SEQUENCES OF DOMINATING SETS

A.V. Kostochka

Mathematical Institute, Siberian Branch of the Soviet Academy of Science, SU-630090 Novosibirsk-90, USSR.

Received January 1990

AMS Subject Classification: 05 C 99

Keywords: domination, bipartite graph

Abstract: It is proved for any $0 < \beta < 1$ and any graph G = (V, E) there exists an ordering $v_1, v_2, \ldots, v_{|V|}$ of vertices of G such that either for every $i \in \{1, \ldots, |V|\}$ the set $\{v_1, \ldots, v_i\}$ dominates in G all but at most $|V| \cdot \beta^i$ vertices, or for every $j \in \{1, \ldots, |V|\}$ the set $\{v_1, \ldots, v_j\}$ dominates in the complement \bar{G} of G all but at most $|V|(1-\beta)^j$ vertices.

Let X be a subset of the vertex-set of a graph G = (V, E) and $N_G(X) = X \cup \{y \in V | \exists x \in X : (x, y) \in E\}$. Let us say that X is β -dominating in G, if $|V \setminus N_G(X)| \leq |V| \cdot \beta^{|X|}$. By \bar{G} we denote the complement of G.

Erdős and Hajnal [1] conjectured that for any positive integer t and any graph G=(V,E) with $|V|\geq t$ either there exists a 0.5-dominating set X in G with |X|=t or there exists a (1-0.5)-dominating set Y in \bar{G} with |Y|=t. Erdős, Faudree, Gyárfás and Schelp [2] proved that this conjecture remains true even if we put any $0<\beta<1$ instead of 0.5.

The aim of the present note is to prove the following somewhat stronger statement, which was obtained independently of [2].

Proposition 1. For any $0 < \beta < 1$ and any graph G = (V, E) either there exists a numbering $v_1, v_2, \ldots, v_{|V|}$ of the vertices of G such that the set $\{v_1, v_2, \ldots, v_i\}$ is β -dominating in G for every $i \in \{1, \ldots, |V|\}$, or there exists a numbering $u_1, u_2, \ldots, u_{|V|}$ of the vertices of G such that the set $\{u_1, u_2, \ldots, u_j\}$ is $(1 - \beta)$ -dominating in \overline{G} for every $j \in \{1, \ldots, |V|\}$.

Proposition 1 is a consequence of the following proposition. (To see this, apply Proposition 2 to the bipartite graph $\widetilde{G}=(X,Y;\widetilde{E})$, where \widetilde{G} is obtained from G=(V,E) as follows: |X|=|Y|=|V| and $(x_i,y_j)\in\widetilde{E}$ iff $(v_i,v_j)\in E$).

Proposition 2. Let G = (X, Y; E) be a bipartite graph with parts X and Y, and $0 < \beta < 1$. Then at least one of the following assertions is true:

- (a) there is a numbering $x_1, x_2, \ldots, x_{|X|}$ of the vertices of X such that $|Y \setminus N_G(\{x_1, x_2, \ldots, x_i\})| \leq |Y| \cdot \beta^i$ for every $i \in \{1, \ldots, |X|\}$;
- (b) there is a numbering $y_1, y_2, \ldots, y_{|Y|}$ of the vertices of Y such that

$$|X \setminus N_{\overline{G}}(\{y_1, y_2, \dots, y_j\})| < |X|(1-\beta)^j$$

for every $j \in \{1, \ldots, |Y|\}$.

Proof. We try to construct the proper numbering of vertices of X, using the following *Procedure 1*.

BEGIN. Let $X_0 := \emptyset$; i := 1;

Step i. If i = |X| + 1, then END. If there is $x \in X \setminus X_{i-1}$ such that $|(Y \setminus N_G(X_{i-1})) \setminus N_G(\{x\})| \leq \beta |Y \setminus N_G(X_{i-1})|$ (in particular, if $Y \setminus N_G(X_{i-1}) = \emptyset$), then set $x_i := x$, $X_i := X_{i-1} \cup \{x_i\}$ and go to Step i + 1. Else END.

If the Procedure stops on Step t and t = |X| + 1, then Assertion (a) of our Proposition 2 is true. Let $t \leq |X|$ and $Y_0 = Y \setminus N_G(X_{t-1})$. Then $Y_0 \neq \emptyset$ and, by the construction, for $x \in X$ we have

$$|Y_0 \cap N_G(x)| < (1-\beta)|Y_0|.$$

The following *Procedure 2* will make it possible to number the vertices of Y_0 properly.

BEGIN. Step $k(1 \le k \le |Y_0|)$. Before Step k the vertices $y_1, \ldots, y_{k-1} \in Y_0$ are chosen that the inequality (1) is fullfilled for $j = 1, 2, \ldots, k-1$ and, denoting $Y_{k-1} := Y_0 \setminus \{y_1, \ldots, y_{k-1}\}$, for any $x \in X \setminus N_{\overline{G}}(\{y_1, \ldots, y_{k-1}\}) = \bigcap_{j=1}^{k-1} N_G(y_j) \cap X$ the inequality

$$|N_G(\{x\}) \cap Y_{k-1}| < (1-\beta)|Y_{k-1}|$$

holds. Note that for k=1, (3) follows from (2). If $X \subset N_{\overline{G}}(\{y_1,\ldots,y_{k-1}\})$, then choose an arbitrary $y \in Y_{k-1}$, $y_k := y$, $Y_k := Y_{k-1} \setminus \{y_k\}$ and go to Step k+1. Suppose $\bigcap_{j=1}^{k-1} N_G(\{y_j\}) \cap X \neq \emptyset$. Due to (3), there exists $y \in Y_{k-1}$ such that

$$(4) \qquad |\bigcap_{j=1}^{k-1} N_G(\{y_j\}) \cap X \cap N_G(\{y\})| < (1-\beta)|\bigcap_{j=1}^{k-1} N_G(\{y_j\}) \cap X|.$$

Set $y_k := y$, $Y_k := Y_{k-1} \setminus \{y_k\}$. Notice that (4) implies the validity of (1) for j = k. Because of (3), we have

$$(5) |N_G(\{x\}) \cap Y_k| = |N_G(\{x\}) \cap Y_{k-1}| - 1 < (1-\beta)|Y_{k-1}| - 1 < < (1-\beta)|Y_k|$$

for every $x \in \bigcap_{j=1}^{k} N_G(\{y_j\}) \cap X$. To to Step k+1, knowing that for that Step inequality (3) holds, since now (5) holds. END.

Thus, on completion of Procedure 2 the vertices of Y_0 will be numbered properly. But, according to (2), $N_{\overline{G}}(Y_0) \supset X$. Thus, the vertices of $Y \setminus Y_0$ we can number by $|Y_0| + 1, \ldots, |Y|$ in an arbitrary order.

Remark. Evidently, a polynomial time via |X| + |Y| is sufficient for numbering X or Y.

References

- [1] ERDÖS, P. and HAJNAL, A.: Ramsey type theorems, Preprint, 1987.
- [2] ERDÖS, P.; FAUDREE, R.; GYÁRFÁS, A. and SCHELP, R.H.: Domination in colored complete graphs, *Journal of Graph Theory* (to appear).