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Abstract
The structure of a k-fold monoidal category as introduced

by Balteanu, Fiedorowicz, Schwänzl and Vogt in [2] can be
seen as a weaker structure than a symmetric or even braided
monoidal category. In this paper we show that it is still suffi-
cient to permit a good definition of (n-fold) operads in a k-fold
monoidal category which generalizes the definition of operads
in a braided category. Furthermore, the inheritance of structure
by the category of operads is actually an inheritance of iterated
monoidal structure, decremented by at least two iterations. We
prove that the category of n-fold operads in a k-fold monoidal
category is itself a (k−n)-fold monoidal, strict 2-category, and
show that n-fold operads are automatically (n − 1)-fold oper-
ads. We also introduce a family of simple examples of k-fold
monoidal categories and classify operads in the example cate-
gories.
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1. Introduction

In this introductory section we will give a brief, non-chronological overview of the
relationship between operads, higher category theory, and topology. This will serve
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to motivate the study of iterated monoidal categories and their operads that com-
prises the remaining sections. In the second section, in order to be self contained,
we repeat the definition of the iterated monoidal categories first set down in [2]. In
the fourth section we seek to fill a gap in the literature which currently contains few
good examples of that definition. Thus our first new contribution consists of a series
of simple and very geometric iterated monoidal categories based on totally ordered
monoids. By simple we mean that axioms are largely fulfilled due to relationships
between max, plus, concatenation, sorting and lexicographic ordering as well as the
fact that all diagrams commute since the underlying directed graph of the category
is merely the total order. The most interesting examples of n-fold monoidal cate-
gories are those whose objects can be represented by Ferrer or Young diagrams (the
underlying shapes of Young tableaux.) These exhibit products with the geometri-
cal interpretation “combining stacks of boxes.” Managers of warehouses or quarries
perhaps may already be well acquainted with the three dimensional version of the
main example of iterated monoidal categories we introduce here. Imagine that floor
space in the quarry or warehouse is at a premium and that therefore you are charged
with combining several stacks of crates or stone blocks by restacking some together
vertically and shifting others together horizontally. It turns out that the best result
in terms of gained floor space is always to be achieved most efficiently by doing the
restacking and shifting in a very particular order–horizontally first, then vertically.

The main new contribution is the theory of operads within, or enriched in, it-
erated monoidal categories. This theory is based upon the fact that the natural
setting of operads turns out to be in a category with lax interchange between mul-
tiple operations, as opposed to the full strength of a braiding or symmetry as is
classically assumed. Batanin’s definition of n-operad also relies on this insight [4].
In that paper he notes that an iterated monoidal category V would be an example
of a globular monoidal category with a single object, and a single arrow in each di-
mension up to n, in which last dimension the arrows would actually be the objects
of V. Of course the invertibility of the interchange would also have to be dropped
from his definition. In that case the n-fold operads defined here would correspond to
Batanin’s n-operads. The advantages of seeing them in a single categorical dimen-
sion are in the way that doing so generalizes the fact that operads in a symmetric
monoidal category inherit its symmetric structure. We investigate the somewhat
flexible structure of the iterated monoidal 2-category that n-fold operads comprise.
Flexibility arises from the difference between n and k, where one is investigating
n-fold operads in a k-fold monoidal category V, where n < k − 1. It turns out that
choosing n much smaller than k allows multiple interchanging products to be de-
fined on the category of operads, whereas choosing n closer to k allows the operads
to take on multiple operad structures at once with respect to the products in V.
Examples of combinatorial operads living in the previously introduced combinato-
rially defined categories are utilized to demonstrate the sharpness of several of the
resulting theorems, i.e. to provide counterexamples. The examples start to take on a
life of their own, however, as theorems and open questions about the classification of
operads in combinatorial n-fold monoidal categories arise. The definition of operad
in the categories with morphisms given by ordering leads to descriptions of interest-
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ing kinds of growth. We give a complete description of the simple example of 2-fold
operads in the natural numbers. We then give the elementary results for operads
in the category of Young diagrams. In the basic examples linear and logarithmic
growth characterize respective dimensions in a single sequence of Young diagrams.
These phenomena hint towards a theory of operadic growth. Full investigation and
further classification must await a sequel to this paper. Applications might be found
in scientific fields such as the theory of small world networks, where the diameter
of a network is the logarithm of the number of nodes.

First, however, we look at some of the history and philosophy of the two major
players here, operads and iterated monoidal categories. Operads in a category of
topological spaces are the crystallization of several approaches to the recognition
problem for iterated loop spaces. Beginning with Stasheff’s associahedra and Board-
man and Vogt’s little n-cubes, and continuing with more general A∞, En and E∞
operads described by May and others, that problem has largely been solved [26],
[8], [21]. Loop spaces are characterized by admitting an operad action of the appro-
priate kind. More lately Batanin’s approach to higher categories through internal
and higher operads promises to shed further light on the combinatorics of En spaces
[5], [6].

Recently there has also been growing interest in the application of higher dimen-
sional structured categories to the characterization of loop spaces. The program
being advanced by many categorical homotopy theorists seeks to model the co-
herence laws governing homotopy types with the coherence axioms of structured
n-categories. By modeling we mean a connection that will be in the form of a func-
torial equivalence between categories of special categories and categories of special
spaces. The largest challenges currently are to find the most natural and efficient
definition of (weak) n-category, and to determine the nature of the functor from
categories to spaces. The latter will almost certainly be analogous to the nerve
functor on 1-categories, which preserves homotopy equivalence. In [27] Street de-
fines the nerve of a strict n-category. Recently Duskin in [9] has worked out the
description of the nerve of a bicategory. A second part of the latter paper promises
the full description of the functor including how it takes morphisms of bicategories
to continuous maps.

One major recent advance is the discovery of Balteanu, Fiedorowicz, Schwänzl
and Vogt in [2] that the nerve functor on categories gives a direct connection between
iterated monoidal categories and iterated loop spaces. Stasheff [26] and Mac Lane
[19] showed that monoidal categories are precisely analogous to 1-fold loop spaces.
There is a similar connection between symmetric monoidal categories and infinite
loop spaces. The first step in filling in the gap between 1 and infinity was made in
[10] where it is shown that the group completion of the nerve of a braided monoidal
category is a 2-fold loop space. In [2] the authors finish this process by, in their
words, “pursuing an analogy to the tautology that an n-fold loop space is a loop
space in the category of (n − 1)-fold loop spaces.” The first thing they focus on
is the fact that a braided category is a special case of a carefully defined 2-fold
monoidal category. Based on their observation of the correspondence between loop
spaces and monoidal categories, they iteratively define the notion of n-fold monoidal
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category as a monoid in the category of (n − 1)-fold monoidal categories. In [2] a
symmetric category is seen as a category that is n-fold monoidal for all n. The
main result in that paper is that the group completion of the nerve of an n-fold
monoidal category is an n-fold loop space. It is still open whether this is a complete
characterization, that is, whether every n-fold loop space arises as the nerve of an
n-fold monoidal category. Much progress towards the answer to this question was
made by the original authors in their sequel paper, but the desired result was later
shown to remain unproven. One of the future goals of the program begun here is
to use weakenings or deformations of the examples of n-fold monoidal categories
introduced here to model specific loop spaces in a direct way.

The connection between the n-fold monoidal categories of Fiedorowicz and the
theory of higher categories is through the periodic table as laid out in [1]. Here Baez
organizes the k-tuply monoidal n-categories, by which terminology he refers to (n+
k)-categories that are trivial below dimension k. The triviality of lower cells allows
the higher ones to compose freely, and thus these special cases of (n + k)-categories
are viewed as n-categories with k multiplications. Of course a k-tuply monoidal
n-category is a special k-fold monoidal n-category. The specialization results from
the definition(s) of n-category, all of which seem to include the axiom that the
interchange transformation between two ways of composing four higher morphisms
along two different lower dimensions is required to be an isomorphism. As will be
mentioned in the next section the property of having iterated loop space nerves
held by the k-fold monoidal categories relies on interchange transformations that
are not isomorphisms. If those transformations are indeed isomorphisms then the
k-fold monoidal 1-categories do reduce to the braided and symmetric 1-categories
of the periodic table. Whether this continues for higher dimensions, yielding for
example the sylleptic monoidal 2-categories of the periodic table as 3-fold monoidal
2-categories with interchange isomorphisms, is yet to be determined.

A further refinement of higher categories is to require all morphisms to have
inverses. These special cases are referred to as n-groupoids, and since their nerves
are simpler to describe it has long been suggested that they model homotopy n-
types through a construction of a fundamental n-groupoid. This has in fact been
shown to hold in Tamsamani’s definition of weak n-category [28], and in a recent
paper by Cisinski to hold in the definition of Batanin as found in [4]. A homotopy
n-type is a topological space X for which πk(X) is trivial for all k > n. It has been
suggested that a key requirement for any useful definition of n-category is that a k-
tuply monoidal n-groupoid be associated functorially (by a nerve) to a topological
space which is a homotopy n-type and a k-fold loop space [1]. The loop degree
will be precise for k < n + 1, but for k > n the associated homotopy n-type will
be an infinite loop space. This last statement is a consequence of the stabilization
hypothesis , which states that there should be a left adjoint to forgetting monoidal
structure that is an equivalence of (n + k + 2)-categories between k-tuply monoidal
n-categories and (k +1)-tuply monoidal n-categories for k > n+1. This hypothesis
has been shown by Simpson to hold in the case of Tamsamani’s definition [24]. For
the case of n = 1 if the interchange transformations are isomorphic then a k-fold
monoidal 1-category is equivalent to a symmetric category for k > 2. With these
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facts in mind it is possible that if we wish to precisely model homotopy n-type
k-fold loop spaces for k > n then we may need to consider k-fold as well as k-tuply
monoidal n-categories. This paper is part of an embryonic effort in that direction.

Since a loop space can be efficiently described as an operad algebra, it is not
surprising that there are several existing definitions of n-category that utilize operad
actions. These definitions fall into two main classes: those that define an n-category
as an algebra of a higher order operad, and those that achieve an inductive definition
using classical operads in symmetric monoidal categories to parameterize iterated
enrichment. The first class of definitions is typified by Batanin and Leinster [4],[17].

The former author defines monoidal globular categories in which interchange
transformations are isomorphisms and which thus resemble free strict n-categories.
Globular operads live in these, and take all sorts of pasting diagrams as input
types, as opposed to just a string of objects as in the case of classical operads.
The binary composition in an n-category derives from the action of a certain one
of these globular operads. Leinster expands this concept to describe n-categories
with unbiased composition of any number of cells. The second class of definitions is
typified by the works of Trimble and May [29], [22].

The former parameterizes iterated enrichment with a series of operads in (n−1)-
Cat achieved by taking the fundamental (n− 1)-groupoid of the kth component of
the topological path composition operad E. The latter begins with an A∞ operad in
a symmetric monoidal category V and requires his enriched categories to be tensored
over V so that the iterated enrichment always refers to the same original operad.

Iterated enrichment over n-fold categories is described in [11] and [12]. It seems
worthwhile to define n-fold operads in n-fold monoidal categories in a way that is
consistent with the spirit of Batanin’s globular operads. Their potential value may
include using them to weaken enrichment over n-fold monoidal categories in a way
that is in the spirit of May and Trimble. This program carries with it the promise
of characterizing k-fold loop spaces with homotopy n-type for all n, k by describing
the categories with exactly those spaces as nerves. As a candidate for the type of
category with such a nerve we suggest a weak n-category with k multiplications that
interchange only in the lax sense. In this paper “lax” will indicate that the mor-
phisms involved in a definition are not necessarily isomorphisms. Lax interchangers
will obey coherence axioms, as seen in the next section.

In this paper we follow May by defining n-fold operads in terms of monoids in a
certain category of collections. A more abstract approach for future consideration
would begin by finding an equivalent definition in the language of Weber, where an
operad lives within a monoidal pseudo algebra of a 2-monad [30]. This latter is a
general notion of operad which includes as instances both the classical operads and
the higher operads of Batanin.
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2. k-fold monoidal categories

This sort of category was developed and defined in [2]. The authors describe
its structure as arising recursively from its description as a monoid V,⊗k, λ in the
category of (k − 1)-fold monoidal categories and lax monoidal functors, with the
cartesian product. Actually, the multiplication ⊗k is a lax monoidal functor, but
the unit λ is a strict monoidal functor. Here we present that definition (in an ex-
panded form) altered only slightly to make visible the coherent associators as in
[11]. That latter paper describes its structure in terms of tensor objects in the cat-
egory of (k − 1)-fold monoidal categories. Our variation has the effect of making
visible the associators αi

ABC . It is desirable to do so for several reasons. One is that
the associators are included in definitions of other related objects such as enriched
categories. Another reason is that this inclusion makes easier a direct comparison
with Batanin’s definition of monoidal globular categories as in [4]. A monoidal glob-
ular category can be seen as a quite special case of an iterated monoidal category,
with source and target maps that take objects to those in a category with one less
product, and with interchanges that are isomorphisms.

A third reason is that in this paper we will consider a category of collections in
an iterated monoidal category which will be (iterated) monoidal only up to natural
associators. That being said, in much of the remainder of this paper we will consider
examples with strict associativity, where each α is the identity, and in interest of
clarity will often hide associators. Another expansion beyond [11] in the following
definition is that the products are allowed to have distinct units.

2.1 Definition. A (strong) n-fold monoidal category with distinct units is a cate-
gory V with the following structure.

1. There are n multiplications

⊗1,⊗2, . . . ,⊗n : V × V → V
each equipped with an associator αUV W , a natural isomorphism which satisfies
the pentagon equation:

((U ⊗i V )⊗i W )⊗i X
αi

UV W⊗i1X//

αi
(U⊗iV )W X

~~}}
}}

}}
}}

}}
}}

}}
(U ⊗i (V ⊗i W ))⊗i X

αi
U(V⊗iW )X

ÃÃA
AA

AA
AA

AA
AA

AA
A

(U ⊗i V )⊗i (W ⊗i X)

αi
UV (W⊗iX)

((PPPPPPPPPPPPPPPPPPPPPP
U ⊗i ((V ⊗i W )⊗i X)

1U⊗iαi
V W X

vvnnnnnnnnnnnnnnnnnnnnnn

U ⊗i (V ⊗i (W ⊗i X))

(2) V has objects Ii, i = 1 . . . n, which are strict units for multiplications: A⊗iI
i =

A = Ii ⊗i A. Since ⊗j is a (lax) monoidal functor (with strict units) with
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respect to ⊗i for 1 6 i < j 6 n these units obey Ii ⊗j Ii = Ii. Since the unit
map (from the single object category to V seen as a monoid with multiplication
⊗j) is itself a strict monoidal functor these units also obey Ij ⊗i Ij = Ij .

(3) For each pair (i, j) such that 1 6 i < j 6 n there is an interchanger natural
transformation

ηij
ABCD : (A⊗j B)⊗i (C ⊗j D) → (A⊗i C)⊗j (B ⊗i D).

These natural transformations ηij are subject to the following conditions:

(a) Internal unit condition: ηij
ABIiIi = ηij

IiIiAB = 1A⊗jB

(b) External unit condition: ηij
AIjBIj = ηij

IjAIjB = 1A⊗iB

(c) Internal associativity condition: The following diagram commutes.

((U ⊗j V )⊗i (W ⊗j X))⊗i

(Y ⊗j Z)

ηij
UV W X⊗i1Y⊗jZ

//

αi

²²

(
(U ⊗i W )⊗j (V ⊗i X)

)⊗i

(Y ⊗j Z)

ηij
(U⊗iW )(V⊗iX)Y Z

²²
(U ⊗j V )⊗i

((W ⊗j X)⊗i (Y ⊗j Z))

1U⊗jV ⊗iη
ij
W XY Z

²²

((U ⊗i W )⊗i Y )⊗j

((V ⊗i X)⊗i Z)

αi⊗jαi

²²
(U ⊗j V )⊗i(

(W ⊗i Y )⊗j (X ⊗i Z)
) ηij

UV (W⊗iY )(X⊗iZ) // (U ⊗i (W ⊗i Y ))⊗j

(V ⊗i (X ⊗i Z))

(d) External associativity condition: The following diagram commutes.

((U ⊗j V )⊗j W )⊗i

((X ⊗j Y )⊗j Z)

ηij
(U⊗jV )W (X⊗jY )Z

//

αj⊗iα
j

²²

(
(U ⊗j V )⊗i (X ⊗j Y )

)⊗j

(W ⊗i Z)

ηij
UV XY ⊗j1W⊗iZ

²²
(U ⊗j (V ⊗j W ))⊗i

(X ⊗j (Y ⊗j Z))

ηij
U(V⊗jW )X(Y⊗jZ)

²²

((U ⊗i X)⊗j (V ⊗i Y ))⊗j

(W ⊗i Z)

αj

²²
(U ⊗i X)⊗j(

(V ⊗j W )⊗i (Y ⊗j Z)
) 1U⊗iX⊗jηij

V W Y Z // (U ⊗i X)⊗j

((V ⊗i Y )⊗j (W ⊗i Z))

(e) Finally it is required for each triple (i, j, k) satisfying 1 6 i < j < k 6 n
that the giant hexagonal interchange diagram commutes.
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((A⊗k A′)⊗j (B ⊗k B′))⊗i ((C ⊗k C ′)⊗j (D ⊗k D′))

ηjk

AA′BB′⊗iη
jk

CC′DD′
vvvvvvvvv

{{vvv
vv

vv
ηij

(A⊗kA′)(B⊗kB′)(C⊗kC′)(D⊗kD′)

HHHHHHHHH

$$HHH
HHH

H

((A⊗j B)⊗k (A′ ⊗j B′))⊗i

((C ⊗j D)⊗k (C ′ ⊗j D′))

ηik
(A⊗jB)(A′⊗jB′)(C⊗jD)(C′⊗jD′)

²²

((A⊗k A′)⊗i (C ⊗k C ′))⊗j

((B ⊗k B′)⊗i (D ⊗k D′))

ηik
AA′CC′⊗jηik

BB′DD′

²²
((A⊗j B)⊗i (C ⊗j D))⊗k

((A′ ⊗j B′)⊗i (C ′ ⊗j D′))

ηij
ABCD⊗kηij

A′B′C′D′

HH
HH

HH
H

##HHHHHHHHH

((A⊗i C)⊗k (A′ ⊗i C ′))⊗j

((B ⊗i D)⊗k (B′ ⊗i D′))

ηjk

(A⊗iC)(A′⊗iC′)(B⊗iD)(B′⊗iD′)
vvv

vvv
v

{{vvvvvvvvv

((A⊗i C)⊗j (B ⊗i D))⊗k ((A′ ⊗i C ′)⊗j (B′ ⊗i D′))

As noted in the introduction, the terminology for the case in which the inter-
changers are isomorphisms is k-tuply monoidal. If the associators αi are identities
then we call the category strict n-fold monoidal; if the units Ii are identical then
we say the category has a common unit I; and to follow [2] if there is are no quanti-
fiers then we refer to the strict category with a common unit. If the associators are
merely natural transformations then we call the category lax n-fold monoidal (with
strict units). The units will always be strict unless specified, and so the parenthetical
specification will be omitted.

Note that in the case of a common unit I, for q > p we have natural transforma-
tions

ηpq
AIIB : A⊗p B → A⊗q B and ηpq

IABI : A⊗p B → B ⊗q A.

Joyal and Street [14] considered a similar concept to Balteanu, Fiedorowicz,
Schwänzl and Vogt’s idea of 2–fold monoidal category. The former pair required the
natural transformation ηABCD to be an isomorphism and showed that the resulting
category is naturally equivalent to a braided monoidal category. As explained in
[2], given such a category one obtains an equivalent braided monoidal category
by discarding one of the two operations, say ⊗2, and defining the commutativity
isomorphism for the remaining operation ⊗1 to be the composite
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A⊗1 B
ηIABI // B ⊗2 A

η−1
BIIA // B ⊗1 A.

The authors of [2] remark that a symmetric monoidal category is n-fold monoidal
for all n. This they demonstrate by letting

⊗1 = ⊗2 = · · · = ⊗n = ⊗
and defining

ηij
ABCD = α−1 ◦ (1A ⊗ α) ◦ (1A ⊗ (cBC ⊗ 1D)) ◦ (1A ⊗ α−1) ◦ α

for all i < j. Here cBC : B ⊗ C → C ⊗B is the symmetry natural transformation.
Joyal and Street [14] require that the interchange natural transformations ηij

ABCD

be isomorphisms and observed that for n > 3 the resulting sort of category is equiv-
alent to a symmetric monoidal category. Thus as Balteanu, Fiedorowicz, Schwänzl
and Vogt point out, the nerves of such categories have group completions which are
infinite loop spaces rather than only n–fold loop spaces.

Because of the nature of the definition of iterated monoidal category, there are
multiple forgetful functors implied. Specifically, letting n < k, from the category of
k-fold monoidal categories to the category of n-fold monoidal categories there are(

k
n

)
forgetful functors which forget all but the chosen set of products.

The coherence theorem for strict iterated monoidal categories with a common
unit states that any diagram composed solely of interchange transformations com-
mutes; i.e. if two compositions of various interchange transformations (legs of a
diagram) have the same source and target then they describe the same morphism.
Furthermore we can easily determine when a composition of interchanges exists
between objects. Here are the necessary definitions and Theorem as given in [2].

2.2 Definition. [2] Let Fn(S) be the free strict n-fold monoidal category on the
finite set S. Its objects are all finite expressions generated by the elements of S using
the products ⊗k, k = 1..n. Its common unit is the empty expression. Its morphisms
are finite composites of finite expressions generated by the symbols ηij

ABCD with
1 6 i < j 6 n, and A,B, C,D objects of Fn(S), using the associative operations
⊗k, k = 1..n. Two morphisms are identified if they can be converted into one another
by use of functoriality, naturality and associativity axioms. By Mn(S) we denote
the full sub-category of Fn(S) whose objects are expressions in which each element
of S occurs exactly once.

If S ⊂ T then there is a restriction functor Mn(T ) → Mn(S), induced by the
functor Fn(T ) → Fn(S), which sends T − S to the empty expression 0.

2.3 Definition. Let A be an object of Mn(S). For a, b ∈ S we say that a⊗i b in
A if the restriction functor Mn(S) →Mn(a, b) sends A to a⊗i b.
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2.4 Theorem. [2] Let A and B be objects of Mn(S). Then

1. There is at most one morphism A → B.

2. Moreover, there exists a morphism A → B if and only if, for every a, b ∈ S,
a⊗i b in A implies that either a⊗j b is in B for some j > i or b⊗j a is in B
for some j > i.

Now the coherence theorem can be used to check for commutativity of diagrams
in an n-fold monoidal V. If two legs of a diagram involving k possibly indistinct
operands at its vertices are formed solely of instances of the interchangers, then
they are equal by considering a morphism from Mn({1, . . . , k}) to V. Note that if V
is lax or strong (associators not identities) then the coherence theorem has not yet
been shown to hold. Also note that if V has distinct units then the “if” portion of
the second part of the coherence theorem does not imply anything about V. However
in this case the coherence theorem can still be used to show commutativity in V
by considering a morphism from the full subcategory of Mn({1, . . . , k}) formed by
discarding the empty expression.

3. n-fold operads

The two principle components of an operad are a collection, historically a se-
quence, of objects in a monoidal category and a family of composition maps. Op-
erads are often described as parameterizations of n-ary operations. Peter May’s
original definition of operad in a symmetric (or braided) monoidal category [21]
has a composition γ that takes the tensor product of the nth object (n-ary oper-
ation) and n others (of various arity) to a resultant that sums the arities of those
others. The nth object or n-ary operation is often pictured as a tree with n leaves,
and the composition appears like this:

QQQQQQ
??

??
ÄÄ

ÄÄ
oooooo

??
??

ÄÄ
ÄÄ ??

??
ÄÄ

ÄÄ

γ //

YYYYYYYYYYYYY
??

??
ÄÄ

ÄÄ
jjjjjjjj

VVVVVVVVVVVVVV

SSSSSSSSSSS

OOOOOOOOO

GGGGGG

44
44

4

­­
­­
­

wwwwww

ooooooooo

kkkkkkkkkkk

iiiiiiiiiiiii

By requiring this composition to be associative we mean that it obeys this sort
of pictured commuting diagram:
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??
??

ÄÄ
ÄÄ

??
??

ÄÄ
ÄÄ γ //

OOOOOO
oooooo

γ²²

III
I

zzz
z

VVVVVVVV
mmmmmm

γ²²

??
??

ÄÄ
ÄÄ ??

??
ÄÄ

ÄÄ

γ //

OOOOOO
oooooo QQQQQQ

??
??

ÄÄ
ÄÄ

oooooo

In the above pictures the tensor products are shown just by juxtaposition, but
now we would like to think about the products more explicitly. If the monoidal
category is not strict, then there is actually required another leg of the associativity
diagram, where the tensoring is reconfigured so that the composition can operate
in an alternate order. Here is how that rearranging looks in a symmetric (braided)
category, where the shuffling is accomplished by use of the symmetry (braiding):

44
44

4

­­
­­
­

( ⊗( ⊗ ))

⊗

44
44

4

­­
­­
­

( ⊗ ) shuffle //

⊗

GGGGGG

wwwwww

III
I

zzz
z

⊗

( ⊗ )⊗( ⊗ )
DDD

D
zzz

z

⊗
QQQQQQ
mmmmmm

We now foreshadow our definition of operads in an iterated monoidal category
with the same picture as above but using two tensor products, ⊗1 and ⊗2. It
becomes clear that the true nature of the shuffle is in fact that of an interchange
transformation.



Journal of Homotopy and Related Structures, vol. 2(1), 2007 12

44
44

4

­­
­­
­

( ⊗2( ⊗2
))

⊗1

44
44

4

­­
­­
­

( ⊗2 ) η12
//

⊗1

GGGGGG

wwwwww

MMMM
ttt

t
⊗2

( ⊗1 )⊗2( ⊗1 )
JJJ

J
ttt

t

⊗1

TTTTTTT
jjjjjjj

To see this just focus on the actual domain and range of η12 which are the upper
two levels of trees in the pictures, with the tensor product (| ⊗2 |) considered as a
single object.

Now we are ready to give the technical definitions. We begin with the definition
of 2-fold operad in an n-fold monoidal category, as in the above picture, and then
mention how it generalizes the case of operad in a braided category. Because of
this generalization of the well known case, and since there are easily described
examples of 2-fold monoidal categories based on a braided category as in [13], it
seems worthwhile to work out the theory for the 2-fold operads in its entirety before
moving on to n-fold operads.

3.1 Definition. Let V be a strict n-fold monoidal category as defined in Section
2. A 2-fold operad C in V consists of objects C(j), j > 0, a unit map J : I → C(1),
and composition maps in V

γ12 : C(k)⊗1 (C(j1)⊗2 · · · ⊗2 C(jk)) → C(j)

for k > 1, js > 0 for s = 1 . . . k and
k∑

n=1
jn = j. The composition maps obey the

following axioms:

1. Associativity: The following diagram is required to commute for all k > 1,

js > 0 and it > 0, and where
k∑

s=1
js = j and

j∑
t=1

it = i. Let gs =
s∑

u=1
ju and

let hs =
gs∑

u=1+gs−1

iu. The η12 labeling the leftmost arrow actually stands for a
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variety of equivalent maps which factor into instances of the 12 interchange.

C(k)⊗1

µ
kN

s=1
2C(js)

¶
⊗1

µ
jN

t=1
2C(it)

¶
γ12⊗1id //

id⊗1η12

²²

C(j)⊗1

µ
jN

t=1
2C(it)

¶

γ12

²²
C(i)

C(k)⊗1

µ
kN

s=1
2

µ
C(js)⊗1

µ
jsN

u=1
2C(iu+gs−1)

¶¶¶
id⊗1(⊗k

2γ12)

// C(k)⊗1

µ
kN

s=1
2C(hs)

¶
γ12

OO

2. Respect of units is required just as in the symmetric case. The following unit
diagrams commute.

C(k)⊗1 (⊗k
2I)

1⊗1(⊗k
2J )

²²

C(k)

C(k)⊗1 (⊗k
2C(1))

γ12

88ppppppppppp

I ⊗1 C(k)

J⊗11

²²

C(k)

C(1)⊗1 C(k)

γ12
99rrrrrrrrrr

Note that operads in a braided monoidal category are examples of 2-fold operads.
This is true based on the arguments of Joyal and Street [14], who showed that
braided categories arise as 2-fold monoidal categories where the interchanges are
isomorphisms. Also note that given such a perspective on a braided category, the
two products are equivalent and the use of the braiding to shuffle in the operad
associativity requirement can be rewritten as the use of the interchange.

It is immediately clear that we can define operads using more than just the first
two products in an n-fold monoidal category. The best way of going about this
is to use the theory of monoids, (and more generally enriched categories), in iter-
ated monoidal categories. We continue by first describing this procedure for 2-fold
operads. Operads in a symmetric (braided) monoidal category are often efficiently
defined as the monoids of a category of collections. For a braided category (V,⊗)
with coproducts that are preserved by both functors (—⊗A) and (A⊗—) the ob-
jects of Col(V) are functors from the discrete category of nonnegative integers to V.
In other words the data for a collection C is a sequence of objects C(j). Morphisms
in Col(V) are natural transformations. The tensor product in Col(V) is given by

(B ⊗ C)(j) =
∐

k>0
j1+···+jk=j

B(k)⊗ (C(j1)⊗ · · · ⊗ C(jk))

where ji > 0. This product is associative by use of the symmetry or braiding, and
due to the hypothesis that the tensor product preserves the coproduct. The unit is
the collection (∅, I, ∅, . . . ) where ∅ is an initial object in V.

Now recall how the interchange transformations generalize braiding. For V a
2-fold monoidal category with all coproducts in which both ⊗1 and ⊗2 strictly
preserve the coproduct, define the objects and morphisms of Col(V) in precisely the
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same way as in the braided case, but define the product to be

(B⊗12C)(j) =
∐

k>0
j1+···+jk=j

B(k)⊗1 (C(j1)⊗2 · · · ⊗2 C(jk))

In general the interchangers will not be isomorphisms, so this product can not be
that of a monoidal category with the usual strong associativity. However the in-
terchangers can be used to make the product in question obey lax associativity,
where the associator is a coherent natural transformation: it obeys the usual pen-
tagon axiom but is not required to be an isomorphism. This lax associativity is seen
by inspection of the two 3-fold products (B⊗12C)⊗12D and B⊗12(C⊗12D). In the
braided case mentioned above, the two large coproducts in question are seen to be
composed of the same terms up to a braiding between them. Here the terms of the
two coproducts are related by instances of the interchange transformation η12 from
the term in ((B⊗12C)⊗12D)(j) to the corresponding term in (B⊗12(C⊗12D))(j). For
example upon expansion of the two three-fold products we see that in the coproduct
which is ((B⊗12C)⊗12D)(2) we have the term

B(2)⊗1 (C(1)⊗2 C(1))⊗1 (D(1)⊗2 D(1))

while in (B⊗12(C⊗12D))(2) we have the term

B(2)⊗1 (C(1)⊗1 D(1))⊗2 (C(1)⊗1 D(1)).

Note that the first of these terms appears courtesy of the fact that strict preservation
of coproducts by the tensor product means precisely that there is a distributive law
(
∐

Bn)⊗A =
∐

(Bn ⊗A).
Commutativity of the pentagon axiom for the associators is implied by func-

toriality of the products and by the coherence theorem for strict n-fold monoidal
categories, since the legs of the diagram are made of distributions over the coprod-
uct (identities) and of compositions of interchangers η12 in V. Some remarks about
the non-invertibility of α are in order. Note that Mac Lane proves his coherence
theorem in two steps [20]. First it is shown that every diagram involving only α (no
α−1) commutes. Then it is noted that this suffices to make every diagram of both α
and α−1 commute since for every binary word there exists a path of just instances
of α from that word to the word parenthesized all to the right. (Here we are taking
the domain of α to be (A ⊗ B) ⊗ C.) Thus when α is not invertible we still have
that every diagram commutes. There are still canonical maps from every binary
word to the word parenthesized all to the right. However there are necessarily fewer
diagrams. For instance if (V,⊗) is lax monoidal there is no canonical map between
the two objects (B⊗B)⊗(B⊗B) and (B⊗(B⊗B))⊗B. This affects the statement
of the general associativity theorem for monoids in a lax monoidal category. Only
the specific case of the general associativity theorem as stated by Mac Lane holds,
as follows.

3.2 Theorem. Let (A,µ) be a monoid in a (lax) monoidal category. Let An be the
product given by A2 = A⊗A,An+1 = A⊗An, i.e. parenthesized to the right. Define
the composition µ(n) by µ(2) = µ, µ(n+1) = µ ◦ (1⊗ µ(n)). Then

µ(n) ◦ (µ(k1) ⊗ · · · ⊗ µ(kn)) = µ(k1+···+kn) ◦ α′
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for all n, ki > 2 where α′ stands for the canonical map to Ak1+···+kn .

Proof. This is just the special case of the general associative law for monoids shown
by Mac Lane, which only depends on the existence of the canonical map α′ [20].

Now we have a condensed way of defining 2-fold operads.

3.3 Theorem. 2-fold operads in 2-fold monoidal V are monoids in Col(V).

Proof. A monoid in Col(V) is an object C in Col(V) with multiplication and unit
morphisms. Since morphisms of Col(V) are natural transformations the multiplica-
tion and unit consist of families of maps in V indexed by the natural numbers, with
source and target exactly as required for operad composition and unit. The operad
axioms are equivalent to the associativity and unit requirements of monoids.

This brings us back to the question of defining operads in an n-fold monoidal V
using the higher products and interchanges. This idea will correspond to a series of
higher products, denoted by ⊗pq, in the category of collections. These are defined
just as for the first case ⊗12 above. Associators are as described above for the first
product, using ηpq for the associator α : A ⊗pq (B ⊗pq C) → (A ⊗pq B) ⊗pq C. The
unit for each is the collection (∅, I, ∅, . . . ) where ∅ is an initial object in V. Notice
that these products do not interchange; i.e they are not functorial with respect to
each other. Notice also that the associators in these categories of collections are not
isomorphisms unless we are considering the special cases of braiding or symmetry.
Instead the category of collections with substitution product ⊗pq is lax monoidal,
by which we will mean that the associator is merely a natural transformation, which
obeys the pentagon coherence condition by the same argument as for ⊗12 above.

Now we will focus on the products ⊗(m−1)m in the category of collections in n-
fold monoidal V, for m 6 n, since these will be seen to suffice for defining all operad
compositions. Before defining m-fold operads as monoids with respect to ⊗(m−1)m,
we note that there is also fibrewise monoidal structure. This will be important in
the description of the monoidal structure of the category of operads. In fact, we
have the following

3.4 Definition. Let (V,⊗1, . . . ,⊗n) be a strict n-fold monoidal category with co-
products and an initial object ∅. For i = 1 . . . n and A an object of V let each of
the functors (— ⊗i A) and (A ⊗i —) preserve coproducts and let ∅ ⊗i A = ∅ and
A⊗i ∅ = ∅. Let (V,

∐
,⊗1, . . . ,⊗n) be a strict (n + 1)-fold monoidal category with

distinct units for which forgetting the first tensor product (given by the coproduct)
recovers V. The unit for

∐
is the initial object ∅. Let n > m > 2. We denote by

Colm(V) the category of collections in V with the following products:

(B⊗̂1C)(j) =
∐

k>0
j1+···+jk=j

B(k)⊗m−1 (C(j1)⊗m · · · ⊗m C(jk))
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and

(B⊗̂2C)(j) = B(j)⊗m+1C(j)
...

(B⊗̂n−m+1C)(j) = B(j)⊗nC(j)
3.5 Theorem. Colm(V) is an (n −m + 1)-fold lax monoidal category with (two)
distinct strict units.

Proof. The first tensor product is ⊗̂1 = ⊗(m−1)m and the others are the higher fibre-
wise products starting with fibrewise ⊗m+1. Thus the unit for ⊗̂1 is I = (∅, I, ∅, . . . )
and the unit for all the other products is M = (I, I, . . . ). It is not hard to check
the unit conditions which are required for the fibrewise products to be the multipli-
cation for a monoid in the category of monoidal categories. The extra requirement
of the two sorts of unit is that M⊗̂1M = M and that I⊗̂kI = I for k > 1. These
equations do indeed hold.

Now we must check that there are interchangers, natural transformations

ξ1j : (A⊗̂jB)⊗̂1(C⊗̂jD) → (A⊗̂1C)⊗̂j(B⊗̂1D).

These utilize the ηij of V and thus exist by inspection of the terms of the compound
products. For example, in the product in Col2 V :

((A⊗̂2B)⊗̂1(C⊗̂2D))(2)

we find the term

((A(1)⊗3 B(1))⊗1 (C(2)⊗3 D(2)))
∐

((A(2)⊗3 B(2))⊗1 ((C(1)⊗3 D(1))⊗2 (C(1)⊗3 D(1))))

while in
((A⊗̂1C)⊗̂2(B⊗̂1D))(2)

we find the term (
(A(1)⊗1 C(2))

∐
(A(2)⊗1 (C(1)⊗2 C(1)))

)
⊗3

(
(B(1)⊗1 D(2))

∐
(B(2)⊗1 (D(1)⊗2 D(1)))

)

The map ξ12 thus uses first η23, then η13 and finally the hypothesis that
(V,

∐
,⊗1, . . . ,⊗n) is an (n + 1)-fold monoidal category; specifically instances of

the interchange between
∐

and ⊗3. Thus the external associativity axiom for ξ1j

and the giant hexagon axiom for i, j, k = 1, j, k hold due to the coherence theorem
for strict iterated monoidal categories applied to the (n+1)-fold monoidal category
(V,

∐
,⊗1, . . . ,⊗n). The internal associativity axiom holds due to functoriality of

the products (since the associators for ⊗pq use an equality followed by an inter-
change) as well as coherence. Note that in this category there are distinct strict
units, ∅ and I. Therefore the second part of the coherence theorem which describes
existence of maps does not hold. However since we verify the existence of maps by
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inspection, the first part of the coherence theorem applies, which states that any
two morphisms (sharing a common source and target and both being formed of
instances of the interchanges which obey the axioms of [2]) are the same morphism.

The unit conditions for the interchangers ξij are seen to hold based on the unit
conditions for the (n + 1)-fold monoidal category (V,

∐
,⊗1, . . . ,⊗n) and on the

hypothesis that ∅ ⊗i A = ∅ and A ⊗i ∅ = ∅. Thus the first product together with
any of the fibrewise products are those of a 2-fold lax monoidal category.

For the products ⊗̂2 and higher the associators and interchange transformations
are fibrewise and the axioms hold since they hold for each fiber.

3.6 Remark. In the context of [3] the lax functoriality of the tensor product with
respect to the coproduct is due to the hypothesis that the symmetric monoidal cate-
gory V is closed (from the right) with respect to the tensor product. This guarantees
that that product preserves colimits on the first operand, since the functor (—⊗B)
has as a right adjoint the internal hom, denoted by [B, —]. Applied to the coproduct
this fact in turn implies that there is a canonical map in V from (A⊗B)

∐
(C ⊗D)

to (A
∐

C) ⊗ (B
∐

D). From the universal properties of the coproduct it can be
checked that this map satisfies the the middle interchange law that is required of
a monoidal functor. Also in [3] Batanin points out that a fibrewise product is a
monoidal functor with respect to the collection product. In that paper the existence
of the transformation ξ depends on the symmetry (braiding) and the lax functori-
ality of the tensor product with respect to the coproduct. In this paper we chose
to simply include the necessary iterated monoidal structure as a hypothesis, rather
than the hypothesis of closedness, in the interest of generality.

Theorem 3.5 is quite useful for describing n-fold operads and their higher-categori-
cal structure, especially when coupled with two other facts. The first is that monoids
are equivalently defined as single object enriched categories, and the second is the
following result from [11] and [12], where the concept of n-fold monoidal 2-category
is discussed. In those sources the quantifier lax is sometimes left off, but the proofs
in question nowhere require the associator to be an isomorphism.

3.7 Theorem. For V n-fold (lax) monoidal with distinct strict units the category
of enriched categories over (V,⊗1) is an (n−1)-fold (lax) monoidal 2-category with
distinct strict units.

Proof. The proof in [11] holds exactly as it is stated but with the modification
that given distinct strict units Ii for the products ⊗i of V, we define unit enriched
categories Ii in V-Cat to each have the single object 0 and to have Ii(0, 0) = Ii+1.
Then the unit axioms for distinct units play the same role in the new proof as did
the standard unit axioms in the original.

For our purposes we translate the theorem about enriched categories into its
single object corollary about the category Mon(V) of monoids in V.

3.8 Corollary. For V n-fold (lax) monoidal with distinct strict units, the category
Mon(V) is an (n− 1)-fold (lax) monoidal 2-category with distinct strict units.
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Proof. The product of enriched categories always has as its object set the cartesian
product of the object sets of its components. Thus one object enriched categories
have products with one object as well.

3.9 Definition. If an n-fold monoidal category V has coproducts and
(V,

∐
,⊗3, . . . ,⊗n) is an (n−1)-fold monoidal category in which each of the functors

(—⊗iA) and (A⊗i—), i = 1 . . . n preserves coproducts we define the category of m-
fold operads Operm(V) to be the category of monoids in the category of collections
(Colm(V), ⊗̂1) for n > m > 2.

3.10 Corollary. Operm(V) is an (n−m)-fold monoidal 2-category.

Proof. Rather than starting with monoids in an n-fold monoidal V as in the previous
corollary we are actually beginning with monoids in (n − m + 1)-fold monoidal
Colm(V). Note that in [11] the products in V are assumed to have a common unit.
To generalize to our situation here, where the unit for the first product in the
category of collections is distinct from the other units, we need to add slightly to
the definitions in [11]. When enriching (or more specifically taking monoids) we are
doing so with respect to the first available product. Thus the unit morphism for
enriched categories has its domain the unit for that first product, I. However the
unit enriched category I has one object, denoted 0, and I(0, 0) = M.

3.11 Remark. This last corollary justifies our focus on the first m products of V
as opposed to any subset of the n products. Our choice of focus is due to the way
in which this focus allows us to describe the resulting structure on the category of
m-fold operads. Of course, we can use the forgetful functors mentioned in Section
2 to pass from n-fold monoidal V to V with any of the subsets of products. The
m-fold operads do behave as expected under this forgetting, retaining all but the
structure which depends on the forgotten products. This will be seen more clearly
upon inspection of the unpacked definition to follow. In short, we will see that an
m-fold operad is also an (m− 1)-fold operad.

3.12 Remark. We note that since a symmetric monoidal category is n-fold monoidal
for all n, then operads in a symmetric monoidal category are n-fold monoidal for
all n as well. More generally, if n > 3 and the interchanges are isomorphisms, then
by the Eckmann-Hilton argument the products collapse into one and the result is
a symmetric monoidal category, and so operads in it are again n-fold monoidal
for all n. Here we are always discussing ordinary “non-symmetric,” (“non-braided”)
operads. The possible faithful actions of symmetry or braid groups can be considered
after the definition, which we leave for a later paper. We do point out that the
proper direction in which to expand this work is seen in Weber’s paper [30]. He
generalizes by making a distinction between the binary and k-ary products in the
domain of the composition map γ : C(k)⊗ (C(j1)⊗ · · · ⊗ C(jk)) → C(j). The binary
tensor product is seen formally as a pseudo-monoid structure and the k-ary product
as a pseudo-algebra structure for a 2-monad which can contain the information
needed to describe actions of braid or symmetry groups. The two structures are
defined using strong monoidal morphisms, and so the products coincide and give
rise to the braiding which is used to describe the associativity of composition. To
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encompass the definitions in this paper we would move to operads in lax-monoidal
pseudo algebras, where instead of pseudo monoids and strong monoidal morphisms
in a pseudo algebra we would consider the same picture but with lax monoidal
morphisms.

The fact that monoids are single object enriched categories also leads to an
efficient expanded definition of m-fold operads in an n-fold monoidal category. Let
V be an n-fold monoidal category.

3.13 Definition. For 2 6 m 6 n an m-fold operad C in V consists of objects C(j),
j > 0, a unit map J : I → C(1), and composition maps in V

γpq : C(k)⊗p (C(j1)⊗q · · · ⊗q C(jk)) → C(j)

for m > q > p > 1, k > 1, js > 0 for s = 1 . . . k and
k∑

n=1
jn = j. The composition

maps obey the following axioms:
1. Associativity: The following diagram is required to commute for all m > q >

p > 1, k > 1, js > 0 and it > 0, and where
k∑

s=1
js = j and

j∑
t=1

it = i. Let

gs =
s∑

u=1
ju and let hs =

gs∑
u=1+gs−1

iu.

The ηpq labeling the leftmost arrow actually stands for a variety of equivalent
maps which factor into instances of the pq interchange.

C(k)⊗p

µ
kN

s=1
qC(js)

¶
⊗p

µ
jN

t=1
qC(it)

¶
γpq⊗pid //

id⊗pηpq

²²

C(j)⊗p

µ
jN

t=1
qC(it)

¶

γpq

²²
C(i)

C(k)⊗p

µ
kN

s=1
q

µ
C(js)⊗p

µ
jsN

u=1
qC(iu+gs−1)

¶¶¶
id⊗p(⊗k

q γpq)

// C(k)⊗p

µ
kN

s=1
qC(hs)

¶
γpq

OO

2. Respect of units is required just as in the symmetric case. The following unit
diagrams commute for all m > q > p > 1.

C(k)⊗p (⊗k
qI)

1⊗p(⊗k
qJ )

²²

C(k)

C(k)⊗p (⊗k
qC(1))

γpq

88qqqqqqqqqqq

I ⊗p C(k)

J⊗p1

²²

C(k)

C(1)⊗p C(k)

γpq
99rrrrrrrrrr

3.14 Theorem. The description of m-fold operad in Definition 3.13 is equivalent
to that given in Definition 3.9.

Proof. If a collection has an operad composition γq,q+1 using ⊗q and ⊗q+1 then
it automatically has an operad composition for any pair of products ⊗p and ⊗s
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for p < s 6 q + 1. This follows from the fact that for p < q we have natural
transformations ηpq

AIIB : A⊗p B → A⊗q B, as described at the end of Definition 2.1.
Thus if we have γq,q+1 then we can form γps = γq,q+1 ◦ (ηpq ◦ (1 ⊗q ηs,q+1)). The
new γps is associative based on the old γ’s associativity, the naturality of η, and
the coherence of η. Thus follows our claim that generally operads are preserved as
such by the forgetful functors mentioned in Section 2 and specifically that an m-fold
operad is also an (m− 1)-fold operad. The converse of this latter statement is not
true, as we will see by counterexample in the final section. It will demonstrate the
existence of m-fold operads which are not (m + 1)-fold operads.

It is also worth while to expand the definition of the tensor products of m-fold
operads that is implicit in their depiction as monoids in the category of collections
in an n-fold monoidal category. Here is the expanded version of the definition:

3.15 Definition. Let C,D be m-fold operads. For 1 6 i 6 (n−m) and using a ⊗′k
to denote the product of two m-fold operads, we define that product to be given
by:

(C ⊗′i D)(j) = C(j)⊗i+m D(j).

We note that the new γ is in terms of the two old ones, for m > q > p > 1:

γpq
C⊗′iD = (γpq

C ⊗i+m γpq
D ) ◦ ηp,i+m ◦ (1⊗p ηq,i+m)

where the subscripts denote the n-fold operad the γ belongs to and the η’s actually
stand for any of the equivalent maps which factor into instances of the indicated
interchange. Note that this expansion also helps make clear why it is that the
monoidalness, or number of products, of m-fold operads must decrease by the same
number m. From the condensed version this is expected due to the iterated enrich-
ment. From the expanded view this allows us to define the new composition since
in order for the products of operads to be closed, γ for the ith product utilizes an
interchange with superscript i + m. Defined this way i can only be allowed to be
as large as n − m. We demonstrate in the last section in fact a counterexample
which shows that the degree of monoidalness for the category of m-fold operads in
an n-fold monoidal category is in general no greater than n−m.

4. Examples of iterated monoidal categories

4.1 Lemma. Given a totally ordered set S with a least element e ∈ S, then the
elements of S with morphisms given by the ordering make up the objects of a strict
monoidal category.

The category will also be denoted S. Its morphisms are given by the ordering
means that there is only an arrow a → b if a 6 b. The product is max and the
2-sided unit is the least element e. We must check that the product is functorial
since this defines monoidal structure on morphisms. Here it is so since if a 6 b and
a′ 6 b′ then max(a, a′) 6 max(b, b′). Also the identity is clearly preserved.

4.2 Example. The basic example is the nonnegative integers N with their order-
ing 6 .
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4.3 Lemma. Any ordered monoid with its identity element e also its least element
forms the object set of a 2-fold monoidal category.

Proof. Morphisms are again given by the ordering. The products are given by max
and the monoid operation: a ⊗1 b = max(a, b) and a ⊗2 b = ab. The shared two-
sided unit for these products is the identity element e. The products are both
strictly associative and functorial since if a 6 b and a′ 6 b′ then aa′ 6 bb′

and max(a, a′) 6 max(b, b′). The interchange natural transformations exist since
max(ab, cd) 6 max(a, c) max(b, d). That is because

a 6 max(a, c) and b 6 max(b, d)

so

ab 6 max(a, c)max(b, d) and cd 6 max(a, c)max(b, d)

The internal and external unit and associativity conditions of Definition 2.1 are
all satisfied due to the fact that there is only one morphism between two objects.
More generally, given any ordered n-fold monoidal category with I the least object
we can potentially form an (n+1)-fold monoidal category with morphisms ordering,
and the new ⊗1 = max .

4.4 Example. Again we have in mind N with its ordering and addition.

Other examples of such monoids as in Lemma 4.3 are the pure braids on n
strands with only right-handed crossings [16]. Notice that braid composition is a
non-symmetric example. Further examples are found in the papers on semirings and
idempotent mathematics, such as [18] and its references as well as on the related
concept of tropical geometry, such as [25] and its references. Semirings that arise
in these two areas of study would require some translation of the lemmas we have
stated thus far, since the idempotent operation is usually min and its unit ∞. Also,
since the operation given by addition has unit 0, we have to consider distinct units.
Recall that the additional requirement is that the two distinct units obey each
other’s operations: i.e I1 ⊗2 I1 = I1 and I2 ⊗1 I2 = I2. For example, min(0, 0) = 0
and ∞+∞ = ∞.

4.5 Example. If S is an ordered set with least element e then by Seq(S) we denote
the infinite sequences X = {Xn}n>0 of elements of S for which there exists a natural
number l(X) called the length such that k > l(X) implies Xk = e and Xl(X) 6= e.
Under lexicographic ordering Seq(S) is in turn a totally ordered set with a least
element. The latter is the sequence 0 where 0n = e for all n. We let l(0) = 0. The
lexicographic order means that A 6 B if either Ak = Bk for all k or there is a
natural number n = nAB such that Ak = Bk for all k < n, and such that An < Bn.

The ordering is easily shown to be reflexive, transitive, and antisymmetric. See
for instance [23] where the case of lexicographic ordering of n-tuples of natural
numbers is discussed. In our case we will need to modify the proof given in that
source by always making comparisons of max(l(A), l(B))-tuples.

As a category Seq(S) is 2-fold monoidal since we can demonstrate two interchang-
ing products. They are max using the lexicographic order: A ⊗1 B = max(A,B);



Journal of Homotopy and Related Structures, vol. 2(1), 2007 22

and concatenation of sequences:

(A⊗2 B)n =

{
An, n 6 l(A)
Bn−l(A), n > l(A)

Concatenation clearly preserves the ordering, and so Lemma 4.3 applies.

4.6 Example. Letting S be the set with a single element recovers Example 4.4 as
Seq(S).

4.7 Lemma. If we have an ordered monoid (M, +) as in Lemma 4.3 and recon-
sider Seq(M) as in Example 4.5 then we can describe a 3-fold monoidal category
Seq(M, +) (with Seq(M) the image of forgetting the third product of pointwise ad-
dition) if and only if the monoid operation + is such that 0 < a < b and c 6 d
imply both a + c < b + d and c + a < d + b strictly.

Proof. The first two products are again lexicographic max and concatenation of se-
quences. The third product ⊗3 is pointwise application of +, (A⊗3 B)n = An +Bn.
The last condition that the monoid operation + strictly respect strict ordering is
necessary to guarantee that the third product both respect the lexicographic order-
ing and interchange correctly with concatenation. To see the former let sequences
A 6 B,C 6 D. Note that if A = B,C = D then A ⊗3 C = B ⊗3 D. Other-
wise let k = min{j | Aj < Bj or Cj < Dj}. Then (A ⊗3 C)k < (B ⊗3 D)k and
(A⊗3 C)i = (B ⊗3 D)i for i < k.

To see that ⊗3 respects the lexicographic ordering only if addition strictly re-
spects the order, consider a case where 0 < a < b and c 6 d but a + c = b + d.
Then the sequences A = (a, a), B = (b, 0), C = (c, 0), D = (d, 0) are such that
lexicographically A < B and C 6 D but A⊗3 C = (a + c, a) > B⊗3 D = (b + d, 0).

To see the interchange (A⊗3 B)⊗2 (C⊗3 D) 6 (A⊗2 C)⊗3 (B⊗2 D) notice that
we can assume that l(A) > l(B). Then

Concat(A + B, C + D) 6 Concat(A,C) + Concat(B,D)

due to the fact that if D has a first non-zero term, it will be added to an earlier
term of the concatenation of A and C in the second four-fold product.

4.8 Example. Seq(N,+) plays an important role in Example 5.5. Example inter-
changes in Seq(N, +) are as follow. Let A = (0, 1, 2, 0, . . . ), B = (1, 1, 0, . . . ), C =
(2, 1, 3, 0, . . . ) and D = (0, 2, 0, . . . ). Then

(A⊗2 B)⊗1 (C ⊗2 D) = (2, 1, 3, 0, 2, 0, . . . )
(A⊗1 C)⊗2 (B ⊗1 D) = (2, 1, 3, 1, 1, 0, . . . )

(A⊗3 B)⊗2 (C ⊗3 D) = (1, 2, 2, 2, 3, 3, 0, . . . )
(A⊗2 C)⊗3 (B ⊗2 D) = (1, 2, 2, 4, 1, 3, 0, . . . )

(A⊗3 B)⊗1 (C ⊗3 D) = (2, 3, 3, 0, . . . )
(A⊗1 C)⊗3 (B ⊗1 D) = (3, 2, 3, 0, . . . )
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4.9 Remark. A non-example is seen if we begin with the monoid of Lemma 4.1,
an ordered set with a least element where the product is max. Here max does not
strictly preserve strict ordering, and so pointwise max does not respect lexicographic
ordering. Neither do concatenation and pointwise max interchange.

4.10 Corollary. Given any ordered n-fold monoidal category C with I the least
object and ⊗1 the max, and whose higher products strictly respect strict ordering,
we can form an (n + 1)-fold monoidal category Seq(C).

Proof. The new products of Seq(C) are the lexicographic max, the concatenation,
and the pointwise application of ⊗i for i = 2 . . . n. The pointwise application of the
original products to the sequences directly inherits the interchange properties. For
instance, if A,B,C, D ∈ Seq(C) then (An ⊗2 Bn)⊗1 (Cn ⊗2 Dn) 6 (An ⊗1 Cn)⊗2

(Bn⊗1 Dn) for all n, which certainly implies that the pointwise 4-fold products are
ordered lexicographically.

4.11 Example. Even more symmetrical structure is found in examples with a
natural geometric representation which allows the use of addition in each product.
One such category is that whose objects are Young diagrams, by which we mean
the underlying shapes or diagrams of Young tableaux. These can be presented by
a decreasing sequence of nonnegative integers in two ways: the sequence that gives
the heights of the columns or the sequence that gives the lengths of the rows. We
let ⊗3 be the product which adds the heights of columns of two diagrams, ⊗2

adds the length of rows. We often refer to these as vertical and horizontal stacking
respectively. If

A = and B =

then A⊗2 B =

and A⊗3 B =

We can take as morphisms the totally ordered structure of the Young diagrams
given by lexicographic ordering applied to the sequences of column heights. Thus
we may retain the lexicographic max as ⊗1, and will refer to the entire category
simply as the category of Young diagrams.

By previous discussion of sequences the Young diagrams with ⊗1 the lexico-
graphic max and ⊗3 the piecewise addition (thought of here as vertical stacking)
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form a subcategory of the 3-fold monoidal category called Seq(N, +). To see that
with the additional ⊗2 of horizontal stacking this becomes a valid 3-fold monoidal
category we look at that operation from another point of view. Note that the hor-
izontal product of Young diagrams A and B can be described as a reorganization
of all the columns of both A and B into a new Young diagram made up of those
columns in descending order of height. Rather than (but equivalent to) the addition
of rows, we see horizontal stacking as the concatenation of monotone decreasing
sequences (of columns) followed by sorting greatest to least. We call this operation
merging.

4.12 Lemma. Let (S,6, +) be an ordered monoid and consider the sequences
Seq(S,+) with lexicographic ordering, piecewise addition + and the function of sort-
ing denoted by

s : Seq(S,+) → Seq(S, +)

Then the triangle inequality holds for two sequences: s(A + B) 6 s(A) + s(B).

Proof. Consider s(A + B), where we start with the two sequences and add them
piecewise before sorting. We can metamorphose this into s(A) + s(B) in stages by
using an algorithm to sort A and B. Note that if A and B are already sorted,
the inequality becomes an equality. For our algorithm we choose parallel bubble
sorting. This consists of a series of passes through the sequences comparing An

and An+1 and comparing Bn and Bn+1 simultaneously. If the two elements of a
given sequence are not already in strictly decreasing order we switch their places.
We claim that switching consecutive sequence elements into order always results
in a lexicographically larger sequence after adding piecewise and sorting. If both
the elements of A and of B are switched, or if neither, then the result is unaltered.
Therefore without loss of generality we assume that An < An+1 and that Bn+1 <
Bn. Then we compare the original result of sorting after adding and the same but
after the switching of An and An+1. It is simplest to note that the new result
includes An+1 + Bn, which is larger than both An + Bn and An+1 + Bn+1. So after
adding and sorting the new result is indeed larger lexicographically. Thus since each
move of the parallel bubble sort results in a larger expression after first adding and
then sorting, and after all the moves the result of adding and then sorting the now
pre-sorted sequences is the same as first sorting then adding, the triangle inequality
follows.

4.13 Theorem. The category of Young diagrams forms a 3-fold monoidal category.

Proof. The products on Young diagrams are ⊗1 = lexicographic max, ⊗2 = hori-
zontal stacking and ⊗3 = vertical stacking. We need to check first that horizontal
stacking, or merging, is functorial with respect to morphisms (defined as the 6 re-
lations of the lexicographic ordering.) The cases where A = B or C = D are easy.
For example let Ak = Bk for all k and Ck = Dk for all k < nCD, where nCD is
as defined in Example 4.5. Thus the columns from the copies of, for instance A in
A ⊗1 C and A ⊗1 D fall into the same final spot under the sortings right up to
the critical location, so if C 6 D, then A ⊗1 C 6 A ⊗1 D. Similarly, it is clear
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that A 6 B implies (A ⊗1 D) 6 (B ⊗1 D). Hence if A 6 B and C 6 D, then
A⊗1 C 6 A⊗1 D 6 B ⊗1 D which by transitivity gives us our desired property.

Next we check that our interchange transformations will always exist. η1j exists
by the proof of Lemma 4.3 for j = 2, 3 since the higher products both respect
morphisms(ordering) and are thus ordered monoid operations. We need to check
for existence of η23, i.e. we need to show that (A⊗3 B)⊗2 (C ⊗3 D) 6 (A⊗2 C)⊗3

(B ⊗2 D). This inequality follows from Lemma 4.12 on the triangle inequality for
sorting. To prove the new inequality we consider the special case of two sequences
formed by letting A′ be A followed by C and letting B′ be B followed by D. By
“followed by” we mean padded by zeroes so that l(A′) = max(l(A), l(B)) + l(C)
and l(B′) = max(l(A), l(B))+ l(D). Thus piecewise addition of A′ and B′ results in
piecewise addition of A and B, and respectively C and D. Then to our new sequences
A′ and B′ we apply the result of Lemma 4.12 and have our desired result.

Here is an example of the inequality we have just shown to always hold. Let four
Young diagrams be as follow:

A = B = C = D =

Then the fact that (A⊗3 B)⊗2 (C⊗3 D) 6 (A⊗2 C)⊗3 (B⊗2 D) appears as follows:

6

4.14 Remark. Alternatively we can create a category equivalent to the non-negative
integers in Example 4.2 by pre-ordering the Young diagrams by height. Here the
height h(A) of the Young diagram is the number of boxes in its leftmost column,
and we say A 6 B if h(A) 6 h(B). Two Young diagrams with the same height are
isomorphic objects, and the one-column stacks form both a full subcategory and
a skeleton of the height preordered category. Everything works as for the previous
example of natural numbers since h(A ⊗2 B) = h(A) + h(B) and h(A ⊗1 B) =
max(h(A), h(B)). There is also a max product; the new max with respect to the
height preordering is defined as

max(A,B) =

{
A, if B 6 A

B, otherwise.

In the height preordered category this latter product is equivalent to horizontal
stacking, ⊗1.

4.15 Remark. Notice that we can start with any totally ordered monoids {M, 6,+}
such that the identity 0 is less than any other element and such that 0 < a < b and
c 6 d implies both a+c < b+d and c+a < d+b for all a, b, c ∈ G. We create a 3-fold
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monoidal category ModSeq(M, +) with objects monotone decreasing finitely non-
zero sequences of elements of M and morphisms given by the lexicographic ordering.
The products are as described for the category of Young diagrams ModSeq(N, +) in
the previous example. The common unit is the zero sequence. The proofs we have
given in the previous example for M = N are all still valid.

By Corollary 4.10 we can also consider 4-fold monoidal categories such as
Seq(ModSeq(M)) and other combinations of Seq and ModSeq. For instance if
ModSeq(N, +) is our category of Young diagrams then ModSeq(ModSeq(N, +)) has
objects monotone decreasing sequences of Young diagrams, which we can visual-
ize along the z-axis. Here the lexicographic-lexicographic max is ⊗1, lexicographic
merging is ⊗2, pointwise merging (pointwise horizontal or y-axis stacking) is ⊗3

and pointwise-pointwise addition (pointwise x-axis stacking) is ⊗4. For example, if:

A =
ÄÄ

ÄÄ
ÄÄ

ÄÄ
ÄÄ

ÄÄ
ÄÄ

ÄÄ
ÄÄ

ÄÄ

ÄÄ
ÄÄ

ÄÄ
ÄÄ

ÄÄ
ÄÄ

ÄÄ
ÄÄ

ÄÄ
ÄÄ

ÄÄ
ÄÄ

ÄÄ
ÄÄ

ÄÄ
ÄÄ

ÄÄ
ÄÄ

ÄÄ
ÄÄ

ÄÄ
ÄÄ

ÄÄ
ÄÄ

ÄÄ
ÄÄ

ÄÄ
ÄÄ

ÄÄ
ÄÄ

ÄÄ
ÄÄ

ÄÄ
ÄÄ

ÄÄ
ÄÄ

ÄÄ
ÄÄ

ÄÄ
ÄÄ

ÄÄ
ÄÄ

ÄÄ
ÄÄ

ÄÄ
ÄÄ

ÄÄ
ÄÄ

ÄÄ
ÄÄ

ÄÄ
ÄÄ

ÄÄ
ÄÄ

ÄÄ
ÄÄ

ÄÄ
ÄÄ

ÄÄ
ÄÄ

ÄÄ
ÄÄ

ÄÄ
ÄÄ

ÄÄ
ÄÄ

ÄÄ
ÄÄ

ÄÄ
ÄÄ

ÄÄ
ÄÄ

ÄÄ
ÄÄ

and B =
ÄÄ

ÄÄ
ÄÄ

ÄÄ
ÄÄ

ÄÄ

ÄÄ
ÄÄ

ÄÄ
ÄÄ

ÄÄ
ÄÄ

ÄÄ
ÄÄ

ÄÄ
ÄÄ

ÄÄ
ÄÄ

ÄÄ
ÄÄ

ÄÄ
ÄÄ

ÄÄ
ÄÄ

ÄÄ
ÄÄ

ÄÄ
ÄÄ

ÄÄ
ÄÄ

ÄÄ
ÄÄ

then

A⊗1 B =
ÄÄ

ÄÄ
ÄÄ

ÄÄ
ÄÄ

ÄÄ
ÄÄ

ÄÄ
ÄÄ

ÄÄ

ÄÄ
ÄÄ

ÄÄ
ÄÄ

ÄÄ
ÄÄ

ÄÄ
ÄÄ

ÄÄ
ÄÄ

ÄÄ
ÄÄ

ÄÄ
ÄÄ

ÄÄ
ÄÄ

ÄÄ
ÄÄ

ÄÄ
ÄÄ

ÄÄ
ÄÄ

ÄÄ
ÄÄ

ÄÄ
ÄÄ

ÄÄ
ÄÄ

ÄÄ
ÄÄ

ÄÄ
ÄÄ

ÄÄ
ÄÄ

ÄÄ
ÄÄ

ÄÄ
ÄÄ

ÄÄ
ÄÄ

ÄÄ
ÄÄ

ÄÄ
ÄÄ

ÄÄ
ÄÄ

ÄÄ
ÄÄ

ÄÄ
ÄÄ

ÄÄ
ÄÄ

ÄÄ
ÄÄ

ÄÄ
ÄÄ

ÄÄ
ÄÄ

ÄÄ
ÄÄ

ÄÄ
ÄÄ

ÄÄ
ÄÄ

ÄÄ
ÄÄ

ÄÄ
ÄÄ

ÄÄ
ÄÄ

ÄÄ
ÄÄ

ÄÄ
ÄÄ

A⊗2 B =
ÄÄ

ÄÄ
ÄÄ

ÄÄ
ÄÄ

ÄÄ
ÄÄ

ÄÄ
ÄÄ

ÄÄ

ÄÄ
ÄÄ

ÄÄ
ÄÄ

ÄÄ
ÄÄ

ÄÄ
ÄÄ

ÄÄ
ÄÄ

ÄÄ
ÄÄ

ÄÄ
ÄÄ

ÄÄ
ÄÄ

ÄÄ
ÄÄ

ÄÄ
ÄÄ

ÄÄ
ÄÄ

ÄÄ
ÄÄ

ÄÄ
ÄÄ

ÄÄ
ÄÄ

ÄÄ
ÄÄ

ÄÄ
ÄÄ

ÄÄ
ÄÄ

ÄÄ
ÄÄ

ÄÄ
ÄÄ

ÄÄ
ÄÄ

ÄÄ
ÄÄ

ÄÄ
ÄÄ

ÄÄ
ÄÄ

ÄÄ
ÄÄ

ÄÄ
ÄÄ

ÄÄ
ÄÄ

ÄÄ
ÄÄ

ÄÄ
ÄÄ

ÄÄ
ÄÄ

ÄÄ
ÄÄ

ÄÄ
ÄÄ

ÄÄ
ÄÄ

ÄÄ
ÄÄ

ÄÄ
ÄÄ

ÄÄ
ÄÄ

ÄÄ
ÄÄ

ÄÄ
ÄÄ

ÄÄ
ÄÄ

ÄÄ
ÄÄ

ÄÄ
ÄÄ

ÄÄ
ÄÄ

ÄÄ
ÄÄ

ÄÄ
ÄÄ

ÄÄ
ÄÄ

ÄÄ
ÄÄ

ÄÄ
ÄÄ

ÄÄ
ÄÄ

ÄÄ
ÄÄ

ÄÄ
ÄÄ

ÄÄ
ÄÄ

ÄÄ
ÄÄ

ÄÄ
ÄÄ

ÄÄ
ÄÄ



Journal of Homotopy and Related Structures, vol. 2(1), 2007 27

A⊗3 B =
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4.16 Example. It might be nice to retain the geometric picture of the products
of Young diagrams in terms of vertical and horizontal stacking, and stacking in
other directions as dimension increases. This is not found in the just illustrated
category, which relies on the merging viewpoint. The “diagram stacking” point of
view is restored if we restrict to 3-d Young diagrams. We can represent these objects
as infinite matrices with finitely many nonzero natural number entries, and with
monotone decreasing columns and rows. We require that Ank be decreasing in n
for constant k, and decreasing in k for constant n. We choose the sequence of rows
to represent the sequence of sequences, i.e. each row represents a Young diagram
which we draw as being parallel to the xy plane. This choice is important because it
determines the total ordering of matrices and thus the morphisms of the category.
Thus y-axis stacking is horizontal concatenation (disregarding trailing zeroes) of
matrices followed by sorting the new longer rows (row merging). x-axis stacking
is addition of matrices. Now we define z-axis stacking as vertical concatenation of
matrices followed by sorting the new long columns (column merging).

Here is a visual example of the three new products, beginning with z-axis stack-
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ing, labeled ⊗1: if
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, A⊗2 B =
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Note that in this restricted setting of decreasing matrices the lexicographic merging
of sequences (rows) of two matrices does not preserve the total decreasing property
(decreasing in rows and columns).

These three products just shown preserve the total sum of the entries in both
matrices, and do interact via interchanges to form the structure of a 3-fold monoidal
category. Renumbered, they are: ⊗1 (z-axis stacking) is the vertical concatenation
of matrices followed by sorting the new longer columns, ⊗2 (y-axis stacking) is
horizontal concatenation of matrices followed by sorting the new longer rows and
⊗3 (x-axis stacking) is the addition of matrices. For comparison, here is the same
example of the products as just given above shown by matrices. Only the non-zero
entries of the matrices are shown.

A =




4 3 1 1
4 2 1 1
3 2 1
1 1 1


 B =




3 1
2 1
1 1




A⊗1 B =




4 3 1 1
4 2 1 1
3 2 1
3 1 1
2 1
1 1
1 1




A⊗2 B =




4 3 3 1 1 1
4 2 2 1 1 1
3 2 1 1 1
1 1 1




and A⊗3 B =




7 4 1 1
6 3 1 1
4 3 1
1 1 1




4.17 Theorem. The category of 3-d Young diagrams with lexicographic ordering
and the products just described possesses the structure of a 3-fold monoidal category.

The proof will require the following two lemmas.

4.18 Lemma. For two sequences of n elements each, the first given by a1 . . . an

and the second by b1 . . . bn, then considering pairs of elements aσ(i) and bτ(i) for
permutations σ, τ ∈ Sn, we have the following inequality:

max(min(aσ(1), bτ(1)), . . . , min(aσ(n), bτ(n))) 6
min(max(a1, . . . , an), max(b1, . . . , bn)).

Proof. This is true since for i = 1 . . . n we have ai 6 max(a1, . . . , an) and bi 6
max(b1, . . . , bn). Therefore min(aσ(i), bτ(i)) 6 min(max(a1, . . . , an),max(b1, . . . , bn))
and the inequality follows.

4.19 Lemma. For a given finite matrix M with n rows, we claim that first sorting
each row (greater to lesser) and then sorting each resulting column gives a final
result that is lexicographically less than or equal to the final result of sorting each
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column of M and then each row. The lexicographic ordering here is applied to the
sequences of entries read from the matrices by rows.

Proof. This is seen by a chain of inequalities that each correspond to a single step
in a parallel bubble sorting of the rows of M. Consider the final result of sorting
each column vertically and then each row. We gradually evolve this into the reverse
procedure by performing a series of steps, each of which begins by comparing two
adjacent columns in the current stage of the evolution. The step consists of switches
that insure each horizontal pair in the columns is in order, i.e. switching the positions
of the two elements in each row only if the one in the left column is smaller than
the one in the right. We call this a parallel switch, or just a switch. The result of
taking the switched matrix and vertically sorting its columns and then horizontally
sorting its rows will be shown to be lexicographically less than or equal to the result
of vertically sorting columns and then horizontally sorting rows before the parallel
switch. The entire series of steps together constitute sorting each row of M. Since
after vertically sorting a matrix which began with sorted rows the new rows still
remain sorted, then at the end of the evolution we are indeed doing the reverse
procedure; that is sorting horizontally first and then vertically.

For a single step in the parallel bubble sort, we claim that after the parallel switch
and then vertical sorting of the two adjacent columns the pairs in each resulting row
will be either all identical to those in the result of vertically sorting the unswitched
columns, or there will be a first row k in which the pair in the switched version
of the columns consists of one element equal to one element of the corresponding
pair in the unswitched version and one element less than the other element in the
unswitched version.

Since no other columns are changed at this step, then this will imply that after
vertically sorting the other columns and then all the rows in both matrices, the two
resulting matrices will be identical or just identical up to the kth row, where the
switched matrix will be lexicographically less than the unswitched.

The claim for two columns follows from repeated application of Lemma 4.18.
Let the two columns be a1 . . . an and b1 . . . bn After the parallel switching, the left
column holds the max of each pair and the right the min. Vertical sorting moves the
max of each column to the top row, and leaves all the new rows (of two elements
each) still sorted left to right. Located in the left position of the new top row is

max(max(a1, b1), . . . , max(an, bn)) = max(max(a1, . . . , an), max(b1, . . . , bn))

the latter of which is the in the top row of the vertically sorted unswitched columns.
The right position in the top row of the switched columns is

r = max(min(a1, b1), . . . , min(an, bn)),

which is less than or equal to the other element in the top row of the vertically
sorted unswitched columns

s = min(max(a1, . . . , an),max(b1, . . . , bn)),

by the preceding Lemma 4.18 (with trivial permutations). If r < s then we are done.
If r = s then we note that the remaining rows 2 . . . n contain the same collection
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of elements ai and bi in both the switched and unswitched columns, i.e. we may
assume that in vertically sorting either version we moved aj and bl to the top row.
Note that since the rows in the switched version are sorted, max(al, bl) > min(aj , bj)
and max(aj , bj) > min(al, bl). Thus the max(al, bj) will always be in the left column
and min(al, bj) in the right.

Then the second row of the vertically sorted switched pair of columns is

max(max(a1, b1), . . . , ̂max(aj , bj), . . . , ̂max(al, bl), . . . , max(an, bn), max(al, bj))

in the first position and

max(min(a1, b1), . . . , ̂min(aj , bj), . . . , ̂min(al, bl), . . . , min(an, bn), min(al, bj))

in the second position, where the hats indicate missing elements. Whereas the second
row of the vertically sorted unswitched columns is made up of

max(max(a1, . . . , âj , . . . , an)) and max(max(b1, . . . , b̂l, . . . , bn)).

Thus the left position in the second row of the switched version is the same value as
one of the elements in the second row of the unswitched vertically sorted columns. By
Lemma 4.18 with the evident permutations, the right position in the second row is
less than or equal to the other element in the second row of the unswitched vertically
sorted columns. If less than, then we are done, if equal then the process continues.
If the 1st through (n − 1)st rows of the switched and unswitched columns contain
the same values after vertical sorting, then so do the nth rows. This completes the
proof of the lemma.

Now we can proceed to the proof of Theorem 4.17.

Proof. (of Theorem 4.17) We already have existence of η23 by the argument about
pointwise application of two interchanging products in the proof of Corollary 4.10.
Here the two products are merging and vertical stacking applied pointwise to the
sequence of rows seen as a sequence of Young diagrams. To show existence of η13 :
(A⊗3 B)⊗1 (C ⊗3 D) → (A⊗1 C)⊗3 (B ⊗1 D) we need to check that sorting each
of the columns of two pairs of vertically concatenated matrices before pointwise
adding gives a larger lexicographic result with respect to rows than adding first
and then sorting columns. This follows from Lemma 4.12, applied to each pair of
sequences which are the nth columns in the two new matrices formed by vertically
concatenating A and C and respectively B and D, padded with zeroes so that adding
the new matrices results in adding A and B and respectively C and D. From the
lemma then we have that (A⊗1 C)⊗3 (B ⊗1 D) gives a result whose nth column is
lexicographically greater than or equal to the nth column of (A⊗3 B)⊗1 (C ⊗3 D).
This implies that either the pairs of respective columns are each equal sequences
or that there is some least row i and column j such that all the pairs of columns
are identical in rows less than i and that the two rows i are identical in columns
less than j, but that the i, j position in (A ⊗3 B) ⊗1 (C ⊗3 D) is less than the
corresponding position in (A⊗1 C)⊗3 (B⊗1 D). Thus the existence of the required
inequality is shown.
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The existence of η12 is due to the fact that we are ordering the matrices by giving
precedence to the rows. The two four-fold products can be seen as two alternate
operations on a single large matrix M . This matrix is constructed by arranging
A,B, C, D with added zeroes so that (A ⊗1 C) ⊗2 (B ⊗1 D) is the result of first
sorting each column vertically, greater values at the top, and then each row hor-
izontally, greater values to the left, while (A ⊗2 B) ⊗1 (C ⊗2 D) is achieved by
sorting horizontally first and then vertically. Recall that in the ordering rows are
given precedence over columns. Here is an illustration of the inequality, showing the
process of constructing the large matrix.

A =
[

3 3 2
1 1

]
B =




9
9
9


 C =

[
2
1

]
D =

[
5

]

M =




3 3 2 9
1 1 0 9
0 0 0 9
2 0 0 5
1 0 0 0




(A⊗2B)⊗1(C⊗2D) =




9 3 3 2
9 2 1
9 1
5
1




<




9 3 3 2
9 2 1
9 1
5 1


 = (A⊗1C)⊗2(B⊗1D)

The proof that this inequality always holds uses Lemma 4.19. By applying that
lemma to the large matrix M constructed of the four matrices A,B, C,D as de-
scribed above, we have the proof of the theorem.

Now we define the general n-fold monoidal category of n-dimensional Young
diagrams. The proof of the theorem for three dimensions plays an important role
in the general theorem, since each interchanger involves two products. Once we
have decided to represent Young diagrams of higher dimension by arrays of natural
numbers which decrease in each index, it is clear that each interchanger will either
involve directly two of the indices of the array or one index as well as pointwise
addition.

4.20 Definition. The category of n-dimensional Young diagrams consists of
1. Objects Ai1i2...in−1 , finitely nonzero n-dimensional arrays of nonnegative inte-

gers which are monotone decreasing in each index, and
2. Morphisms the order relations in the lexicographic ordering with precedence

given to lesser indices.

There are n ways to take a product of two n-dimensional Young diagrams, which
we visualize as arrays of natural numbers in n− 1 dimensions. The products corre-
spond to merging, i.e. concatenating and then sorting, in each of the n− 1 possible
directions, as well as pointwise addition as ⊗n. The order of products is the reverse
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of the order of the indices. That is, for k = 1 . . . n−1, ⊗k is merging in the direction
of the index in−k.

4.21 Theorem. The category of n-dimensional Young diagrams with the above
products constitutes an n-fold monoidal category.

Proof. We must show the existence of the interchangers ηjk as inequalities for 1 6
j < k 6 n. First we demonstrate the existence of the required inequality when
k < n. For A,B, C, D n-dimensional Young diagrams seen as (n − 1)-dimensional
arrays, we let Mi1i2...in−1 be a large array made by concatenating A and B in the
direction of the index ik, concatenating C and D in the direction of the index ik,
and then concatenating those two results in the direction of the index ij . Zeros
are added (see above for the two dimensional array example) so that the products
(A ⊗k B) ⊗j (C ⊗k D) and (A ⊗j C) ⊗k (B ⊗j D) can then both be described as
sorting Mi1i2...in−1 in two directions; first ik then ij or vice versa respectively. That
the inequality holds is seen as we compare the results position by position in the
lexicographic order, i.e. reading lower indices first. The first differing value we come
upon, say in location (i1i2 . . . in−1), then will necessarily be the first difference in the
sub-array of two dimensions in the directions ij and ik determined by the location
(i1i2 . . . in−1). Thus by the proof of Lemma 4.19, the value in (A⊗k B)⊗j (C⊗k D)
is less than the corresponding value in (A⊗j C)⊗k (B ⊗j D).

Secondly we check the cases that have k = n. We can see the four-fold products as
operations on two arrays, one made by concatenating A and C in the ij direction,
and another made by concatenating B and D in the ij direction, padded with
zeroes so that adding the two pointwise results in pointwise addition of A with B,
and of C with D. Then (A ⊗k B) ⊗j (C ⊗k D) is adding first and then sorting in
the ij direction, while (A ⊗j C) ⊗k (B ⊗j D) is the reverse process. To see that
the correct inequality holds we again compare the results position by position in
lexicographic order. The first differing value is also the first difference between the
two corresponding 2 dimensional sub-arrays which are in the directions ij and in−1.
These sub-arrays are the results of sorting and then pointwise addition and vice
versa respectively, and so by the proof for existence of η13 in Theorem 4.17 the
desired result is shown.

5. Examples of n-fold operads

The categories from Section 4 give us a domain in which we can exhibit some
concrete examples of operads. To have an operad with an element C(0) we will need
to “compactify” by adjoining a new initial object with the desired properties to the
example categories based on totally ordered sets.

5.1 Definition. For V an n-fold monoidal category whose morphisms are the 6
relations of a totally ordered set with least element, we define its compactification V
by adding a new initial object which we will denote by ∅. The morphisms will still
be given by the original ordering augmented by letting ∅ be the new least element.
All the original products have their original definition on objects of V. However, for
i = 1 . . . n and A an object of V we let ∅ ⊗i A = ∅ and A⊗i ∅ = ∅. Note that even
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when the original product in V was given by max, the new product in V gives ∅
when one of the operands is ∅.
5.2 Theorem. For V an n-fold monoidal category whose morphisms are the 6
relations of a totally ordered set with least element, the compactification V has the
structure of an n-fold monoidal category. Moreover (V,

∐
,⊗1, . . . ,⊗n) is a strict

(n+1)-fold monoidal category with distinct units for which forgetting the first tensor
product (given by the coproduct) recovers V.

Proof. Our products are all still strictly associative. By definition ∅ ⊗i I = ∅. The
diagrams will all commute since the morphisms are the ordering. Therefore we only
need to check that the interchangers still exist when one of the operands is ∅. Indeed
in this case the two products in question both become ∅ and the interchanger is the
identity. Unit conditions are still obeyed for the same reason.

Now V has coproducts given by
∐

= max, where max is taken with respect to the
new total order with ∅ as least element. Thus ∅ is the strict unit for

∐
. Denoting

by 0 the common unit of the other products, by definition we have that 0
∐

0 = 0
and ∅ ⊗i ∅ = ∅. Therefore the unit conditions for the interchangers involving the
two units hold as well. We have already demonstrated that

∐
(max) interchanges

with any product which preserves ordering. Our new products of V do preserve the
new ordering.

In all the following examples the operad composition is associative since it is
based upon ordering, so all we need check for is the existence of that composition.
We will refer to the example categories developed in the previous section, but assume
that we are dealing with their compactification. Note that each of the following
examples satisfy the hypothesis of Theorem 3.5 since

∐
(max) distributes over each

⊗i, since each product preserves the ordering.

5.3 Example. Of course C(j) = ∅ and C(j) = 0 for all j are trivially operads, where
0 is the monoidal unit. First we look at the simplest interesting examples: 2-fold
operads in an ordered monoid such as N, where ⊗1 is max and ⊗2 is +. We always
set C(0) = ∅ but often only list the later terms. A nontrivial 2-fold operad in N is
a nonzero sequence {C(j)}j>0 of natural numbers which has the property that for
any j1 . . . jk, max(C(k),

∑ C(ji)) 6 C(∑ ji) and for which C(1) = 0. This translates
into saying that for any two whole numbers x, y we have that C(x+y) > C(x)+C(y)
and that C(1) = 0. The latter condition both satisfies the unit axioms and makes
it redundant to also insist that the sequence be monotone increasing. Perhaps the
first example that comes to mind is the Fibonacci numbers. Minimal examples are
formed by choosing a starting term or terms and then determining each later nth

term. These are minimal in the sense that the principle which determines each of
the later terms in succession is that of choosing the minimal next term out of all
possible such terms. For a starting finite sequence 0, a2, . . . , al which obeys the the
axioms of a 2-fold operad so far, the operad C0,a2,...,al

is found by defining terms
Ca1,...,al

(n) for n > l to be the maximum (in general the coproduct!) of all the values
of max(C(k),

∑k
i=1 C(ji)) where the sum of the ji is n. Some basic examples are the

following sequences.
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C0,1 = (∅, 0, 1, 1, 2, 2, 3, 3, . . . ), C0,0,1 = (∅, 0, 0, 1, 1, 1, 2, 2, 2, 3, 3, 3, . . . )
C0,2 = (∅, 0, 2, 2, 4, 4, 6, 6, . . . ), C0,0,2 = (∅, 0, 0, 2, 2, 2, 4, 4, 4, 6, 6, 6, . . . )

and
C0,1,2,4,8 = (∅, 0, 1, 2, 4, 8, 8, 9, 10, 12, 16, 16, 17, 18, 20, 24, . . . ).

It is clear that the growth of these sequences oscillates around linear growth in a
predictable way.

5.4 Theorem. If “arbitrary” starting terms 0, a2, . . . , ak ∈ N are given (themselves
of course obeying the axioms of a 2-fold operad), then the nth term of the 2-fold
operad C0,a2,...,ak

in N is given by

an = aq + pak where n = pk + q, for p ∈ N, 0 6 q < k.

Proof. We need to show that

an = max
j1+···+jl=n

{max(al,

l∑

i=1

aji)} = aq + pak

where n = pk + q, for p ∈ N, 0 6 q < k. First we note that aq + pak appears as a
term in the overall max, so that an > aq + pak.

Now we check that max(al,
∑l

i=1 aji)} is always less than or equal to aq+pak. We
need only consider the cases in which l < n. Since al is included at least once as one
of the aji , we need to show only that

∑l
i=1 aji is always less than or equal to aq+pak

where the sum of the ji is n. This follows by strong induction on n. The base cases
n = 1 . . . k hold by definition. We can assume ji > 0 since C(0) = ∅. Let ji = pik+qi

for pi ∈ N, and 0 6 qi < k. We may assume without loss of generality that at least
one of the ji > k, since if not then the sum of the aji is less than another sum with
aj1+j2 replacing aj1 +aj2 , and k < n. Then

∑
qi = n−k

∑
pi = pk+q−k

∑
pi < n.

Thus we have:
l∑

i=1

aji =
∑

aqi + ak

∑
pi

6 a(k(p−P
pi)+q) + ak

∑
pi

= aq + (p−
∑

pi)ak + ak

∑
pi

= aq + pak.

The first inequality is by the assumption that the terms in the sequence do form an
operad, and the following equality is by our induction assumption.

5.5 Example. Consider the 3-fold monoidal category Seq(N,+) of lexicographically
ordered finitely nonzero sequences of the natural numbers (here we use N considered
as an example of an ordered monoid), with products ⊗1 the lexicographic max , ⊗2

the concatenation and ⊗3 the pointwise addition. An example of a 2-fold operad in
Seq(N, +) that is not a 3-fold operad is the following:
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Let B(0) = ∅ and let B(j)i = 1 for i < j , 0 otherwise. We can picture these as
follows:

B(1) = , B(2) = , B(3) = , B(4) = , B(5) = , . . .

This is a 2-fold operad, with respect to the lexicographic max and concatenation.
For instance the instance of composition γ12 : B(3)⊗1 (B(2)⊗2B(1)⊗2B(3)) → B(6)
appears as the relation:

<

However, the relation

>

shows that γ23 : B(3)⊗2 (B(1)⊗3 B(3)⊗3 B(2)) → B(6) does not exist, so that B is
not a 3-fold operad.

5.6 Example. Next we give an example of a 3-fold operad in Seq(N, +). Let C(0) =
∅ and let C(j) = (j − 1, 0 . . . ). We can picture these as follows:

C(1) = , C(2) = , C(3) = , C(4) = , C(5) = , . . .

First we note that the operad C just given is a 3-fold operad since we have
that the γ23 : C(k) ⊗2 (C(ji) ⊗3 · · · ⊗3 C(jk)) → C(j) exists. For instance γ23 :
C(3)⊗2 (C(1)⊗3 C(3)⊗3 C(2)) → C(6) appears as the relation

6

Then we remark that as expected the composition γ12 : C(k)⊗1 (C(ji)⊗2 · · · ⊗2

C(jk)) → C(j) also exists. For instance γ12 : C(3)⊗1 (C(1)⊗2 C(2)⊗2 C(3)) → C(6)
appears as the relation

6

5.7 Example. Now we consider some products of the previous two described oper-
ads in Seq(N,+). We expect B⊗′C given by (B⊗′C)(j) = B(j)⊗3 C(j) to be a 2-fold
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operad and it is. It appears thus:

∅ , , , , , , . . .

We demonstrate the tightness of the existence of products of operads by pointing
out that D(j) = B(j)⊗2 C(j) does not form an operad. We leave it to the reader to
demonstrate this fact.

Now we pass to the categories of Young diagrams in which the interesting prod-
ucts are given by horizontal and vertical stacking. It is important that we do not
restrict the morphisms to those between diagrams of the same total number of
blocks in order that all the operad compositions exist.

5.8 Theorem. A sequence of Young diagrams C(n), n ∈ N, in the category
ModSeq(N, +), is a 2-fold operad if C(0) = ∅ and for n > 1, h(C(n)) = f(n)
where f : Z+ → N is a function such that f(1) = 0 and f(i + j) > f(i) + f(j).

Proof. These conditions are not necessary, but they are sufficient since the first
implies that C(1) = 0 which shows that the unit conditions are satisfied; and the
second implies that the maps γ exist. We see existence of γ12 since for ji > 0,
h(C(k)⊗1(C(j1)⊗2· · ·⊗2C(jk))) = max(f(k), max(f(ji))) 6 f(j). We have existence
of γ13 and γ23 since max(f(k),

∑
f(ji)) 6 f(j).

5.9 Example. Examples of f include (x−1)P (x) where P is a nonzero polynomial
with coefficients in N. This is easy to show since then P will be monotone increasing
for x > 1 and thus (i + j − 1)P (i + j) = (i− 1)P (i + j) + jP (i + j) > (i− 1)P (i) +
jP (j)−P (j). By this argument we can also use any f = (x−1)g(x) where g : N→ N
is monotone increasing for x > 1.

For a specific example with a handy picture that also illustrates again the non-
trivial use of the interchange η we simply let f = x − 1. Then we have to actually
describe the elements of ModSeq(N) that make up the operad. One nice choice is
the operad C where C(n) = {n − 1, n − 1, ..., n − 1}, the (n − 1) × (n − 1) square
Young diagram.

C(1) = 0, C(2) = , C(3) = , . . .

For instance γ23 : C(3)⊗2 (C(1)⊗3 C(3)⊗3 C(2)) → C(6) appears as the relation

6
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An instance of the associativity diagram with upper left position C(2)⊗2 (C(3)⊗3

C(2))⊗2 (C(2)⊗3 C(2)⊗3 C(4)⊗3 C(5)⊗3 C(3)) is as follows:
γ23

−→

↓ γ23

↓ η23 15× 15 square

↑ γ23

γ23

−→

5.10 Example. Again we note that the conditions in Theorem 5.8 are not necessary
ones. In fact, given any Young diagram B we can construct a unique operad that is
minimal in each term with respect to ordering of the diagrams. Again by minimal
we mean that the principle which determines each of the later terms in succession
is that of choosing the minimal next term out of all possible such terms.

5.11 Definition. The 2-fold operad in the category of Young diagrams generated
by a Young diagram B is denoted by CB and defined as follows: CB(1) = 0 and
CB(2) = B. Each successive term is defined to be the lexicographic maximum of all
the products of prior terms which compose to the term in question; for n > 2 and
over

∑
ji = n:

CB(n) = max{CB(k)⊗2 (CB(j1)⊗3 · · · ⊗3 CB(jk))}.
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5.12 Theorem. If a Young diagram B consists of total number of blocks q, then
the term CB(n) of the operad generated by B consists of q(n− 1) blocks.

Proof. The proof is by strong induction. The number of blocks is given for CB(1)
and CB(2). Since the definition is in terms of a maximum over composable products,
if the number of blocks in each piece of any such a product is assumed by induction
to be respectively q(k − 1), and q(j1 − 1) . . . q(jk − 1), then the total number of
blocks in each product (and thus the maximum) is q(n− 1) since

∑
ji = n.

Here are the first few terms of the operad thus generated by B = .

∅ , 0 , , , , , , ,

, , . . .

Note that height of any given column grows linearly, but that the length of any row
grows logarithmically.

5.13 Theorem. The minimal operad C of Young diagrams which begins with
C (1) = 0 and C (2) = , has terms C (n) that are built of n− 1 blocks each, and
whose monotone decreasing sequence representation is given by the formula

C (n)k = Round
(
n/2k

)
; k = 1, 2, . . .

where rounding is done to the nearest integer and .5 is rounded to zero.

Proof. The proof of the formula for the column heights is by way of first showing
that each term in C can be built canonically as follows:

C (n) =

dn
2 e

C (dn
2 e)⊗2 (

︷ ︸︸ ︷
C (2)⊗3 · · · ⊗3 C (2)︸ ︷︷ ︸⊗3C (1) )

bn
2 c

We must demonstrate that the maximum of all C (k) ⊗2 (C (j1) ⊗3 · · · ⊗3 C (jk))
where

∑
ji = n is precisely given by the above canonical construction. We make

the assumption (of strong induction) that this holds for terms before the nth term,
and check for the inequality C (k) ⊗2 (C (j1) ⊗3 · · · ⊗3 C (jk)) less than or equal
to the canonical construction. The case in which there are only 0 or 1 odd integers
among the jk’s is directly observed using the strong induction. If there are two or
more odd integers among the jk’s and the first column of the diagram they help
determine is greater than or equal to the first column of C (k) then the inequality
holds by induction on the size of the first column. If there are two or more odd
integers among the jk’s and the first column of the diagram they help determine is
less than the first column of C (k) then we check the sub-cases n odd and n even.
For n even the result is seen directly, and for n odd we again rely on induction.
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For comparison to the previous example of the operad with square terms, the
instance of the associativity diagram with upper left position C (2) ⊗2 (C (3) ⊗3

C (2))⊗2 (C (2)⊗3 C (2)⊗3 C (4)⊗3 C (5)⊗3 C (3)) is as follows:
γ23

−→

↓ γ23

↓ η23 C (16)
↑ γ23

γ23

−→

There may be interesting applications of the type of growth modeled by oper-
ads in iterated monoidal categories. Since the growth is in multiple dimensions it
suggests applications to studies of allometric measurements. Broadly this refers to
any n characteristics of a system which grow in tandem. These measurements are
often used in biological sciences to try to predict values of one characteristic from
others, such as tree height from trunk diameter or crown diameter, or skeletal mass
from total body mass or dimensions, or even genomic diversity from various geo-
graphical features. Allometric comparisons are often used in geology and chemistry,
for instance when predicting the growth of speleothems or crystals. There are also
potential applications to networks, where the growth of diameter or linking dis-
tance of a network is related logarithmically to the growth in number of nodes. In
computational geometry, the number of vertices of the convex hull of n uniformly
scattered points in a polygon grows as the log of n.

This sort of minimal growth in the terms of the operad could be perturbed, for

example by replacing the term in the above with the alternate term , which

would affect the later terms in turn. An interesting avenue for further investigation
would be the comparison of such perturbations to determine the relative effects of
a given perturbation’s size and position of occurrence in the sequence. What we
really want is a formula for minimal operads in Young diagrams analogous to the
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one found above for operads in N.
We conclude with a description of the concepts of n-fold operad algebra and of

the tensor products of operad algebras.

5.14 Definition. Let C be an n-fold operad in V. A C-algebra is an object A ∈ V
and maps

θpq : C(j)⊗p (⊗j
qA) → A

for n > q > p > 1, j > 0.

1. Associativity: The following diagram is required to commute for all n > q >

p > 1, k > 1, js > 0 , where j =
k∑

s=1
js.

C(k)⊗p (C(j1)⊗q · · · ⊗q C(jk))⊗p (⊗j
qA)

γpq⊗pid //

id⊗pηpq

²²

C(j)⊗p (⊗j
qA)

θpq

²²
A

C(k)⊗p ((C(j1)⊗p (⊗j1
q A))⊗q · · · ⊗q (C(jk)⊗p (⊗jk

q A)))
id⊗p(⊗k

q θpq)
// C(k)⊗p (⊗k

qA)

θpq

OO

2. Units: The following diagram is required to commute for all n > q > p > 1.

I ⊗p A

J⊗p1

²²

A

C(1)⊗p A

θpq

;;vvvvvvvvvv

5.15 Example. Of course the initial object is always an algebra for every operad,
and every object is an algebra for the initial operad. For a slightly less trivial example
we turn to the height preordered category of Remark 4.14. Define the operad B(j)
as in Example 5.5. Then any nonzero sequence A is an algebra for this operad.

5.16 Remark. Let C and D be m-fold operads in an n-fold monoidal category. If A
is an algebra of C and B is an algebra of D then A⊗i+m B is an algebra for C ⊗′iD.

That the product of n-fold operad algebras is itself an n-fold operad algebra is
easy to verify once we note that the new θ is in terms of the two old ones:

θpq
A⊗i+mB = (θpq

A ⊗i+m θpq
B ) ◦ ηp(i+m) ◦ (1⊗p ηq(i+m))

Maps of operad algebras are straightforward to describe–they are required to pre-
serve structure; that is to commute with θ.
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