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In this paper, we discuss finite undirected simple graphs. For any
undefined term see [2] and [10]. For a graph G, we denote by V(G)
and E(G) the vertex set and edge set of G, respectively. For v € V(G),
let Ng(v) be the set of vertices (neighbours) adjacent to v in G and,
more generally, Ng(S) = |J,cs No(v) and Ng(S8) = Ng(S) U S for
S CV(G). f X C V(G), then [X] (resp., G — X) denotes the subgraph
of G induced by X (resp., V(G) — X). We write G — z instead of
G—{z}ifz € V(G).

The vertex v of G is an end vertex of G if dg(v) = 1, where
dg(z) = |Ng(z)| is the degree of z € V(). An edge incident with an
end vertex of G is called an end edge of G. For a graph G, let (G)
(Ee(G), resp.) be the set of end vertices (end edges, resp.) of G. A
vertex v of a connected graph G is called a cut vertex of G if G — v
contains more components than G. Let C(G) be the set of cut vertices
of G. For v € V(G), let NCg(v) = Ng(v) — C(G). A connected graph
with no cut vertices is called a block. A block of a graph G is a subgraph
of G which is itself a block and which is maximal with respect to that
property. A graph G is called a block graph if every block of G is a
complete graph. In this paper, we define an exterior block of 2 graph G
as a block containing at least one non-cut vertex of G. For a graph G,
the corona G o K; of G and K, is the supergraph of G obtained from
G by adding, for every vertex z of GG, exactly one new vertex adjacent
to = only. Note that a graph H is the corona of some graph G and K,
if and only if E.(H) is a perfect matching of H.

A set D C V(@) is a dominating set of G if Ng(v)ND # 0 for every
v € V(@) ~— D, and is an independent set of G if Ng(v)ND = { for every
v € D. Let i(G) and a(G) (7(G) and I'(G), resp.) denote the minimum
and maximum cardinalities of a maximal independent set (a minimal
dominating set, resp.) in G. A graph G is said to be well covered if
every maximal independent set in G is a maximum independent set. A
graph G is said to be well dominated [7] if every minimal dominating
set in (G is a minimum dominating set. Equivalently, G is a well covered
(dominated, resp.) graph if i(G) = a(G) (7(G) = I'(G), resp.).

Well covered graphs were introduced by Plummer in 1970 [11].
Until now, however, only a few classes of well covered graphs have
been characterized. For example, Ravindra [12] gave a characteriza-
tion of well covered bipartite graphs. Recently Finbow, Hartnell, and
Nowakowski in [7], [8], and [9] have completely described well covered
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and well dominated graphs of girth at least 5, well dominated bipartite
graphs, and well covered graphs containing neither a cycle Cy nor a
cycle C5 as a subgraph. For related results the reader is referred to [1],
[3-6], and [13-15]. In this paper, it is shown that for a block graph G
one of the four equations y(G) = a(@), 7(G) = I'(G), i(G) = aG),
i(G) = I'(G) holds if and only if the other three hold. Structural
characterizations of well covered and well dominated block graphs are
given. Similar results for unicyclic graphs are presented.

In the sequel, we will need the following simple results and obser-
vations.

Proposition 1. For any graph G,
2(G) <i(G) < a(G) <T(G).

Proof. It follows at once from the simple observation that every ma-
ximal independent set in G is a minimal dominating set in G. ¢

This proposition implies that every well dominated graph is well
covered. The converse implication is not necessarily true (see, for ex-
ample, Theorems 2 and 3 below). The next proposition implies that the
corona of any graph G (and K;) is a well dominated graph. Theorem
1, among other things, proves that every well covered block graph is
well dominated.

Proposition 2. For any graph G,
(G0 K1) = i(G 0 K1) = a(G 0 K1) = T(G 0 K3) = [V(G)|.

Proof. After Proposition 1, it is enough to show that every minimal
dominating set in G o K; has exactly |V(G)| vertices. Let D be a
minimal dominating set in G o K;. For a vertex z € V(G), let T be
the only neighbour of z in Q(G o K;). It is clear from the definition
of G o K; that the sets {z,z}, ¢ € V(G), form a disjoint partition of
V(G o K;). Therefore the minimality of D implies that |[DN{z,z}| =1
for every ¢ € V(G). Hence |D| = |V(G)|. ¢

Proposition 3. [2]. An independent set I of a graph G is mazimum
if and only if
INa(J)NI| 2 |J]|
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for every independent subset J of V(G)-1. ¢

Corollary 1. Every vertez of a well covered block graph G belongs to
at most one exterior block of G.

Proof. Suppose, to the contrary, that a vertex v belongs to at least two
exterior blocks of @, say B; and B,. Let I be a maximal independent
set which contains v, and let v; € V(B;) — C(G) for i = 1,2. Then
|Na({vi,v2}) N I| = [{v}| < [{v1,v2}] and therefore, by Proposition 3,
I is not a maximum independent set in G which is impossible in a well
covered graph. <

Corollary 2. Let v be a cut vertez in a well covered block graph G. If
the set NCg(v) is not empty, then every two vertices of NCg(v) are
adjacent. :

Proof. Suppose, to the contrary, that two vertices v1 and v of NCg(v)
are not adjacent. Then they belong to different exterior blocks of G,
say B; and B,. Clearly, v belongs to B; and B, which (according to
Corollary 1) is impossible in a well covered graph. ¢

Proposition 4. If G is a well covered graph and I is an independent
set in G, then G — N(I) is well covered.

Proof. Immediate by contradiction. ¢

J Now we are prepared to give characterizations of well covered and
well dominated block graphs.

Theorem 1. For a block graph G, the following statements are equi-
valent:

(1) 7(G) =T(@);

(il) 7(G) = o(G);

(iii) i(G) = «(G);

(iv) i(G) = I(G);

(v) The vertez sets V(G,),.. - V(G¥) of the exterior blocks of G form
a disjoint partition of V(Q); '

(vi) The induced subgraph [NCg(v)] of G is nonempty and complete
every cut vertez v of G. '
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Proof. The implications (i) = (i), (ii) = (iii), (i) = (iv), and (iv) =
= (iii) follow at once from Proposition 1. We will show the implications
(iii) = (v), (v) = (i), (v) = (vi), and (vi) = (v).

(iii) = (v). Suppose that the implication (iii) = (v) is false and
let G be a well covered block graph with minimum number of vertices
in which the vertex sets V(G4),...,V(G4) of the exterior blocks of G
do not form a disjoint partition of V(@). According to Corollary 1, the
sets V(G1),...,V(Gy) are mutually disjoint. The choice of ¢ implies
that G is connected and its diameter d is greater than three. Let P —
= (vo,v1,...,v4) be any longest path without triangular chords in G,
and let B; be that block of G which contains the vertices vi—1 and v;
of P(i = 1,...,d). From Corollary 1 and the choice of P it follows
that the blocks Bi,..., By are different, {v1,...,v4-1} C C(@), B,
is an exterior block of G, and B; and B, are the only blocks of G
which contain the vertex v;. In addition, the choice of G' makes it
obvious that v; and v, are the only vertices of B;. Let us consider the
connected block graph H = G — Ng(vs) = G — V(B:). Since H is well
covered (by Proposition 4) and has fewer vertices than G, the vertex
sets V(H1),...,V(H;) of the exterior blocks Hy,...,H; of H form a
disjoint partition of V(H).

We now claim that v, is not a cut vertex of H. For if not, then
By, Hy,...,Hj are the exterior blocks of G and their vertex sets V(B,),
V(H,y),...,V(H;) form a disjoint partition of V(G), a contradiction.
This implies the desired claim. In a similar manner, we find that every
vertex of B3 — v, is a cut vertex of H. From the above it follows that
Bj is one of the exterior blocks of H, say By = H,, and Bj is not an
exterior block of G. Hence By, Hy,... ,Hj_1 are the exterior blocks of
G and the sets V(B,), V(H,),..., V(Hj-1) form a disjoint partition of
V(G) — V(Bj3).

We now show that the graph G has maximal independent sets of
~ different cardinalities. Take exactly one vertex u; from the set V(H;)-
—C(H) (i =1,...,1). From the properties of the blocks B,,H,,...,H,
it follows that u; = vy and I = {vo,v2,u1,...,4;_1} is a maximal inde-
pendent set in G. On the other hand, let V(Bs) — {v2} =A{=1,...,2,}.
Since Bj; is an exterior block of H and each z; is a cut vertex of H,
there exists a nonexterior block F; of H that contains zi(i=1,...,p).
Let z; be any vertex of F; — z; and let H j: be the exterior block of
H that contains z;(1 = 1,..., p). Without loss of generality, we may




60 J. Topp, L. Volkmann

assume that {i1,...,i,} = {1,...,p}. It is not hard to observe that
the set I' = {vi,21,...,2p,Upt1,.-.,%l—1} is & maximal independent
set in G. (The graph in Figur 1 illustrates these constructions.) Since
|I'| # |I|, G is not a well covered graph, a contradiction. This proves
the implication (iii) = (v).

(v) = (i). Assume that (v) holds. Since V(G;) — C(G) # 0, we
may choose exactly one vertex z; from the set V(G;)—C(G) (i=
=1,...,k) and form the set D = {&1,...,2;}. (v) implies that D is a
dominating set in G. We claim that 4(G) = |D| = k. Suppose, to the
contrary, that there exists a dominating set D; in G such that |D;| < k.
Then it follows from (v) that D; NV(G;,) = 0 for some iy € {1,...,k},
which implies that 2;, € D; and Ng(zi,) N D1 =0 (since Ng(wi,) C
C V(Gi,)), a contradiction. This proves that v(G) = k. Similarly, we
claim that T'(G) = |D| = k. Suppose indirectly that there is a minimal
dominating set Do in G such that |[Dz| > k. Then (v) implies that |[DaN
V(G;,)| > 2 for some j; € {1,...,k} and, in addition, D, N V(G;) # 0
for each 1 € {1,...,k}. Let v be any vertex of D; N V(Gj,), and let
D, = D, — {v}. Clearly, D} is a dominating set in G and contains
one vertex less than D, which is impossible since D, was a minimal
dominating set in G. Therefore ['(G) = k. Consequently v(G) = I'(G).

(v) = (vi). Assume that (v) holds and let v be a cut vertex of
G. By (v), the vertex v belongs to V(G;) for some i € {1,...,k}.
Since the set V(G;) — C(G@) is nonempty and v is adjacent to every
vertex of V(G;) — C(G), the set NCg(v) is nonempty. Hence, the
subgraph [NCg(v)] is nonempty and complete (by Corollary 2 and the
equivalence of (v) and (iii)).

(vi) = (v). Assume that (vi) holds. First let us observe that
the sets V(G1),...,V(G) are disjoint. For if not, then there exist
i,5 € {1,...,k}, 1 # j, and a vertex v such that v € V(G;) N V(G;).
Certainly, v is a cut vertex of G and since the sets NCg(v) N V(G;),
NCg(v)NV(G;) are nonempty, the subgraph [NCg(v)] is not complete.
This contradicts our assumption. Hence, the sets V(G;),...,V(Gy) are
disjoint and it remains to show that V(G) = Ule V(G;). To prove this
it is sufficient to show that C(G) C Ule V(G:), since Uf’:l V(Gi) C
V(@) and V(@)-C(G) C Ule V(G;) from the definition of the graphs
Gi,...,Gg. It follows from (vi) that for every v € C(G), [NCq(v)] is
a subgraph of exactly one of the graphs G1,...,Gk. This implies that
every v € C(G) belongs to exactly one of the graphs Gy,...,G and
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therefore C(G) C Uf=1 V(G;). This proves the implication (vi) = (v)
and completes the proof of the theorem. ¢

B,

Ve =1Us

Figure 1

From Theorem 1 we can immediately deduce the following corol-
lary for trees.

Corollary 3. For a tree T, each of the statements (i) — (vi) of Theorem
1 is equivalent to the statement

(vii) T = K; or T = Ro K, for some tree R. {

‘Theorem 1 and Proposition 1 imply that for a block graph G, each
of the equations v(G) = I'(G), 7(G) = a(G), i(G) = a(G), i(G) = I'G)
implies each of the equations v(G) = i(G) and a(G) = I'(G@). The
converse is not true. This can be seen with iae aid of the graph K; 2

The final section of this paper is devoted to characterizations of
well dominated and well convered unicyclic graphs. Let us recall that
a unicyclic graph is a connected graph with exactly one cycle. Let I
denote the set of all unicyclic graphs. For G € U, we denote by Cg
the unique cycle of G, and by g(G) the length of Cg, i.e., g(@) is the
girth-of G. Let KU be the subfamily of &, where G € KU if and only if
G = HoK; for some H € Y. In what follows, it is helpful to note that a
graph G belongs to the set KU if and only if G is a unicyclic graph and
the sets of the family {{v,u} : vu € E.(G)} form a disjoint partition
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of the set V(G). Similarly we define the subfamilies S3,Ss, and S5 of
U. A graph G is in the family of S5 if G is a unicyclic graph of girth
3 in which the unique cycle Cg has 1 or 2 vertices of degree three or
more and the sets of the family {V(Cg)} U {{v,u} : vu € E.(G)} form
a disjoint partition of the set V(G). A graph G is in the family S if
G is a unicyclic graph of girth 4, the unique cycle Cg of G contains
exactly two adjacent vertices of degree two (in G), say a and b, and the
set {ab} U E.(G) is a perfect matching of G. Finally, a graph G is in
the family S; if G is a unicyclic graph of girth 5, the unique cycle Cg of
G does not contain two adjacent vertices of degree three or more, and
the sets of the family {V(Cg)} U {{v,u} : vu € E.(G)} form a disjoint
partition of the set V(G). (The graphs G3,Gj3, and G4 in Figure 2
belong to S, S4, and Ss, respectively.)

P P L Do

Figure 2
Proposition 5. For any G € 83, 7(G) = T'(G).

Proof. Since every graph G in Sy is a block graph in which the unique
cycle Cg = Cs of G and the subgraphs generated by the end edges
of G are the exterior blocks of G and their vertex sets form a disjoint
partition of V(G), the result follows from Theorem 1. ¢

Proposition 8. For any G € Sy, Y(G) = |E.(G)| and i(G) = a(G) =
—T(G) = |E(G)] +1.

Proof. For G € 8, let Cg be the unique cycle of G, and let a and b
be the adjacent vertices of degree two (in G). Let D be any minimal

dominating set in G. It follows from the minimality of D that |Dn
N{v,u}| = 1 for each vu € E.(G) and |DN{a,b}| < 1. Therefore, since
the sets of the family {{a,b}} U {{v,u} : vu € E.(G)} form a disjoint
partition of V(G), |E.(G)| £ v(G) < |D| £ I(G) < |E,(G)| + 1. From
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this and from the fact that the sets Ng(Q(G)) (of cardinality |E.(G)I)
and Q(G) U {a} (of cardinality |E.(G)| + 1) are minimal dominating
sets in G, we obtain'y(G) = |E.(G)| and I'(G) = |E.(G)| + 1. Similar
analysis shows that every maximal independent set of G has exactly

|E.(G)| + 1 vertices. Thus, i(G) = a(G) = |E(G)| +1. ¢
Proposition 7. For any G € S5, 7(G) = I'(G) = |E.(G)| + 2.

Proof. For G € S5, let Cg be the unique cycle of G, and let D be any
minimal dominating set in G. We need only - observe that |D|=
= |E.(G)| + 2. Because the sets of the family {V(Cq)}U{{v,u} : vu €
€ E.(@)} form a disjoint partition of V(G) and Dis a minimal domina-
ting set in G, we find |D| = |DNV(Ca)|+ Zyuck.(a)| D N{v,u}| = [DN
NV(Ce)| + |E.(G)|. Simple observations show that |[D N V(Cg)| = 2,
and so, |D| = |E.(G)| + 2, as required. ¢

Proposition 8. Let G be a unicyclic graph with g(G) > 5. Then the
following statements are equivalent:

(i) (G)=T(G);
(i) (G)=«(G);
(i) (G) =T(G);
(iv) i(G) = o(G);
(v) GE{Cs,Cr}USsU{HoK,:HeU and g(H) > 5}.

Proof. The implications (i) = (i1), (i) = (i), (ii) = (iv) and
(ili) = (iv) immediately follow from Proposition 1. The implication
(v) = (i) is obvious if G € {C5s,C+} and follows from Propositions 7
and 2if G € Ss U{H o K, : H € U with g(H) > 5}. Finally, it is a
simple matter to obtain the implication (iv) = (v) from [8, Corollary
4] (see also [7]). ¢

Theorem 2. For a unicyclic graph G, the followiﬁg statements are
equivalent: '

@ (6 =T(E)
(i) (G) = a(G);
(111) GE{C3,C4505,C7}U’CUUS3U85.
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Proof. The implication (i) = (ii) follows from Proposition 1. The
equivalence of (ii) and (iii) has been proved in [15]. By Propositions 2,
5 and 7, the implication (iii) = (i) is true for every graph GE¢€
€ KU U Ss U S5. Finally, it is straightforward to verify that the cycles
Cs, C4, Cs and C7 are well dominated. ¢

As a consequence of Theorem 2 and Proposition 1 we see that for
a unicyclic graph G, each of the equations v(G) = i(G), i(G) = a(G),
i(G) =I'(G), a(G) =T(QG) follow from each of the equations v(G) =
=I'G) and 4(G) = a(G). The graphs G; and Gy (shown in Figure 2)
prove that the converse is not necessarily true.

The next theorem presents necessary and sufficient conditions for
a unicyclic graph to be well covered. The proof is based on the following
proposition.

Proposition 9 [12]. A bipartite graph G without isolated vertices is
well covered if and only if G has a perfect matching M and, for every
edge vu € M, the subgraph induced by the set Ng({v,u}) is a complete
bipartite graph. ¢

Theorem 3. For a unicyclic graph G, the following statements are
equivalent:

(i) i(G)=T(G);
i) i(G)=a(G);
(i) G €{Cs,Cs,Cs,Cry UKUUSs US4 U Ss.

Proof. The implications (i) = (ii) and (iii) = (i) easily follow from
Theorem 2 and Propositions 1 and 6. Thus it remains to prove the
implication (ii) = (iii).

Assume that G is a unicyclic graph and 1(G) = a(G) Let Cg be
the unique cycle of G, and let E.(G) be the set of end edges of G. We
split the proof into three parts, based on the girth g(G@) of G.

Case 1. If g(G) > 5, then G € {C5,C7} U S5 U KU (by Proposition 8).
Case 2. Assume that g(G) = 4. Then G is bipartite and therefore by
Proposition 9, G has a perfect matching M such that for every edge
vu € M, the subgraph induced by Ng({v,u}) is a complete bipartite
graph. We will show that either G = C4 of G € KU U S,;. In order
to prove this, let us assume that G # Cy4. It is clear that E.(G) C M
and, in addition, G € KU if (and only if) M = E.(G). Thus assume
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that M # E.(G). We claim that M C E(Cg)U E.(G). For if not, then
M — (E(Cg)UE.(G)) # 0 and for any edge vueM — (E(Cg)V
UE.(G)), the sets Ng(v) — {u} and Ng(u) — {v} are not empty and
no vertex of Ng(v) — {u} is adjacent to a vertex of Ng(u) — {v}, so
[Ng({v,u})] is not a complete bipartite graph, a contradiction. We
therefore henceforth suppose that M C E(Cg) U E.(G) and M N
E(Cg) # 0. Certainly, |M N E(Cg)| = 1; otherwise |M N E(Cg)| = 2,
say M N.E(Cg) = {zy,wz}, and then, since G # Cs, at least one of
the subgraphs [Ng({z,y})] and [Ng({w, z})] is not a complete bipar-
tite graph, a contradiction. Let vu be the only edge of M N E(Cg).
Then M = {vu} U E.(G) and, moreover, [Ng(v)| = |[Ng(u)| = 2; oth-
erwise |[Ng(v)| > 3 or [Ng(u)| > 3 and then [Ng({v,u})] would not be
a complete bipartite graph, a contradiction. This implies that G € Ss.
Case 3. If g(G) = 3, then G is a well covered block graph. We will
show that either G = Cs or G € KU U Ss. Assume that G # Cs, and
let Gy,...,Gk be the exterior blocks of G. By Theorem 1, the vertex
sets V(G1),...,V(Gy) form a disjoint partition of V(G). If Cg is one
of the blocks Gy,...,G%, say Cg = G1, then {V(Gi),...,V(Gi)} =
= {V(Cg)} U {{v,u} : vu € E.(G)} and G € Ss. If Cg is not an
exterior block of G, then {V(G,),...,V(Gi)} = {{v,u} : vu € E.(G)}
and G € KU. This proves the implication (ii) = (iii) and completes
the proof of the theorem. ¢

In conclusion, let us note the according to Theorems 2 and 3, the
well covered unicyclic graphs which are not well dominated are precisely
those which belong to the family Sy.
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