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Abstract
For groups of prime order, equivariant stable maps between

equivariant representation spheres are investigated using the
Borel cohomology Adams spectral sequence. Features of the
equivariant stable homotopy category, such as stability and
duality, are shown to lift to the category of modules over the
associated Steenrod algebra. The dependence on the dimension
functions of the representations is clarified.

Introduction

Along with the conceptual understanding of stable homotopy theory, the ability to
do computations has always been of major importance in that part of algebraic
topology. For example, the Adams spectral sequence has been used to compute
stable homotopy groups of spheres, also known as stable stems, in a range that by
far exceeds the geometric understanding of these groups, as discussed in [15]. In
contrast to that, the focus of equivariant stable homotopy theory has mostly been
on structural results, which – among other things – compare the equivariant realm
with the non-equivariant one. These results are of course helpful for calculations
as well, but nevertheless some fundamental computations have not been done yet.
In this text equivariant stable stems are investigated from the point of view of the
Adams spectral sequence based on Borel cohomology.
Let us assume that p is an odd prime number. (The final section contains the
changes necessary for the even prime.) The group G in question will always be
the cyclic group Cp = { z ∈ C | zp = 1 } of order p. For finite G-CW-complexes X
and Y , based as always in this text, let [X,Y ]G denote the corresponding group
of stable G-equivariant maps from X to Y with respect to a complete G-universe.
(Some references for equivariant stable homotopy theory are [17], [20] and [14]; in
contrast to those, [1] does without spectra.) The G-spheres considered here are one-
point-compactifications SV of real G-representations V , with the point at infinity
as base-point. Thus, the equivariant stable stems are the groups [SV , SW ]G for
real G-representations V and W .
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The groups [SV , SW ]G depend up to (albeit non-canonical) isomorphism only on
the class α = [V ]− [W ] in the Grothendieck group RO(G) of real representations.
The isomorphism type will sometimes be denoted by [S0, S0]Gα . Attention will of-
ten be restricted to those α in RO(G) with | dimR(α)− dimR(αG) | 6 2p± c (for
some integer c not depending on p) as that facilitates the computations and the
presentation of the results. More precisely, this ensures that the power operation
are trivial on the free parts of the representation spheres, see Proposition 2. Given a
class α, the groups [S0, S0]Gα+∗ will be zero in small degrees and complicated in large
degrees. At least the first 2p− 2 interesting groups will be described, counted from
the first non-zero one. There, the first extension problem appears which could not
be solved, see Figure 6. All differentials vanish in this range.

The main computations are presented in Figures 4, 6, and 8. (In the labeling of the
figures, the symbol of a vector space will stand for its real dimension, so that V is
an abbreviation for dimR(V ), for example.) The general results proven on the way
may be of independent interest.

In Section 1 the main tool used here is described, namely the Adams spectral se-
quence based on Borel cohomology. This has been introduced by Greenlees, and
one may refer to [8], [9] and [11] for its properties. For finite G-CW-complexes X
and Y , that spectral sequence converges to the p-adic completion of [X,Y ]G∗ . This
gives the information one is primarily interested in, since localisation may be used
to compute [X,Y ]G away from p. (See for example Lemma 3.6 on page 567 in [16].)
As a first example – which will be useful in the course of the other computa-
tions – the Borel cohomology Adams spectral sequence for [S0, S0]G∗ will be dis-
cussed. In Section 2, the Borel cohomology of the spheres SV will be described.
This will serve as an input for the spectral sequence. It will turn out that the
groups on the E2-page of the Borel cohomology Adams spectral sequence which
computes [SV , SW ]G only depend on the dimension function of α = [V ]− [W ], i.e.
on the two integers dimR(α) and dimR(αG), implying that it is sufficient to consider
the cases [SV , S0]G and [S0, SW ]G. This is done in Sections 3 and 4, respectively.

Not only are most of the computations new (for odd primes at least – see below), the
approach via the Borel cohomology Adams spectral sequence gives a bonus: it auto-
matically incorporates the book-keeping for p-multiplication, and the corresponding
filtration eases the study of induced maps. This can be helpful in the study of other
spaces which are built from spheres. (See [22], which has been the motivation for
this work, where this is used.) To emphasise this point: the results on the E2-terms
are more fundamental than the – in our cases – immediate consequences for the
equivariant stable stems.

The final section deals with the even prime. This has been the first case ever to be
considered, by Bredon [4], and some time later by Araki and Iriye [3]. In this case,
our method of choice is applied here to the computations of [S0, S0]G∗ , [SL, S0]G∗
and [S0, SL]G∗ in the range ∗ 6 13, where L is a non-trivial real 1-dimensional
representation. However, in this case, only the results on the E2-terms are new; the
implications of our charts for the equivariant stable stems at p = 2 can also be
extracted from [3].
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1. The Borel cohomology Adams spectral sequence

In this section, some basic facts about Borel cohomology and the corresponding
Adams spectral sequence will be presented. The fundamental reference is [9]. In
addition to that, [8], [10], [11], and [12] might be helpful. See also [19] for a different
approach to the construction of the spectral sequence.
Let p be an odd prime number, and write G for the group Cp. Let H∗ denote
(reduced) ordinary cohomology with coefficients in the field F with p elements.
For a finite G-CW-complex X, let

b∗X = H∗(EG+ ∧G X)

denote the Borel cohomology of X. The coefficient ring

b∗ = b∗S0 = H∗(BG+)

is the mod p cohomology ring of the group. Since p is odd, this is the tensor product
of an exterior algebra on a generator σ in degree 1 and a polynomial algebra on a
generator τ in degree 2.

H∗(BG+) = Λ(σ)⊗ F[τ ]

The generator τ is determined by the embedding of Cp into the group of units of C,
and σ is determined by the requirement that it is mapped to τ by the Bockstein
homomorphism.

The Borel cohomology Adams spectral sequence
For any two finite G-CW-complexes X and Y , there is a Borel cohomology Adams
spectral sequence

Es,t
2 = Exts,t

b∗b(b
∗Y, b∗X) =⇒ [X ∧ EG+, Y ∧ EG+]Gt−s. (1)

Before explaining the algebra b∗b in the next subsection, let me spend a few words
on the target.
There are no essential maps from the free G-space X ∧ EG+ to the cofibre of the
projection from Y ∧ EG+ to Y , which is contractible. Therefore, the induced map

[X ∧ EG+, Y ∧ EG+]G∗ −→ [X ∧ EG+, Y ]G∗

is an isomorphism. On the other hand, the map

[X, Y ]G∗ −→ [X ∧ EG+, Y ]G∗

is p-adic completion: this is a corollary of the completion theorem (formerly the
Segal conjecture), see for example [6]. In this sense, the Borel cohomology Adams
spectral sequence (1) converges to the p-adic completion of [X,Y ]G∗ .

Gradings
Let me comment on the grading conventions used. The extension groups for the
Adams spectral sequences will be graded homologically, so that homomorphisms of
degree t lower degree by t. This means that

Homt
R∗(M

∗, N∗) = Hom0
R∗(M

∗,ΣtN∗)
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if M∗ and N∗ are graded modules over the graded ring R∗. This is the traditional
convention, implying for example that the ordinary Adams spectral sequence reads

Exts,t
A∗(H

∗Y,H∗X) =⇒ [X, Y ]t−s.

But, sometimes it is more natural to grade cohomologically, so that homomorphisms
of degree t raise degree by t.

Homt
R∗(M

∗, N∗) = Hom0
R∗(Σ

tM∗, N∗)

Using cohomological grading for the extension groups, the Adams spectral sequence
would read

Exts,t
A∗(H

∗Y, H∗X) =⇒ [X,Y ]s+t.

In the present text, unless otherwise stated, the grading of the groups Hom and Ext
over A∗ and b∗b will be homological, whereas over b∗ it will be cohomological.

The structure of b∗b
The mod p Steenrod algebra A∗ has an element β in degree 1, namely the Bockstein
homomorphism. For i > 1, there are elements P i in degree 2i(p− 1), the Steenrod
power operations. By convention, P 0 is the unit of the Steenrod algebra. Often the
total power operation

P =
∞∑

i=0

P i

will be used, which is a ring endomorphism on cohomology algebras. This is just a
rephrasing of the Cartan formula. As an example, the A∗-action on the coefficient
ring b∗ = b∗S0 is given by

β(σ) = τ,

β(τ) = 0,

P (σ) = σ and
P (τ) = τ + τp.

As a vector space, b∗b is the tensor product b∗⊗A∗. The multiplication is a twisted
product, the twisting being given by the A∗-action on b∗: for elements a in A∗ and B
in b∗, the equation

(1⊗ a).(B ⊗ 1) =
∑

a

(−1)|a2|·|B|(a1B)⊗ a2

holds. Here and in the following the Sweedler convention for summation (see [23])
will be used, so that

∑
a

a1 ⊗ a2

is the coproduct of an element a in A∗.
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Changing rings
If M∗ and N∗ are modules over b∗b, they are also modules over b∗. Using the
antipode S of A∗, the vector space Homb∗(M

∗, N∗) is acted upon by A∗ via

(aφ)(m) =
∑

a

a1φ(S(a2)m).

For example, evaluation at the unit of b∗ is an isomorphism

Homb∗(b
∗, N∗)

∼=−→ N∗ (2)

of A∗-modules. The A∗-invariant elements in Homb∗(M
∗, N∗) are just the b∗b-linear

maps from M∗ to N∗. Therefore, evaluation at a unit of the ground field F is an
isomorphism

Homt
A∗(F, Homb∗(M

∗, N∗))
∼=−→ Homt

b∗b(M
∗, N∗), (3)

using cohomological grading throughout. The associated Grothendieck spectral se-
quence takes the form of a change-of-rings spectral sequence

Extr
A∗(F,Exts

b∗(M
∗, N∗)) =⇒ Extr+s

b∗b (M∗, N∗).

This is a spectral sequence of graded F-vector spaces. In the case where M∗ is b∗-
projective, the spectral sequence collapses and the isomorphism (3) passes to an
isomorphism

Exts,t
A∗(F, Homb∗(M

∗, N∗))
∼=−→ Exts,t

b∗b(M
∗, N∗).

In particular, the 0-line of the Borel cohomology Adams spectral sequence for groups
of the form [X, S0]G∗ consists of the A∗-invariants of b∗X.
Again a remark on the gradings: all the extension groups in this subsection have
been cohomologically graded so far. If one wants to use the spectral sequence to
compute the input of an Adams spectral sequence, one should convert the grading
on the outer extension groups into a homological grading. The spectral sequence
then reads

Extr,t
A∗(F, Exts

b∗(M
∗, N∗)) =⇒ Extr+s,t

b∗b (M∗, N∗),

and only the grading on the inner Exts
b∗(M∗, N∗) is cohomological then.

An example: [S0, S0]G∗
As a first example, one may now calculate the groups [S0, S0]G∗ in a reasonable
range.
Since b∗ is a free b∗-modules and Homb∗(b

∗, b∗) ∼= b∗ as A∗-modules, one sees that
the groups on the E2-page are

Exts,t
b∗b(b

∗, b∗) ∼= Exts,t
A∗(F, Homb∗(b

∗, b∗)) ∼= Exts,t
A∗(F, b

∗).

These groups are the same as those for the E2-term of the ordinary Adams spec-
tral sequence for [BG+, S0], which might have been expected in view of the Segal
conjecture: the p-completions of the targets are the same.
As for the calculation of the groups Exts,t

A∗(F, b∗), there is an isomorphism

Exts,t
A∗(F, b∗) ∼= Exts,t

A∗(F,F)⊕ Exts−1,t−1
A∗ (b∗,F). (4)
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This is proved in [2]. The isomorphism (4) can be thought of as an algebraic version
of the geometric splitting theorem, which says that [S0, S0]G∗ is isomorphic to a
direct sum [S0, S0]∗ ⊕ [S0, BG+]∗.
The groups Exts,t

A∗(F,F) and Exts−1,t−1
A∗ (b∗,F) on the right hand side of (4) can be

calculated in a reasonable range using standard methods. Here, the results will be
presented in the usual chart form. (A dot represents a group of order p. A line be-
tween two dots represents the multiplicative structure which leads to multiplication
with p in the target.) For example, some of the groups on the E2-page of the Adams
spectral sequence

Exts,t
A∗(F,F) =⇒ [S0, S0]t−s

are displayed in Figure 1.

Figure 1: The ordinary Adams spectral sequence for [S0, S0]∗
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•

(p− 1)q − 1 pq − 3

The single dots represent the elements α1, . . . , αp−1 from the image of the J-
homomorphism at the odd prime in question; αj lives in degree jq − 1,
where q = 2(p− 1) as usual. The chart stops right before the β-family would appear
with β1 in degree pq − 2 and the next α-element αp, the first divisible one, in de-
gree pq − 1. This is reflected on the E2-term, where calculations with the Steenrod
algebra become more complicated in cohomological degree t = pq = 2p(p− 1), when
the p-th power of P 1 vanishes and the next indecomposable P p appears. See [21]
for more on all of this. For the rest of this text, only the groups for t− s 6 4p− 6
are relevant.
Now let M(β) be the 2-dimensional A∗-module on which β acts non-trivially, the
generator sitting in degree zero. This is an extension

0 ←− F←−M(β) ←− ΣF←− 0,

which represents the dot at the spot (s, t) = (1, 1) in Figure 1. This A∗-module is the
cohomology of the Moore spectrum M(p), the cofibre of the degree p self-map of S0.
Figure 2 shows the beginning of the Adams spectral sequence for [S0,M(p) ], which
has the groups Exts,t

A∗(M(β),F) on its E2-page. Again, only the groups for t − s 6
4p− 6 are relevant in the following.
Now one may turn attention to the second summand Exts−1,t−1

A∗ (b∗,F) in (4).
Since b∗ = H∗BG+, the vector space Exts−1,t−1

A∗ (b∗,F) decomposes into a sum
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Figure 2: The ordinary Adams spectral sequence for [S0,M(p)]∗
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of Exts−1,t−1
A∗ (F,F) on the one hand and Exts−1,t−1

A∗ (H∗BG,F) on the other. As
an A∗-module, H∗BG decomposes into the direct sum of submodules,

H∗BG = M1 ⊕M2 ⊕ · · · ⊕Mp−1,

where Mj is concentrated in degrees 2j− 1 and 2j modulo 2(p− 1). The generators
of M1 as an F-vector space are σ, τ, στp−1, τp, στ2p−2, τ2p−1, . . . . As στ2p−2 sits in
degree 4p− 3, we will focus on the terms in degrees at most 4p− 4 throughout the
calculation. In that range, M1 has a resolution

M1 ←− A∗〈h1〉 ⊕A∗〈h2p−1〉 ←− A∗〈e2p−1〉 ⊕A∗〈e2p〉,
with A∗〈xd〉 a free A∗-module with a generator named xd in degree d. The maps
are given by

h1 7→ σ

h2p−1 7→ στp−1

e2p−1 7→ P 1h1

e2p 7→ P 1βh1 − βP 1h2p−1.

For j = 2, . . . , p − 1, the generators of the A∗-module Mj as an F-vector space
are στ j−1, τ j , στ j+p−2, τ j+p−1, . . . . In our range, Mj has a resolution

Mj ←− A∗〈h2j−1〉 ←− A∗〈e2j+2(p−1)〉,
where the maps are given by

h2j−1 7→ στ j−1

e2j+2(p−1) 7→ (jβP 1 − (j − 1)P 1β)h2j−1.

Together with Adams’ vanishing line, this leads to the groups displayed in Figure 3,
which is complete in degrees t− s 6 4p− 6.
The extension can be established in the following manner: A generator for the group
at the spot (t−s, s) = (2p−1, 0) is given by a homomorphism from H∗BG to Σ2p−1F
which sends στp−1 to a generator. Since

β(στp−1) = τp = P 1(τ),



Journal of Homotopy and Related Structures, vol. 2(1), 2007 148

Figure 3: The ordinary Adams spectral sequence for [S0, BCp]∗
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this does not factor through Σ2p−1M(β).
Assembling the information as required by (4), one gets the Borel cohomology
Adams spectral sequence for [S0, S0]G∗ , see Figure 4. There are no non-trivial dif-
ferentials possible in the range displayed. Thus, one may easily read off the p-
completions of the groups [S0, S0]G∗ in that range.

Figure 4: The Borel cohomology Adams spectral sequence for [S0, S0]G∗
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This finishes the discussion of the Borel cohomology Adams spectral sequence
for [S0, S0]G∗ . Later, the reader’s attention will also be drawn to the Borel coho-
mology Adams spectral sequence for [G+, S0]G∗ when this will seem illuminating.
Also the Borel cohomology Adams spectral sequence for [S0, G+]G∗ will be studied
and used.

2. The Borel cohomology of spheres

Let p and G be as in the previous section. Let V be a real G-representation. This
section provides a description of the Borel cohomology b∗SV . This will later serve
as an input for the Borel cohomology Adams spectral sequence.
To start with, if V G is the fixed subrepresentation, the b∗-module b∗SV G

is free
over b∗ on a generator in degree dimR(V G). This follows from the suspension theo-
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rem. Also b∗SV is free over b∗ on a generator in degree dimR(V ). This follows from
the generalised suspension isomorphism: the Thom isomorphism. Note that

EG+ ∧G SV = (EG×G SV )/(EG×G {∞})
is the Thom space of the vector bundle EG ×G V over BG. This vector bundle is
orientable, and the Thom isomorphism implies that b∗SV is a free b∗-module on
one generator.

Isolating the isotropy
Let F (V ) be the fibre of the inclusion of SV G

into SV , so that there is a cofibre
sequence

F (V ) −→ SV G −→ SV −→ ΣF (V ). (5)

Of course, if the complement of V G in V is denoted by V − V G, the relation

F (V ) 'G ΣV G

F (V − V G)

holds, so one may assume V G = 0. In that case, SV G

= S0 and the fibre of the
inclusion is just the sphere S(V )+ inside V with a disjoint base-point added. The
quotient space Q(V ) of F (V ) is then a lens space with a disjoint base-point added.
In general, it is a suspension of that.
If F is a free G-space with quotient Q, the map EG+ → S0, which sends EG to 0,
induces a G-equivalence EG+ ∧ F → F , which in turn induces an isomorphism
from H∗Q to b∗F . This isomorphism will often be used to identify the two groups.
As F (V ) is G-free, the groups b∗F (V ) ∼= H∗Q(V ) vanish above the dimension of the
orbit space Q(V ) = F (V )/G, that is for ∗ > dimR(V ). It now follows (by downward
induction on the degree) that the inclusion SV G ⊂ SV induces an inclusion in Borel
cohomology. This implies

Proposition 1. There is a short exact sequence

0 ←− b∗F (V ) ←− b∗SV G ←− b∗SV ←− 0

of b∗-modules.

In particular, the graded vector space b∗F (V ) is 1-dimensional for the de-
grees dimR(V G) 6 ∗ < dimR(V ) and zero otherwise. As a b∗-module it is cyclic,
generated by any non-zero element in degree dimR(V G).

The action of the Steenrod algebra
It remains to discuss the A∗-action on the b∗-modules in sight. On b∗SV G

it is clear
by stability. On b∗SV it can be studied by including b∗SV into b∗SV G

. The A∗-
action on b∗F (V ) also follows from the short exact sequence in Proposition 1, since
that displays b∗F (V ) as the quotient A∗-module of b∗SV G

by b∗SV .
If V is a real G-representation, there is an integer k(V ) > 0 such that

dimR(V )− dimR(V G) = 2k(V ).

For example, k(RG) = (p−1)/2 and k(CG) = p−1. The assumption in the following
proposition ensures that the action of the power operations on b∗F (V ) is trivial.
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Proposition 2. If k(V ) 6 p, there is an isomorphism

b∗F (V ) ∼= ΣdimR(V G)


F⊕




k(V )−1⊕

j=1

Σ2j−1M(β)


⊕ Σ2k(V )−1F




of A∗-modules.

Algebraic stability
One may now provide an algebraic version of the stability in the stable homotopy
category.

Proposition 3. Let V be a real G-representation. For G-spaces X and Y there is
an isomorphism

Exts
b∗(b

∗Y, b∗X)
∼=−→ Exts

b∗(b
∗ΣV Y, b∗ΣV X)

of A∗-modules.

Proof. One has b∗ΣV X ∼= b∗SV ⊗b∗ b∗X since b∗SV is a free b∗-module. The b∗-
module b∗SV is invertible. (This can be seen in more than one way. On the one
hand, there is a spectrum S−V such that SV ∧S−V 'G S0. Therefore, b∗S−V is the
required inverse. On the other hand, one might describe the inverse algebraically
by hand, imitating b∗S−V and avoiding spectra.) Therefore, tensoring with b∗SV is
an isomorphism

Homb∗(b
∗Y, b∗X)

∼=−→ Homb∗(b
∗SV ⊗b∗ b∗Y, b∗SV ⊗b∗ b∗X)

of A∗-modules. The result follows by passage to derived functors.

Chasing the isomorphism from the preceding proposition through the change-of-
rings spectral sequence, one obtains, as a corollary, that there is also an isomorphism

Exts,t
b∗b(b

∗Y, b∗X)
∼=−→ Exts,t

b∗b(b
∗ΣV Y, b∗ΣV X).

This is the desired analogue on the level of E2-pages of the suspension isomorphism

[X,Y ]G∗ ∼= [ΣV X, ΣV Y ]G∗ (6)

on the level of targets.

Dependence on the dimension function
As mentioned in the introduction, the suspension isomorphism (6) implies that the
isomorphism type of [SV , SW ]G only depends on the class α = [V ]− [W ] in the rep-
resentation ring RO(G). But, for the groups on the E2-pages of the Borel cohomol-
ogy Adams spectral sequences even more is true: up to isomorphism, they only de-
pend on the dimension function of α, i.e. on the two integers dimR(α) and dimR(αG).
This is the content of the following result.

Proposition 4. If two G-representations V and W have the same dimension func-
tion, the b∗b-modules b∗SV and b∗SW are isomorphic.



Journal of Homotopy and Related Structures, vol. 2(1), 2007 151

Proof. Recall from Proposition 1 that the inclusion of SV G

into SV induces an
isomorphism from b∗SV with its image in b∗SV G

, which is the part of degree at
least dimR(V ) = dimR(W ). Of course, the same holds for W in place of V . Since
also dimR(V G) = dimR(WG), one can use an isomorphism b∗SV G ∼= b∗SW G

to
identify the two images.

For example, if L and M are non-trivial irreducible G-representations which are
not isomorphic, the groups on the E2-page of the Borel cohomology Adams spec-
tral sequence for [SL, SM ]G∗ are up to isomorphism just those for [S0, S0]G∗ . An
isomorphism b∗SL ← b∗SM represents a G-map SL → SM which has degree co-
prime to p. But, this can not be a stable G-equivalence, since it is not true that SL

is stably G-equivalent to SM , see [7].
Now, given any α = [V ] − [W ] in RO(G), one would like to know the groups on
the E2-term for [SV , SW ]G∗ . Using Proposition 3 above, one may assume V = V G

or W = WG. Since the integer grading takes care of the trivial summands, one
might just as well suppose that V = 0 or W = 0 respectively. Thus, it is enough to
know the groups on the E2-terms for [SV , S0]G∗ and [S0, SW ]G∗ . In the following two
sections, these will be calculated for some V and W .

3. Cohomotopy groups of spheres

In this section, a calculation of some of the groups [SV , S0]G∗ will be presented
if V is a G-representation with k(V ) small. The tool will be the Borel cohomology
Adams spectral sequence, and the starting point will be the short exact sequence
induced by the cofibre sequence (5). The fixed point case [SV G

, S0]G∗ – which up to
re-indexing is the case [S0, S0]G∗ – has already been dealt with as an example in the
first section. One may turn towards the free points now.

Cohomotopy groups of free G-spaces in general

Let F be a finite free G-CW-complex. The groups on the E2-page of the Borel
cohomology Adams spectral sequence for [F, S0]G∗ are

Exts,t
b∗b(b

∗, b∗F ) ∼= Exts,t
A∗(F,Homb∗(b

∗, b∗F )) ∼= Exts,t
A∗(F, b∗F ).

If Q is the orbit space of F , one may identify b∗F and H∗Q. Thus, the groups on
the E2-page of the Borel cohomology Adams spectral sequence for [F, S0]G∗ are really
the same as the groups on the E2-page of the ordinary Adams spectral sequence
for [Q,S0]∗. This might not be surprising: the targets are isomorphic. Note that the
preceding discussion applies (in particular) to [G+, S0]G∗ .

Cohomotopy groups of F (V )
Let V be a G-representation. In the case k(V ) 6 p, a splitting of b∗F (V ) as an A∗-
module has been described in Proposition 2 above. The groups Exts,t

A∗(F, b∗F (V ))
split accordingly. It is more convenient to pass to the duals. If M∗ is an A∗-module,

DM∗ = Hom(M∗,F)
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is its dual. For example, one has DM(β) ∼= Σ−1M(β). Thus, the Ext-groups above
are isomorphic to Exts,t

A∗(Db∗F (V ),F). Since

Db∗F (V ) ∼= Σ− dimR(V G)


F⊕




k(V )−1⊕

j=1

Σ−2jM(β)


⊕ Σ1−2k(V )F


 ,

one may use the data collected about Exts,t
A∗(F,F) and Exts,t

A∗(M(β),F) in Fig-
ures 1 and 2, respectively, to assemble the E2-term. This is displayed in Figure 5
for k(V ) 6 p− 2. Note that in that case,the number − dimR(V G) is strictly less
than the number − dimR(V ) + (2p− 2). The series of dots in the 1-line continues to
the right until and including the case t− s = −dimR(V G) + (2p− 3), followed by
zeros until −dimR(V ) + (4p− 6). By multiplicativity, there are no non-trivial dif-
ferentials. Hence it is easy to read off the p-completions of the groups [F (V ), S0]G∗
in the range considered. Note that these are isomorphic to the p-completions of the
groups [Q(V ), S0]∗ and therefore also computable with non-equivariant methods.

Figure 5: The Borel cohomology Adams spectral sequence for [F (V ), S0]G∗
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Cohomotopy groups of SV

If V is a non-trivial G-representation, the short exact sequence from Proposition 1
leads to a long exact sequence of extension groups:

← Exts,t
b∗b(b

∗, b∗SV G

) ← Exts,t
b∗b(b

∗, b∗SV ) ← Exts−1,t
b∗b (b∗, b∗F (V )) ←

This will allow the determination of Exts,t
b∗b(b

∗, b∗SV ) in a range.
The starting point is the computation of the 0-line, which consists of the A∗-
invariants in b∗SV : Inspection of the A∗-action shows that, since V G 6= V by
hypothesis, one has

Ext0,t
b∗b(b

∗, b∗SV ) = Homt
b∗b(b

∗, b∗SV ) = 0 (7)

for all integers t.
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With the information on the 0-line just described, it is not hard to use the previous
computations as summarized in Figure 4 and 5, and the long exact sequence above
to calculate the groups Exts,t

b∗b(b
∗, b∗SV ) in a range. Figure 6 displays the result

for k(V ) 6 p − 2. By multiplicativity, there are no non-trivial differentials. Hence,
one can immediately read off the p-completions of the groups [SV , S0]G∗ in the range
considered. The group at the spot (t − s, s) = (− dimR(V ) + (2p − 3), 2) survives,
since the group at the spot (t− s, s) = (− dimR(V ) + (2p− 2), 0) is trivial by (7). As
the question mark indicates, the extension problem has not been solved in general
yet.

Figure 6: The Borel cohomology Adams spectral sequence for [SV , S0]G∗
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4. Homotopy groups of spheres

In this section, a calculation of some of the groups [S0, SW ]G∗ will be presented,
if W is a G-representation with k(W ) small. The tool will again be the Borel
cohomology Adams spectral sequence, and the starting point will again be the
cofibre sequence (5). The fixed points have already been dealt with as an example
in the first section. One may turn towards the free points now.

Homotopy groups of free G-spaces in general
Let F be a finite free G-CW-complex. The groups on the E2-page of the Borel
cohomology Adams spectral sequence for [S0, F ]G∗ are Exts,t

b∗b(b
∗F, b∗). These can in

be computed with the change-of-rings spectral sequence. In order to do so, one has
to know the A∗-modules Exts

b∗(b
∗F, b∗).

The case F = G+ might illustrate what happens. Using the standard minimal free
resolution of F as a b∗-module, or otherwise, one computes

Exts
b∗(F, b∗) ∼=

{
Σ−1F s = 1
0 s 6= 1.
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Therefore, the groups on the E2-page of the Borel cohomology Adams spectral
sequence for [S0, G+]G∗ are Exts−1,t−1

A∗ (F,F). These are – up to a filtration shift –
those on the E2-page of the Adams spectral sequence for [S0, S0]∗. This might be
what one expects: the targets are isomorphic, but an isomorphism uses the transfer.
The preceding example has the following application.

Proposition 5. If M∗ is a finite b∗b-module and d is an integer such that M t = 0
holds for all t < d, then t− s < d implies Exts,t

b∗b(M
∗, b∗) = 0.

Proof. This can be proven by induction. If M∗ is concentrated in dimension e > d,
the module M∗ is a sum of copies of ΣeF. In this case the result follows from
the example which has been discussed before. If M∗ is not concentrated in some
dimension, let e be the maximal degree such that Me 6= 0. Then Me is a submodule.
There is a short exact sequence

0 −→ Me −→ M∗ −→ M∗/Me −→ 0.

The result holds for Me by what has been explained before and for M∗/Me by
induction. It follows for M∗ by inspecting the long exact sequence induced by that
short exact sequence.

If F is a finite free G-CW-complex, the hypothesis in the previous proposition is
satisfied for M∗ = b∗F and some d.

Corollary 6. If W is a G-representation, then the vector spaces Exts,t
b∗b(b

∗F (W ), b∗)
vanish in the range t− s < dimR(WG). The same holds for Exts,t

b∗b(b
∗SW , b∗).

Proof. For F (W ) it follows immediately from the previous proposition. Using this,
the obvious long exact sequence shows that the inclusion of SW G

into SW induces an
isomorphism Exts,t

b∗b(b
∗SW G

, b∗) ∼= Exts,t
b∗b(b

∗SW , b∗). This gives the result for SW .

Propositions 3 and 4 now imply the following.

Corollary 7. Let V and W be G-representations such that the dimension function
of [W ] − [V ] is non-negative. Then the groups Exts,t

b∗b(b
∗SW , b∗SV ) vanish in the

range t− s < dimR(WG)− dimR(V G).

Of course, similar results for the targets of the spectral sequences follow easily from
the dimension and the connectivity of the spaces involved. The point here was to
prove them for the E2-pages of the spectral sequences.
The example F = G+ above suggests the following result.

Proposition 8. Let F be a finite free G-CW-complex. If Q denotes the quotient,
then there is an isomorphism Ext1b∗(b

∗F, b∗) ∼= Σ−1DH∗Q, and Exts
b∗(b

∗F, b∗) is
zero for s 6= 1.

Proof. Since there is an injective resolution

0 −→ b∗ −→ b∗[1/τ ] −→ b∗[1/τ ]/b∗ −→ 0 (8)
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of b∗ as a graded b∗-module, only the two cases s = 0 and s = 1 need to be
considered. For any finite b∗-module M∗ such as b∗F ∼= H∗Q, both Homb∗(M

∗, b∗)
and Homb∗(M

∗, b∗[1/τ ]) are trivial. By the injectivity of the b∗-module b∗[1/τ ],
the boundary homomorphism in the long exact sequence associated to (8) is an
isomorphism between the vector spaces Homb∗(M∗, b∗[1/τ ]/b∗) and Ext1b∗(M∗, b∗).
This implies that the latter is zero. Finally, note that Homb∗(M∗, b∗[1/τ ]/b∗) is
isomorphic to HomF(M

∗,Σ−1F) = Σ−1DM∗.

By the previous proposition, the change-of-rings spectral sequence converging
to Exts,t

b∗b(b
∗F, b∗) has only one non-trivial row, namely the one for s = 1, and it

collapses. Consequently,

Exts,t
b∗b(b

∗F, b∗) ∼= Exts−1,t
A∗ (F, Σ−1DH∗Q)

∼= Exts−1,t−1
A∗ (F, DH∗Q)

∼= Exts−1,t−1
A∗ (H∗Q,F).

Again, the groups on the E2-page of the Borel cohomology Adams spectral sequence
for [S0, F ]G∗ are isomorphic to those on the E2-page of the ordinary Adams spectral
sequence for [S0, Q]∗, up to a shift.

Homotopy groups of F (W )
Now let us consider the G-space F (W ) for some G-representation W . Proposition 8
may be used to determine the A∗-module Ext1b∗(b

∗F (W ), b∗). If k(W ) 6 p, it is
isomorphic to

Σ− dimR(W )


F⊕




k(W )−1⊕

j=1

Σ2j−1M(β)


⊕ Σ2k(W )−1F


 ,

and the vector space Exts
b∗(b

∗F (W ), b∗) is zero for s 6= 1. (One may also compute
that – more elementary – using Proposition 1.) Using this, one may assemble the E2-
page for [S0, F (W )]G∗ without further effort. The Figure 7 shows the result with the
hypothesis k(W ) 6 p− 2, ensuring dimR(W )− 1 < dimR(WG) + (2p− 3). The se-
ries of dots in the 2-line continues on the right until t− s = dimR(W ) + (2p− 4),
followed by zeros until t− s = dimR(WG) + (4p− 7). There are no non-trivial dif-
ferentials in the displayed range.

Homotopy groups of SW

Let W be a non-trivial G-representation. Trying to compute [S0, SW ]G∗ , one might
be tempted to use the geometric splitting theorem and the ordinary Adams spectral
sequence. While this could also be done, here the use of the Borel cohomology Adams
spectral sequence will be illustrated again.
As in the computation of the E2-term for [SV , S0]G∗ , in order to get started, one
computes the 0-line by hand as follows.

Proposition 9. There are isomorphisms

Ext0,t
b∗b(b

∗SW , b∗) = Homt
b∗b(b

∗SW , b∗) ∼=
{
F t = dimR(WG)
0 t 6= dimR(WG)
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Figure 7: The Borel cohomology Adams spectral sequence for [S0, F (W )]G∗
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for any G-representation W .

Proof. Here homological grading is used, since one is computing the E2-page of
an Adams spectral sequence. So one should be looking at the vector space of all
degree-preserving b∗-linear maps from b∗SW into Σtb∗ which are also A∗-linear. The
one map which immediately comes into mind is the map

b∗SW −→ b∗SW G ∼= ΣdimR(W G)b∗ (9)

induced by the inclusion. The claim is that (up to scalars) this is the only non-zero
one.
The b∗-linear maps are easily classified: since b∗SW is a free b∗-module, the vector
space Homb∗(b

∗SW , Σtb∗) is 1-dimensional for t 6 dimR(WG) and zero otherwise.
Let θ(W ) and θ(WG) be generators for the b∗-modules b∗SW and b∗SW G

, respec-
tively. Write k = k(W ). Then the map (9) sends θ(W ) to some scalar multiple
of τkθ(WG).
Any map from b∗SW to b∗ of some degree sends the basis element θ(W ) to some
scalar multiple of σλτ lθ(WG) for some λ in {0, 1} and some non-negative integer l.
If this map is A∗-linear, A∗ must act on σλτ l as it acts on τk. But this implies
that σλτ l = τk: the action of β shows that λ = 0, and the operation Pmax{k,l}

in A∗ distinguishes τk and τ l for k 6= l. This argument shows that any A∗-linear
map b∗SW → b∗ has to have degree dimR(WG).

Using this information on the 0-line, one has a start on the long exact sequence

→ Exts,t
b∗b(b

∗SW G

, b∗) → Exts,t
b∗b(b

∗SW , b∗) → Exts+1,t
b∗b (b∗F (W ), b∗) →

induced by the short exact sequence from (5). (In order to use the results obtained
for Exts+1,t

b∗b (b∗F (W ), b∗) earlier in this section, the restriction k(W ) 6 p − 2 will
have to be made.) This allows to determine the groups Exts,t

b∗b(b
∗SW , b∗) in a range,

as displayed in Figure 8.
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Figure 8: The Borel cohomology Adams spectral sequence for [S0, SW ]G∗
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5. The prime two

In this final section, the even prime p = 2 will be dealt with. Consequently the
group G is C2. Let L denote a non-trivial 1-dimensional real G-representation.
The E2-pages of the Borel cohomology Adams spectral sequences converging to the
2-completions of the groups [S0, S0]G∗ , [SL, S0]G∗ , and [S0, SL]G∗ will be described in
the range t− s 6 13. The reader might want to compare the implications for the
targets with those obtained by Araki and Iriye (in [3]) using different methods. The
methods used here are very much the same as in the previous sections, so barely
more information than the relevant pictures will be given. The main difference is
that the fibre of the inclusion of the fixed points S0 in SL is G+. Therefore, the
cofibre sequence (5) induces a short exact sequence of the form

0 ←− F←− b∗ ←− b∗SL ←− 0 (10)

in this case.

Computing [S0, S0]G∗
To start with, one needs charts of the ordinary Adams spectral sequences
for [S0, S0]∗ and [S0, BC2]∗ at the prime 2. The information in Figures 9 and 10 is
taken from Bruner’s tables [5]. Lines of slope 1 indicate the multiplicative structure
which leads to multiplication with η in the target.
As for S0, it is classical that the first differential in the ordinary Adams spectral
sequence is between the columns t− s = 14 and 15. Therefore, there are no differ-
entials in the displayed range. As for BC2, by the geometric Kahn-Priddy theorem,
its homotopy surjects onto that of the fibre of the unit S0 → HZ of the integral
Eilenberg-MacLane spectrum HZ. This is reflected in the displayed data, and can
be used to infer the triviality of the differentials in the given range. Note that there
is also an algebraic version of the Kahn-Priddy theorem, see [18].
Using the algebraic splitting (4), the Borel cohomology Adams spectral sequence
for [S0, S0]G can then be assembled as for the odd primes, see Figure 11. Since
[S0, S0]G∗ ∼= [S0, S0]⊕ [S0, BG+] holds by the (geometric) splitting theorem, there
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Figure 9: The ordinary Adams spectral sequence for [S0, S0]∗
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Figure 10: The ordinary Adams spectral sequence for [S0, BC2]∗
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can be no non-trivial differentials in this range: all elements have to survive.

Computing [SL, S0]G∗
The Borel cohomology Adams spectral sequence for [G+, S0]G∗ has the
groups Exts,t

b∗b(b
∗,F) ∼= Exts,t

A∗(F,F) on its E2-page. Using the long exact sequence

← Exts,t
b∗b(b

∗,F) ← Exts,t
b∗b(b

∗, b∗) ← Exts,t
b∗b(b

∗, b∗SL) ←
associated to the short exact sequence (10), one can now proceed as before to com-
pute the groups Exts,t

b∗b(b
∗, b∗SL) on the E2-page of the Borel cohomology Adams

spectral sequence for [SL, S0]G∗ using that the groups on the 0-line must be trivial.
One sees that the homomorphism Exts,t

b∗b(b
∗,F) ← Exts,t

b∗b(b
∗, b∗) are always surjec-
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Figure 11: The Borel cohomology Adams spectral sequence for [S0, S0]G
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tive so that the groups Exts,t
b∗b(b

∗, b∗SL) are just the kernels.

Exts,t
b∗b(b

∗, b∗SL) ∼= Exts−1,t−1
A∗ (F,F)⊕ Exts−1,t−1

A∗ (H∗BC2,F)

The chart is displayed in Figure 12. Since the differentials in the spectral sequence
are natural, the long exact sequence above shows that they must be trivial.

Computing [S0, SL]G∗
The Borel cohomology Adams spectral sequence for [S0, G+]G∗ has the
groups Exts,t

b∗b(F, b∗) on its E2-page. These can be computed by the change-of-rings
spectral sequence. One needs to know Exts

b∗(F, b∗) for that. But, the short exact
sequence (10) is a free resolution of the b∗-module F which can be used to compute
these extension groups. As for the odd primes, it follows that Es,t

2 is isomorphic
to Exts−1,t−1

A∗ (F,F). Using the short exact sequence (10), one may then compute
some of the groups Exts,t

b∗b(b
∗SL, b∗) as cokernels of the induced maps.

Exts,t
b∗b(b

∗SL, b∗) ∼= Exts,t
A∗(F,F)⊕ Exts−1,t−1

A∗ (H∗BC2,F)

The result is displayed in Figure 13. Again, the differentials vanish in the displayed
range.
Acknowledgment. I would like to thank John Greenlees for helpful remarks. In
particular, the idea for the proof of Proposition 8 is due to him. In addition, the
referee deserves thanks. Her or his report has led to great improvements.
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Figure 12: The Borel cohomology Adams spectral sequence for [SL, S0]G
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Figure 13: The Borel cohomology Adams spectral sequence for [S0, SL]G
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