2.4. The transition functions gαβ : Uα ∩ Uβ → H(F ) are defined by
the equation

hαkβ(x, f) =
(
x, gαβ(x)(f)

)
, x ∈ Uα ∩ Uβ , f ∈ F.

For nice F , gαβ will be continuous with respect to the compact-open topology
on H(F ); otherwise we are content that the adjoint

ḡαβ : Uα ∩ Uβ × F → F
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is continuous. Now consider the cocycle condition. We have(
x, gαβ(x)gβγ(x)f

)
= hαkβhβkγ(x, f)

which is fiber homotopic to (but not necessarily equal to) hαkγ(x, f). To go any
further, we use specific homotopies jα : I × Uα × Fα → Uα × F from kα ◦ hα at 0
to the identity at 1. Given them, we define

gαβγ : I × Uα ∩ Uβ ∩ Uγ → H(F )

by (
x, gαβγ(t, x)f

)
= hαjβ

(
t, kγ(x, f)

)
.

Rather than write down the complicated formulas in general, consider four-fold
intersections. Over Uα ∩ Uβ ∩ Uγ ∩ Uδ we have the diagram of homotopies

gαβgβγgγδ
gαβγgγδ−−−−−→ gαγgγδ

gαβgβγδ

y ygαγδ

gαβgβδ −−−−→
gαβδ

gαδ.

Since they are defined in terms of jβ and jγ which are independent, it is straight-
forward to define

gαβγδ : I2 × Uα ∩ Uβ ∩ Uγ ∩ Uδ → H(F )

by (
x, gαβγδ(t, s, x)f

)
= hαjβ

(
t, jγ

(
s, kδ(x, f)

))
.

In general for an n+1-fold intersection Uσ = Uα0∩· · ·∩Uαn
with σ = (α0, · · · , αn),

we define
gσ : In−1 × Uσ → H(F )

by (
x, gσ(t1, · · · , tn−1, x)f

)
= hα0jα1

(
t1, · · · , jαn−1

(
tn−1, kαn

(x1, f)
)
· · ·

)
and these are compatible in the following way: If σi = (α0, · · · , α̂i, · · · , xn) and
(ε, i)(In−1) is the face ti = ε (ε = 0 or 1), then for i = 1, · · · , n− 1:

gσ|(1, i)(In−1)× Uσ = gσi

gσ|(0, i)(In−1)× Uσ = g(α0,··· ,αi)g(αi,··· ,αn).

Definition 2.5. The collection {gσ} is called a homotopy transition cocycle for
p : E → B.

These relations are the key to the categorical language we introduce next.

3. Topological categories and realization

One construction of a classifying map for, e.g. G-bundles, [9, 14] regards the
covering U = {Uα} as a category so that the construction B can be applied to
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give BU of the homotopy type of X [except for language, this was known to our
ancestors] and to interpret the transition functions as a functor so that they induce
X ' BU → BG. The classifying property can be verified directly if we choose
the appropriate realization, Milnor’s construction [8] of a classifying space for a
topological group, which has built in a nice “universal” open cover.

Definition 3.1. A category is a topological category if the objects and morphisms
form topological spaces such that the source, target and composition maps are
continuous.

Definition 3.2. The realization |C| of a topological category C is the following space:
Let C0 = Ob C, C1 = Mor C, Cp ⊂ (Mor C)p consists of all p-tuples (f1, · · · , fp) such
that f1 ◦ · · · ◦ fp is defined. Consider the subset BC ⊂ ∆∞ × (C1)∞ consisting of
pairs (~t, {gij}) such that

1) ~t ∈ ∆∞

2) i, j runs over all pairs such that titj 6= 0
3) gij ∈ Mor C and gii = Idi and
4) gijgjk = gik if titjtk 6= 0.

(Thus Milnor’s reference to “the space of cocyles with values in C.”) Topologize this
space by the limit of the quotient topologies of the maps

∆n × Cn → BC

given by (s0, · · · , sn, g1, · · · , gn)→ (~t, {gij}) with tkj
= sj for some k0 < k1 < · · · <

kn and gkikj = gi+1 · · · gj .

The universal cover of BC is given by Ui = {t−1
i (0, 1]} and the gij coordinates

regarded as functions Ui ∩ Uj → C are universal transition functions. (Strictly
speaking, the Ui are only point-finite, but following Dold, we can deform the original
ti to functions t̄i which are locally finite so the associated t̄−1

i (0, 1] are also.)
Now an open covering {Uα} can be regarded as a category Û in a rather trivial

way. For simplicity, well order the index set or, perhaps more naturally, following
Segal [9], let the objects be the points of the intersections Uσ and let the morphisms
be given by the inclusions. This is effectively the barycentric subdivision and hence
has a natural partial order. Let Ob C =

∐
Uα and Mor C =

∐
α>β Uα ∩ Uβ with

source(x ∈ Uα∩Uβ) = x ∈ Uα and target(x ∈ Uα∩Uβ) = x ∈ Uβ . Thus the compo-
sition is defined only for x ∈ Uα∩Uβ∩Uγ , α > β > γ and Cp =

∐
Uα0 · · ·Uαp

=
∐
Uσ

for ordered simplices σ. We refer to |U| as the exploded X.
There is a natural map π : |U| → X given by forgetting the simplicial cordinates

and the multi-index. If the covering is numerable, i.e., admits a subordinate partition
of unity {pα0(x), · · · , pαn(x)} for x ∈ Uσ, σ = (α0, · · · , αn), there is a corresponding
map ρ : X → |U|. Indeed, this embeds X as a deformation retract of |U|.

Now what is a continuous functor from U to C? It is a collection of maps

fα : Uα → Ob C
gαβ : Uα ∩ Uβ → Mor C

such that
fα = gαβfβ (3)
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and
gαβgβγ = gαγ . (4)

If Ob C consists of a single point, the first condition is trivial. This is the case for a
topological group G = C and gives rise to the classifying map for a bundle

X
'→ |U| → |G| = BG.

About the same time as Wirth’s dissertation, tom Dieck [14] proved that Milnor’s
universal bundle EG classifies numerable G-bundles over arbitrary spaces by giving
explicit formulas. Later, Wellen [16] in his diplomarbeit extended the classification
theorem to the case of groupoids G.

As we have seen, for a locally trivial fibration, we cannot guarantee the cocycle
condition (2) except up to homotopy.

Definition 3.3. Given two topological categories C and D, a functor up to strong
homotopy (also known as a homotopy coherent functor) is a collection of maps

F0 : Ob C → Ob D

Fp : Ip−1 × Cp → Mor D

such that

F1(c :x→ y) : F0(x)→ F0(y)

Fp(t1, · · · , tp−1, c1, · · · , cn) = Fp−1(· · · , t̂i, · · · , cici+1, · · · ) if ti = 0
= Fi(t1, · · · , ti−1, c1, · · · , ci)Fp−i(ti+1, · · · , ci+1, · · · , cp) if ti = 1.

For the special case in which the categories have one object and their morphisms
therefore form a monoid, the equivalent notion is that of a Strongly Homotopy Mul-
tiplicative (shm) map due to Sugawara [13] as are the formulas for the corresponding
map of classifying spaces/realizations. The point is that (F0, F1) does not respect
the identifications on the nose, but the higher homotopies and the connective tissue
in the realization allow one to get around this.

Theorem 3.4. A functor up to strong homotopy C to D induces a map of realiza-
tions

|C| → |D|.

In our case, our homotopy transition cocycles can be described as a strong ho-
motopy functor. Thus we have:

Theorem 3.5. Given p : E → B locally homotopy trivial with respect to a covering
{Uα}, a choice of coherent transition functions

gσ : In−1 × Uσ → H(F )

determines a map
B → BH(F ).

To complete the classification, we need the converse and uniqueness up to homo-
topy. As for bundles, this follows from the construction of a universal fibration.
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4. Construction of fibrations

For bundles, the construction from transition functions is very easy: E :
∐
Uα ×

F/gαβ , i.e., for x ∈ Uα∩Uβ , (x, f) ∈ Uβ×F is identified with (x, gαβ(x)f) ∈ Uα×F .
For fibrations, not only do the transition functions {gαβ} not give an equivalence
relation on

∐
Uα×F because the cocycle condition may fail, but the obvious attempt

to use the mapping cylinder M(gαβ) over Uα ∩ Uβ × I may only produce a quasi-
fibration [15, 18]. However Wirth has shown:

Theorem 4.1. Mapping Cylinder Theorem (Wirth [18]) Let φ : E0 → E1 be a fibre
homotopy equivalence over B, then there is an object M̃(φ) over I×B which serves
as a mapping cylinder for φ, i.e., M̃(φ)|0 × B is E0 and M̃(φ)|1 × B is E1 and,
moreover, there is a characterizing homotopy equivalence ψ from M̃(φ) to I × E1

such that ψ|0×B = 0× φ and ψ|1×B = Id.

In fact, the ordinary mapping cylinder will do if φ is either a strong deformation
retract or is a fibration itself in the category of spaces over B. Finally any map over
B factors into a strong deformation retract over B followed by a fibration-over-B,
just as an ordinary map factors into a strong deformation retract followed by an
(induced from a path space) fibration. That is, φ can be factored as

E0 → E(φ)→ E1

where
E(φ) = {(e, λ)|e ∈ E, λ : I → p−1

1 (p0(e)), φ(e) = λ(0)}.

Thus given the transition functions {gαβ : Uα × Uβ → H(F )} for α > β, we let

E0 =
∐

Uα × F

and
E1 = E0 ∪ M̃(gαβ)

with the obvious identifications. Just as we can regard ∆n as the mapping cylinder of
∆̇n → ∗, so we can regard |U| as obtained by adding successive mapping cylinders to∐
Uα. Let |U|(n) ⊂ |U| be the subspace represented by points with at most (n+1)-

simplicial coordinates not equal to zero. Then |U|(n) = |U|(n − 1) ∪
∐

σ M(∆̇n ×
∗) × Uσ for all n-simplices σ. Thus to extend E1 to a fibration over |U|(2), etc.,
we need to attach to E1 something of the homotopy type of

∐
Uαβγ × F . Let

hαβγ : I × Uαβγ × F → Uαβγ × F be defined by hαβγ(t, x, f) =
(
x, gαβγ(t, x)f

)
so

that hαβγ is a fibre homotopy equivalence over Uαβγ .
Now let E2 = E1 ∪

∐
α>β>γ I

2 × Uαβγ × F attached by

(s, t, x, f) ∼ (t, x, f) if s = 0
∼ (s, x, f) if t = 0
∼ (s, x, gβγ(x)f) if t = 1
∼ (x, gαβγ(t, x)f) if s = 1.

Constructed in this way, E2 will be only a quasi-fibration in general. The proper
construction is to regard the above identifications as giving a fibre homotopy equiv-
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alence φαβγ of ∂I2×Uαβγ×F to E1|∆2×Uαβγ and then to attach Wirth’s M̃(φαβγ)
instead of I2 × Uαβγ × F . From Wirth’s construction, there is a chracterizing fibre
homotopy equivalence ψαβγ : I2 × Uαβγ × F → M̃(φαβγ) ⊂ E2.

The general construction should now be clear. Let En be constructed inductively
over |U|(n). Define a fibre homotopy equivalence

ψσ : ∂In × Uσ × F → En−1|∂∆n × Uσ

by
ψσ(t1, · · · , tn, x, f) =

= ψσi
(· · · , t̂i, · · · , x, f) if ti = 0

= ψα0···αi−1(t1, · · · , ti−1, x, gαi−1···αn
(ti+1, · · · , tn, x, f)) if ti = 1

where ψαβ = gαβ and ψα = id. Define En = En−1 ∪σ M̃(φσ) and let

ψσ : In × Uσ × F → M̃(φσ) ⊂ En

be Wirth’s characterizing fibre homotopy equivalence.
In particular, this construction applies to the universal cover {Ui} of BH(F )

with transition functions
gij(~t, {cαβ}) = cij

where defined. Notice here gijgjk = gjk (the identity is a true functor), but it is still
important to use M̃ in constructing the universal fibration, which is denoted UE
since we shall see it is the universal example of a (WCHP) fibration with fibre F .

5. Equivalence of fibrations and transition functions

Given that fibre homotopy equivalence is the appropriate notion, we need to in-
vestigate the appropriate equivalence of transition functions. Steenrod [12] observes
that for bundles pi : Ei → B, i = 1, 2 with respect to two coverings U = {U1

α} and
V = {V 2

γ } with corresponding transition functions {g1
αβ} and {g2

γδ}, the bundles are
equivalent if and only if there exist maps ḡαγ : Uα∩Vγ → G, the group of the bundle,
such that {g1

αβ , g
2
γδ, ḡαγ} satisfies the cocycle condition. Consider U

∐
V = {Uα, Vγ}.

The realization |U
∐
V| has |U| and |V| as deformation retracts, so the cocycle con-

dition above yields a homotopy between the classifying maps between {g1
αβ} and

{g2
γδ}.
Similarly we define two transition functions {gi

σ : In−1 × U i
σ → H(F )}, i = 1, 2,

to be equivalent if their union extends to a transition function on U
∐
V. Thus fibre

homotopy equivalent fibrations pi : Ei → X with given fibre F yield homotopic
maps X → BH(F ). [If pi : Ei → X are locally homotopy trivial with typical
fibres F 1 ' F 2, then BH(F 1) ' BH(F 2) via an equivalence induced by shm maps
H(F 1) � H(F 2).]

Conversely, it is standard that homotopic maps induce equivalent fibrations, cf.
one of the ‘Axioms of a fibration theory’ (see section 6). Thus we are ready to prove:

Theorem 5.1. For a space F , fibre homotopy equivalence classes of fibrations p :
E → X locally homotopy trivial with respect to numerable covers of X are in 1-1
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correspondence with homotopy classes of maps X → BH(F ). The correspondence
is induced by the classifying map construction above or by the pullback of UE.

We have left to show that if f : X → |U| → BH(F ) is constructed from transition
functions for p : E → X, then f∗UE is fibre homotopy equivalent to E and that
the classifying construction for UE produces a map homotopic to the identity.

Just as |U| → X is induced by forgetting simplicial coordinates, so is f∗UE → E
also and, since it induces a homotopy equivalence on each fibre, is a fibre homotopy
equivalence [5]. Strictly speaking, for UE the classifying map BH(F ) → |U| →
BH(F ) is only homotopic to the identity since the open sets Ui are t̄−1

i (0, 1] rather
than t−1

i (0, 1].
This discussion should make it clear that a corresponding classification theorem

holds for any fibration theory as axiomatised by Wirth [17].

6. Fibration theories

A fibration theory is an assignment of a category E(B) to each topological space B
and of a contravariant functor f∗ : E(C)→ E(B) to each continuous map f : B → C
such that id∗ is the identity functor and satisfying:

Axiom I: For a numerable open cover {Ui} of a space B and a system of objects
(or morphisms) {Ei} over each Ui such that Ei and Ej agree over Ui ∩ Uj , then
there exists a unique common extension of the Ei over B.

Axiom II: If φ is a morphism in E(B) such that each restriction φ|Ui for a
numerable open cover {Ui} of B is a homotopy equivalence, the φ is a homotopy
equivalence.

Axiom III: If H ∈ E(I × B), then the restrictions H|{t} × B are homotopy
equivalent (for objects) or homotopic (for morphisms).

Axiom IV (Mapping Cylinder Axiom) If φ : E → E′ ∈ E(B) is a homotopy
equivalence, then there is an object M(φ) ∈ E(I × B) which serves as a mapping
cylinder for φ, that is, M(φ) restricts to E at t = 0 and to E′ at t = 1 with a
charcterising homotopy equivalence ψM : M(φ)→ I×E′ which restricts to {0}×φ,
respectively {1} × id.

7. Foliations and Gerbes

An approach similar to that for fibrations works for generalized foliations or
Haefliger structures. For a topological space X, a Haefliger q-structure {Uα, fα, gαβ}
consists of an open cover {Uα}, maps fα : Uα → Rq and transition functions
gαβ : Uα∩Uβ → Diffeo Rq such that fα(α) = gαβ(x)◦fβ(x) for x ∈ Uα∩Uβ . These
satisfy Wirth’s Axiom I trivially. The other Axioms are modified by 1) replacing
homotopy equivalence by diffeomorphism and 2) defining equivalence of Haefliger
structures to mean being induced from a structure on X×I. Thus the above method
of classification applies. This emphasizes the central importance of cylinder objects
and their relation to equivalence in still more general structure theories.

The essence of all that we have said is the relation of local to global via patch-
ing/glueing/recollement. The compatabilities are sometimes referred to as descent
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data, whether in our naive topological setting or more generally for e.g. topoi. For
example, a gerbe can be specified by descent data in terms of an open cover {Uα}
and a groupoid Gα for each Uα with ‘transition’ morphisms

gαβ ∈ Gαβ

and morphisms
cαβγ ∈ Gαβγ

acting by conjugation so that

gαβgβγ = Ad(cαβγ)gαγ on Uα ∩ Uβ ∩ Uγ

for an inverible element cαβγ . The role of the homotopy gαβγ is played by conjuga-
tion with cαβγ and such conjugation in a group corresponds to a homotopy at the
classifying space level. The higher homotopies on further multiple intersections do
not appear for gerbes since the cαβγ satisfy a strict coherence condition.

However, as Breen suggests, a 2-gerbe can be specified by descent data requiring
coherence at a higher level. There’s work to be done ‘pursueing stacks’ and perhaps
more exotic objects.
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