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Abstract: We prove some new arithmetical properties of sums of the form
ogZg + a1y + - + apr, where Qy,Q1,"*,Q, are non-gero S-integers
and £9,Z1, -+, Ty are S-units in a given algebraic number field K. By
using a result of Evertse and Gyodry [6] on weighted S-unit equations, we
derive in §1 a general but ineffective result. In §2, we obtain some effective
results for 1 = 1 by means of Baker’s method and its Pp-adic analogue. As
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a consequence, we get some information about the arithmetical properties of
the solutions of certain decomposable form equations as well as of the terms

of recursive sequences.

1. Ineffective results

Let K be an algebraic number field of degree d with ring of in-
tegers Ok and let Mg be the set of places (i.e. equivalence classes of
multiplicative valuations) on K. A place v is called finite if v contains
only non-archimedian valuations, and infinite otherwise. Let S be a
finite subset of Mg containing all infinite places. A number a € K is
called an S-integer (resp. an S-unit) if |a|, < 1 (resp. |al, = 1) for
every valuation | |, from a place v € Mg \ S. The S-integers form a
ring which is called the ring of S-integers and is denoted by Os. The
S-units form a multiplicative group which is denoted by O%. For each
B € Og \ {0}, we write

Ns(8) = [] 18

vES

which is a positive rational integer called the S-norm of 3. If in parti-
cular S consists exactly of the infinite places then Ngs(8) = |Ng,q(B8)!-

Let n > 1 be an integer. Denote by P™(K) the n-dimensional pro-
jective space over K, that is the set of all (n+1)-tuples (20,21, **, %)
with z; € K, where two tuples are identical if they differ by a non-zero
scalar multiple. Further, we denote by P"(0%) the set of
(20,21, +,2a) With z; € Os™. For given a = (ag,a1,++,an) € (Os\
\{0})**1, we consider those # € Os which can be represented in the
form

(1) B =oagzo+1zy + -+ apzn with zg,21,-+,2, € Os%.

Van der Poorten and Schlickewei [8] and Evertse [5|, independently,
proved that for given non-zero 8 € Ogs, the equation (1) has at most
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finitely many solutions such that

(2) Z a;;z;; # 0 for each subset {i;,---,i,} of {0,1,---,n}.

i=1

Later, Evertse and Gyo6ry [6] proved that there is a constant C' de-
pending only on K,S and n but not on a such that the number of
solutions of (1) having property (2) is at most C. The proofs of these
results of (8], [5] and [6] involve the p-adic analogue of the Thue-Siegel-
Roth-Schmidt method. Very recently, Everest [2], [3] gave an asymp-
totic formula for the number of z = (z¢,21,-+-,2,) € P*(O%) with
Ns(agzo + -+ anz,) < g and (2) as ¢ — co. Tijdeman and Wang
[15] applied the above result of Evertse and Gyéry [6] to simultaneous
weighted sums of elements of finitely generated mulitplicative groups.
As another application, we shall deduce the following theorem.

For a rational integer v with |v| > 1, we denote by P(v) the
greatest prime factor of v and we write P(0) = P(+1) = 1. In what
follows in 1, Cy( ), Cs( ),--- will denote positive numbers depending
only on parameters occuring between parantheses.

Theorem 1. Let P > 1 be an integer. The number of values Ns(B)
with 8 € Os end P(Ns(B)) < P for which (1) holds is at most C,(K,
S, P, n).

It is a remarkable fact that C; does not depend on the coefficients
Qg,Qy, - *,0y,in (1). We remark that in general we are not able to make
Oy explicit. This is due to the non-explicit character of the number
C = C(K,S,n) mentioned above. Further, we note that in Theorem
1 all # are taken into account which are represented in the form (1)
(independently of the fact that (2) holds or not).

It follows from the above mentioned results of [8] or [5] that the
set of values Ng(f8) with B € Og and (1) is not bounded. Theorem 1
implies immediately the following result.

Corollary 1. P(Ns(8)) — oo as Ns(8) — oo with 8 € Os and (1).

For n = 1, we shall give in 2 effective and quantitive versions of
this assertion. We note that Corollary 1 can also be deduced from the
results of [8] or [5]. We shall now give a consequence of Corollary 1 to
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decomposable form equations. Let
F(X)=F(X1, ,Xm) € Os[X1, -, Xm]

be a decomposable form in m > 2 variables which factorises into linear
forms, say I(X),+-,ln(X) over K. For a non-zero element b of Og,
we consider the decomposable form equation '

(3) F(g-):F(zla""zm)zbin 31,"',$mEOs-

Corollary 2. Suppose that for some i with 1 < 1 < m, X; can be
ezpressed as a linear combination of I;(X),--- An(X). If (3) has in-
finitely many solutions and if Ns(z;) is unbounded for the solutions
z = (21, --,2m) of (3) then, for these solutions, P(Ns(=zi)) is also
unbounded.

Important examples to which Corollary 2 can be applied are the
full norm form equations, i.e. equations of the form

F(z) = N(z1 + w2z + -t wpzy)=b in z1,---,2, €Z

where {l,ws,---,wn} is a basis of Q(wz,--+,wn) over Q. In this case,
every X; can be expressed as a linear combination of the linear factors of
F, and if the equation is solvable and n > 3 or n = 2 and Q(w,) is real,
then it has infinitely many solutions z = (z1,-++,2n). Then max|z;|
is obviously unbounded. Moreover, it follows from a recent result of
Everest [4] that, for these solutions, |z;| is unbounded for each i, and
hence Corollary 2 implies that P(z;) is not bounded. For effective and
quantitive versions of this assertion with m = 2, n = 2, see Corollary 4.

We shall now prove Theorem 1. As was mentioned above, the
proof will be based on the following result on weighted unit equations.
Let af,---,al, € K\ {0}. A solution of the S-unit equation

(4) ahzo+ -+ apTy =1 in zg,21,++,2n € OF
is called degenerate if ajzg + - -+ + a),z,, has a vanishing subsum, and

non-degenerate otherwise. Now, we state the following theorem of
Evertse and Gyéry [6].
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Lemma 1. The number of non-degenerate solutions of (4) is at most

Cz(K, S,n).

As was mentioned above, the number C; cannot be made explicit
by means of the method of proof used in [6]. At the last conference on
Diophantine approximations in Oberwolfach (March 14-18, 1988), H.P.
Schlickewei announced that in the special case when K = Q and S is
generated by s distinct prime numbers, he is able to make explicit

C2(Q, §,m) = (8(s + 1)) (++1)”,

Using this explicit value of C,, in this special case we can make C,
explicit in Theorem 1.

Proof of Theorem 1. It is enough to deal with the case § # 0. If
B € Os \ {0} is represented in the form (1), then it is also represented
by a non-empty subsum of agz¢ + - - - + @z, which has no non-empty
vanishing subsum. Since agz¢ + - - + anz, has at most 2**! subsums,
it will be sufficient to prove the assertion for those 3 for which (1) holds
and agz¢ + - -+ + apz, has no vanishing subsum.

Let S’ be the smallest subset of Mx with S’ D S such that all
elements 8 € Os \ {0} with P(Ns(B)) < P belong to O%,. It is easy to
see that S is finite and depends only on K, S and P. If 8 € Os \ {0}
with P(Ns(3)) < P is represented in the form (1), then we have

1 =ao(zo/B) + -+ an(zn/B) where z;/8 € O%.

Hence, it follows from Lemma 1 that there exists a subset U, of
(O%)**! of cardinality at most C3(K,S',n) < C4(K, S, P,n) with the
following property: If 8 € Og \ {0} with P(Ng(8)) < P such that

(5)

B = apzo+- -+ anz, and agzo+---+apz, has no vanishing subsum,

then (307 T 1311) = 7’(281 T ’z?z) for some VRS Ofgr, and (28, T 1321) €
€ Us. Fix such a tuple (z3,---,z2) € U, and suppose that ' € O\ {0}
with P(Ng(8')) < P is another element such that

B' =agzy+ -+ axz, holds, agzy + - -+ anz,
(6) has no vanishing subsum and (zj,---,z.) =
=7'(z),--+,2) with some 7' € O%,.

1n
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Then, it follows that (=§,---,2,) = 1'/n(z0, -, zx) and hence we have
n'/n € O%. But this, together with (5) and (6), implies that g'=
= (n'/n)B and so Ns(B') = Ns(B). Consequently, the number of va-
lues Ns(B) with 8 € Og \ {0} for which (1), (2) and P(Ns(B)) < P
hold does not exceed the cardinality of Uy which is bounded above by
Cs(K,S,P,n). &

Proof of Corollary 2. Suppose that
(7) Xi= Ciy lix (l) +o ey l‘l'k (l)

for some distinct 15, - -,ix and ¢;,,- - -, ¢;, € K\{0}. By assumption, (3)
has infinitely many solutions z = (21, *,%m) and Ng(z;) is unbounded
for these solutions. Then it follows from (3) that, for these solutions,
l;;(z) can assume only finitely many values apart from a factor from

% J=1,---,k. Consequently, there is a subset x of solutions z =
= (21, +*,Zm) of (3) with unbounded Ns(z;) such that, for each of
these solutions, l;; (z) = 6;;u;; with some fixed 6;; € K \ {0} and with
u;j € 0%,7=1,---,k. Thereisa t€ N for which ay; :=1c;;6;; €
€ Os\ {0} for j =1,---,k. Now (7) implies that

(8) tr; = o ui, + -0+ o Ui,
For k =1, this gives
Ns(z;)Ns(t) = Ng(tz;) = Ns(ay,)
which implies that Ng(z;) is bounded. For k > 2, Corollary 1 can be
applied to (8). Then Corollary 1 together with the unboundedness of

Ns(z;) implies that P(Ng(tz;)) is unbounded, whence P(Ns(z;)) is
also unbounded. ¢

2. Effective results

In this section, we consider the effective versions of Corollary 1 for
n = 1 and some of their consequences. Let K, Ok, d, S, Og and O%
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have the same meaning as in 1. For given a = (ao, 1) € (Os \ {0})?,
consider now those 8 € Og \ {0} which can be represented in the form

(9) B = agze + ayz; with zg,z; € O%.

Then it follows from an effective result of Gyéry ([7], Lemma 6) on
S-unit equations that

(10) P(Ns(B)) > CsloglogNs(8)

provided that Ns(8) > Cs, where Cs, Cs are effectively computable
positive numbers depending only on K, § and a. The proof of the
above mentioned result of [7] involves Baker’s theory on linear forms in
logarithms and its p-adic analogue. By using the same theory as well
as its p-adic analogue we shall prove the following improvement of (10).

For a rational integer v with |v| > 1, we denote by Q(v) the
greatest square free factor of v and we set Q(0) = Q(£1) = 1.

Theorem 2. There are effectively computable positive numbers Cy, Cs,
depending only on K, S and a, such that if (9) and Ns(B) > C; hold
then

(loglogNs(5))>
logloglog Ns(8)

It follows from a well-known result (cf. [9]) that, for large Ng(3),
logQ(Ns(B)) < 1.02P(Ns(8)).

This, together with (11), implies

(11) Q(Ns(B)) > exp{Cs

}

(loglogN's(5))?
logloglogNs(3)

P(Ns(B)) > Cy

with some effectively computable positive number C; = Cy(K, S, ).
For some applications, it will be more convenient to consider (9)
and state Theorem 2 in a slightly different form. In what follows, C;¢( ),
C11( ), - will denote effectively computable positive numbers depend-
ing only on parameters occuring between parantheses. For brevity, we

write N(B) for N ,o(B),8 € K. We denote by £ the multiplicative
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semigroup O% N Ok, by |a| the maximum of the absolute values of the
conjugates of an algebraic number a, and by H(a) the (usual) height
of a (i.e. maximum of the absolute values of the coefficients of the
minimal defining polynomial of a over Z). There is a positive integer a
with a < Ci4(a) such that aa; € Ok and |aa;| < Ci;(a) for i = 0, 1.
Further, for each pair z¢,z; satisfying (9), there is an z € £ such that
z z; € L for i = 0,1. Hence, we may assume without loss of generality

that, in (9), @ = (ay,a;) € (Ok \ {0})?, B € Ok \ {0} and
(9" B = agzg + arz; with ze,2; € L.
Further, it is easy to see that we may also assume that
(12) min(ord,(x¢),ord,(x1)) < C12(K,S)

for every prime ideal p in Ok. Since |N(B)| > Ng(B8) and, for large
Ns(B), Q(Ns(B)) = C1sQ(N(B)) with some C15 = C15(K, 5, a), Theo-

rem 2 immediatly follows from the following.

Theorem 3. Suppose that § € Ok \ {0} is represented in the form (9’)
with (12) and |[N(B)| > e=°. Then

(loglog| N (8)])*
(13) log QNN 2 Cua ot logIN (B)

where C14 1s an effectively computable positive number depending only

on K, S and a.

Theorem 3 with K = Q is due to Shorey [11]. Theorem 3 and
Theorem 4 below will be proved in 8. To formulate Theorem 4, we
write in (9’)

(14) X = max(fzo], |11, )

and
P, = P(Nk/q(B))-

Further, we set

(15 p={2 i d=1,

d if d>1.
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The following result is an analogue of Corollary 1.2 of [13] which was
established in the case K = Q.

Theorem 4. There are effectively compuiable positive numbers Ci5,
Cie, depending only on K, S and @, such that if (9°) and (12) hold then

(16)  log(J] max(|z{7],12{7)) < C15 PP+ (loglogX )/ log( Py + 1)

where the product is taken over all the embeddings of K in C and
(17) log H(Z2) < C1s P (loglog X )/ log(P1 + 1).
0

We establish now some consequences of Theorem 3 and 4. Let
g, U1, and s be algebraic numbers such that

Uy = TUp—1 + SUy_g for m =2,3,.--.

We assume that the companion polynomial X2 —7X —s to the sequence
{um}_, has distinct non-zero roots a and f such that a/f is not a
root of unity. Then, it is easy to see (cf. {13], Ch. B) that

(18) Uy = aa™ + 0™ for m=0,1,2,.--

where
uoff — uy U] — UgQ
a= ———, b= ——7—.
g —a B —a
Then {u,,}2°_, is called a non-degenerate binary recursive sequence of
algebraic numbers. There exists an effectively computable number C,

depending only on the sequence {un,}oo_, such that
Uy # 0 for m > Cyy.

Let K = Q(uo,u1,a,5). Observe that u,, € K for m > 0. We write

Am
NK/Q(um) = -IZ for m Z 017

where A4,, and B,, > 0 are relatively prime rational integers. Then, as
an immediate consequence of Theorem 4, we derive the following result
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which extends a result of Stewart [14].}

Corollary 3. Let {u,}3_, be a non-degenerate binary recursive se-
quence of algebraic numbers. Let a and B be roots of the companion
polynomial of the sequence {um}oo- Let K = Q(uo,u1,a,) and let
D be given by (15). Then, there ezists an effectively computable number
Cis > 0 depending only on the sequence {um}o_o such that

(19) P(Am) _>_ Clsml/D+1 if m Z Clg.

Proof of Corollary 3. Let k be the least positive integer such that
ka, kb, ka und k@ are algebraic integers. By considering the sequence
{k™*+1u,}2_,, there is no loss of generality in assuming that a,b,a
and (3 are elements of Ox. We write

([«*],[8*]) = [n] with =€ Ok

and
a; =7 tab, By =x71p"

where k denotes the class number of K. Then a;, f1 € Ok satisfy
([a1],[B1]) = [1] and a1 /B is not a root of unity. Putting m = m;h4+m,
with m;,mz € Z,0 < my < h and a; = a™?a, by = B™2b in (18), we
see that

(20) ™, = g at + b AT

Now we apply (17) to the right hand side of (20) to complete the proof
of Corollary 3. ¢

Remark. For a non-degenerate binary recursive sequence {tm }m—o
with ug, u1, v, 8 € Z, Shorey [11] showed that

(21) log Q(um) > Cie(log m)z(loglogm)”1 if m > Cayo,

1 In the proofs of [14] and [12] on lower bounds for P(uy) and P(up /up), we
need to replace the assertions of van der Poorten by the theorems of Yu on
p-adic linear forms in logarithms. In view of this, d should be replaced by D
in these estimates. A similar remark applies to [13, Chapters 2,3]:
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where C19 > 0 and Cy¢ are effectively computable numbers depending
only on the sequence {um, }5o_,. In fact, Shorey [11] proved the estimate
(21) for M])- with m > n and u, # 0. We note that our Theorem 3
above is an extension of (21).

Next, we derive from Theorems 3 and 4 the following result which’
is an effective and quantitive version of Corollary 2 with m = 2. Com-
pare this with Theorem 5.2 of [13].

Corollary 4. Let A > 0 be a rational integer. Suppose that a,b,c are
rational integers satisfying ac # 0 and b®> — 4ac # 0. Let = and y be
non-zero rational integers satisfying

(22) P(az® + bzy + cy?) < A.
Then we have

(a) There ezists an effectively computable number Cy; > 0 depending
only on a,b,c and A such that

(23) P(z) > Ca(log |2])'/°, P(y) > Cu(loglyl)*/*.

(b) There ezists an effectively computable number Cyz > 0 depending
only on a,b,c and A such that :

(loglogz')? (loglogy')z
> NS e > P
(24) log Q(z) > 02’ loglogloga' ’ log Q(y) = 21ogloglogy’

where z' = max(|z|,e®) and y' = max(|y|, e®).

Let a be a real algebraic number of degree 2. For n > 0, we write
Pn/qn for the n-th convergent in the continued fraction expansion of a.
It is clear that the assumptions of Corollary 4 are satisfied with = p,,,
Yy = qn. Therefore, the estimates (23) and (24) with ¢ = p,, y = ¢, are
valid. In fact, this particular case of Corollary 4 is a consequence of the
estimates (19) and (21) on the greatest prime factor and the greatest
square free factor of a non-degenerate binary recursive sequence.

Proof of Corollary 4. There is no loss of generality in assuming that
a = 1. Let a and B be non-zero distinct algebraic integers satisfying

(25) 2% +bey + ey’ = (z — ay)(z - By).




36 K. Gyéry, M. Mignotte, T.N. Shorey

We set K = Q(a). Then D = 2. Let p;,---, p: be the set of all prime
ideals in K which divide rational primes not exceeding N(af)A and we
write £ for the set of all non-zero elements of O which have no prime
ideal divisor different from g, -, p;. Then we observe from (22) and
(25) that B(z — ay), a(z — By), (z — ay) and (—z + By) are elements
of L. Furthermore, we observe that

(26) (B — a)z = B(z — ay) + a(—z + fy)
and
(27) (B —a)y = (2 —ay) + (- + By).

(a) We apply Theorem 4 with ap = a; =1, 2o = f(z — ay) and z; =
= a(—« + PBy). For this, we observe from (26) that X given by (14)
satisfies 2X > |(8 — a)z|. Now, we derive from (16) that P(z) >
> Cy;(log |z|)*/3. Similarly, the estimate for P(y) follows from (27).
(b) We apply Theorem 3 with z = B(z — ay), z; = a(—z + By), as
well as 2o = z — ay, £; = —z + By, to obtain (24). ¢

3. Proofs of Theorems 3 and 4

We keep the notation of §2. In what follows, Ch3,Cay, -+ will
denote effectively computable positive numbers which, unless otherwise
stated, depend only on K, S and a. First we prove Theorem 3. Suppose
that § € Ok \ {0} is represented in the form (9’) with a = (a;, ;) €
€ (Ok \ {0})?, zo, 21 € £ and (12). We may assume that |N(8)| > Cas
with C»3 sufficiently large. Further, we can write (cf. [13], Ch. A)

(28) z; = piny* --'T]:""ﬂ':i'l coom? for {=0,1,
where a;,1,---,a;r € &, b;1,--+,b;, are non-negative rational integers
for:i=0,1,

(29) ma‘x(m7W7m’ T |771'|7 I"rlly T |7r,|) < 024(K7 5)7
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{m, --,n-} is a maximal system of independent units in Ok and the
principal ideals [r],-- -, [7,] are the h-th powers of the prime ideals in
Ok corresponding to the finite places in S. Here h denotes the class
number of K.

Theorem 3 is an immediate consequence of the following result.

Lemma 2. Let 8 € Ok \ {0} be represented in the form (9’) with the
properties (12), (28), (29) and |[N(B)| > Cas. Further, suppose that

(30) log P(N(B)) < (loglog|N(8)])*.

Then, there ezists Cays > 0 such that

loglog| N (B)|
1>C
,%, = " logloglog| N (8)|

P2 (log |N(8))C 25

where p runs through rational primes.

Proof. We may assume that

loglog| N (B)|
31 1<e ’
(31) 2 < GegogIN (B

P2 (log |N(B)])*

where € is an effectively computable positive number with € < 1 which
depends only on K,S and a and which will be chosen suitably later.
Thus, we allow C3 to depend also on e.

Denote by P the set of all prime ideals in Ok, and put

(32) Py = {p € P|plp for some positive rational prime

p < (log |N{8)|)}

and

(33) P. = {p € P|p|p for some rational prime p with

(log [N(B)])* < p < exp{(loglog|N(8)|)*}}.
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Then p € P; UP; for each prime ideal divisor p of 3. The product of A
ideals from any fixed ideal class (modulo the group of principal ideals)
is a principal ideal. Hence 3 can be written in the form

(34) B=p-B2 with 81,8, € Ok

so that all ‘prime ideal divisors of #; belong to P; and f; is divisible by
at most h(h — 1) prime ideals (with multiplicities) from P;. Further,
this, together with (30) and (31), implies

'd 'd
B =pyr™ v

where p} is a unit in Og,v],--,7; are non-units in Ok and d,---,d;
are non-negative rational integers such that

loglog| N ()|
logloglog| N (B)|

(35) i S 0256 + 027

and
log |N(7})| < Cas(loglog|N(B)[)? for j=1,---,t.

Consequently, we apply Lemma A.15 of [13] to find associates 1, -,7:
of 71,--+,7i, respectively, such that

(36) log [7;] < Cas(loglog|N(B)])? for j=1,--,t.
Further, on multiplying both sides of (9’) by an appropriate unit and

applying again Lemma A.15 of [13] to ¢ and z;, there is no loss of
generality in assuming that

(37) Ba =4 v,

(38) loglﬂ_ll < Csolog |N(B1)]

and (12), (28), (29) hold. Also, observe that

(39)  d; < (log IN(B:)])/log2 < 2log [N(B)| for j=1,-,t.
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Let in (28),

(40) V =:max |ai;l, W =:max bi;,
i=0,1 i=0,1

and we put

(41) U =: max(V,W).

In view of |N(B)| > C,3, we have U > C3; with some Cj; sufficiently
large. We apply an estimate of Yu ([16], Theorem 1’) on p-adic linear

forms in logarithms to derive from (9’), (28), (29), (12), (40) and (41)
that

(42) ord,,(8) < Cs2 PP(log U)/ log p,

where p is a prime ideal in P; U P, dividing a rational prime p. Now,
we apply (42), (32) and Theorem 9 of [9] to derive that

log [N (B1) < (log [N (B)])%* log U
whence, by (38),

(43) log |B:] < Cso(log |N(8)])°> log U.

Let p be a prime ideal divisor of m; in Og. We apply again
Theorem 1’ of Yu [16] on p-adic linear forms in logarithms to 8 — oz
to derive from (9’), (28), (29), (12), (40), (41), (39), (36) and (35) that
(44) bo,1 < (log [N (8)])%*+ (log U)*.

Repeated applications of estimates for p-adic linear forms in logarithms
provide the estimate (44) for all b; j withi =0,1and j=1,---,s. Thus

(45) W < (log [N (B)) % (log U)*.
If U < W2, then we observe from (45) that

W < (log |N(8)])*%*+, U < (log |N(B)])*“>
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which, together with (9°), (28), (29) and |N(8)| > C»s, implies that
log |[N(B)| < (log|N(B)|)¥“>+* which is not possible if € < (8Csq)~ 1.

Thus, we assume that

(46) U>w?2,

Then, by (41), (9°), (28), (29) and |N(B)| > Cas,
(47) U=V and U > (log|N(B)|)}/2.

There is no loss of generality in assuming that |a; ;| = V. We write
from (28) that, for each embedding o of K in C,

- i
ao,; log [0\ | = —log [p{")| +log|a{"| — 3 bo ;|mi"].
J
i=1

j=1

This, together with (47), (29) and (46), implies (cf. also [13], Ch. A)
that .
U=V < Css(log|zo| + U?).

Therefore, in view of (47) and |N(8)] > Cas
(48) log [zo| > CssU.
On the other hand, we see from (28) and (46) that
(49) " log|N(zo)| < Cs:W < Cs7UY2.

By (46), we have d > 2. Further, in view of (48), (49), (47) and
|IN(B)| > C23 we may assume that there exists an embedding o of K
in C such that

CB 6

dU.

(50) log ag”] < ~
Now, apply Theorem 2 of Baker [1] on linear forms in logarithms to
obtain from (9), (28), (29), (34), (37), (43), (36), (39), (35), (41) and
(47) that

(51) log |(@oz0 )| = log |8) — (ar21)()]| >
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> (log [N (8)])%** (log U)*.
Finally, we combine (50) and (51) to derive that

U < (log |N(B)])*

which, in view of (47), is not possible if € < (4Csg)™'. Finally, we set
¢ = min((8Cs4) ™!, (4C3s)7 1, 1) and Cy5 = €/2 to complete the proof of
Lerama 2. §

Proof of Theorem 4. Suppose that § € Ok \ {0} and z¢,2; € L
satisfying (9’) and (12). Then, as we have seen above, we may also
assume that (28) and (29) hold. Let V,W,U and X be defined by (40),
(41) and (14), respectively. Then, using some arguments from the above
proof, it is easy to see that

We apply Theorem 2 of Baker [1] on linear forms in logarithms to derive
form (9°), (12), (28), (29) and (52) that

(53)  IN(B)| > Cuo [ max(|anzo)?], |(az 1 )(])(log X) =,

where the product is taken over all the embeddings ¢ of K in C. On
the other hand, it follows from (42), (52) and Theorem 9 of [9] that

(54) log | N (8)] < Cs2 P°* (loglog X )/ log(P1 + 1).

We combine (53) and (54) to derive (16). Finally, (17) follows from
(16) and Lemma C of [10]. ¢

Acknowledgements. Some results of this paper were obtained during
the first author’s stay at the University of Strasbourg, in 1987. The first
author thanks Professor M. Mignotte and the University of Strasbourg
for their hospitality.




42

K. Gydry, M. Mignotte, T.N. Shorey

References

1]

(2]

(3]

(5]

[6]

[7]

(11]

[12]

13]

BAKER, A.: The theory of linear forms in logarithms, Transcendence Theory:
Advances and Applications (Academic Press, London, 1977), 1 - 27.

EVEREST, G.R.: A Hardy-Littlewood approach to the S-unit equation, Com-
positio Math. 70 (1989), 101 -- 118.

EVEREST, G.R.: Counting the values taken by sums of S-units, to appear.
EVEREST, G.R.: On the solutions of the norm form equation, to appear.

EVERTSE, J.-H.: On sums of S-units and linear recurrences, Compositio
Math. 53 (1984), 225 - 244.

EVERTSE, J.-H. and GY(")RY, K.: On the numbers of solutions of weighted
unit equations, Compositio Math. 86 (1988), 329 — 354.

GYéRY, K.: On the number of solutions of linear equations in units of an
algebraic number ficld, Comment. Math. Helv. 54 (1979), 583 — 600.

VAN DER POORTEN, A.J. and SCHLICKEWEI, H.P.: The growth condi-
tions for recurrence sequences, Macquarie Univ. Math. Rep. 82-0041, North
Ryde, Australia, 1982. '

ROSSER, J.B. and SCHOENFELD, L.: Approximate formulas for some func-
tions of prime numbers, lllinois J. Math. 6 (1962), 64 — 94.

SHOREY, T.N., VAN DER POORTEN, A.J., TIJDEMAN, R. and SCHIN-
ZEL, A.: Applications of the Gel’fond-Baker method to Diophantine equations,
Transcendence Theory: Advances and Applications (Academic Press, London,
1977), 59 - 77.

SHOREY, T.N.: The greatest square free factor of a binary recursive sequence,
Hardy- Ramanujan Journal 6 (1983), 23 — 36.

SHOREY, T.N.: Linear forms in members of a binary recursive sequence, Acta.
Arith, 43 (1984), 317 - 331.

SHOREY, T.N. and TIJDEMAN, R.: Exponential diophantine equations,

. Cambridge Tracts in Mathematics 87 (1986), Cambridge University Press.

[14]

STEWART, C.L.: On divisors of terms of linear recurrence sequences, J. Reine
Angew. Math. 333 (1982), 12 - 31.



On some arithmetical properties of weighted sums of S-units 43

[15] TIJDEMAN, R. and LIANXIANG WANG.: Simultaneous weighted sums of
elements of finitely generated multiplicative groups, Proc. Koninklijke Ned.
Akad. Wet., Mathematics 91 (1988), 205 — 209.

[16] KUNRUI YU, Linear forms in p-adic logarithms II, Compositio Math. T4
(1990), 15 - 113.






