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Abstract: Since the days of Gauss it has been known that continued fraction
algorithm admits an invariant measure. Its density may be written in the
form p(:l:) = f(l + :cf)_zdf. The aim of this paper is to give an explicit
expression for the density of 2-dimensional Jacobi-Perron algorithm. The
result is given as p(z,y) = ff(l +f(£,17):c +g(f, n)y)_xdn(f,n) where
the functions f and g are given by a limiting processs and & is a singular

measure.

0. Introduction

The Jacobi-Perron algorithm was introduced by C. G. Jacobi 1868
and later generalized by O. Perron 1907. The main point was the
attempt to extend Lagrange’s theorem to algebraic numbers of higher
degree, namely to characterize algebraic numbers by the periodicity of
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the algorithm. In spite of several efforts the problem still waits for its
solution (see L. Bernstein 1971, Bouhamza 1984).

The ergodic theory for the Jacobi-Perron algorithm was devel-
opped along the lines already known for continued fractions (Schweiger
1973). For continued fractions the density of the (up to a constant fac-
tor) unique invariant measure which is equivalent to Lebesgue measure
has been known implicitly since the days of Gauss:

(0.1) o) = 1o
Let
(0.2) Te = % -]

be the map associated with continued fractions then for any measurable

[ st = [ o

T-E E

The associated transfer operator is given by

(0.3) (Ag)(=) =) ¥ [ k jlu z ] (k —::v)z'

The invariant density p then is characterized by the property Ap = p.

For the Jacobi-Perron algorithm it can be shown that there exists
a finite invariant measure g which is equivalent to Lebesgue measure
but no explicit expression comparable with (0.1) has been known. The
paper aims to give an explicit expression which is however more compli-
cated. Our approach will explain why this is to be expected. In order

to illustrate the basic ideas more clearly we restrict the discussion to
the case n = 2 but the arguments are valid in the general case.
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1. A heuristic approach

We first consider continued fractions (see Khintchine 1963)‘. Given
a sequence (kq,kz,...,ky) of digits we define p, and g, by

{Pn—1 Pn] ﬁ [0 1]
gn—-1 94n j=1 1 kJ

Then
(A"1)(2) = ) (g + n12) " =
(n)
- ;2 [1 + dn—1 ] h
(=) on
Here the sum runs over all admissible sequences (k;, kz,...,k,). Next

we define a seqence of measures (v,), n > 1, by

wal) = Y a2 .

(n) n

If v =lim v, exists, then

n— o0

/ =

should be the density of an invariant measure.
It is well known that

=t = [knakn—la cee akl]'
qn

We introduce K; :=k,41-;, 1 < j < n, and we define sequences (P,),
(@Qn),n=1,2,... by

IR

Qn——l Qn Jj=1 1 Kj
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Then gn—1 = P, and g, = Q. We define

P, dn-1

fni= 6_2: T gn
and for £ = [K1, K3,.. ]

fa(€) == fn

in an obvious manner. Then lim fn(€) = €. The measure v, may be

written as
(@) = 3 Q72 (f2)-
(n)

Since fn € B(Ki,-..,Kn), the cylinder determined by the digits
Ki,...,K,, it looks like a Riemann sum.
In fact one can prove

dA
log 2

dv =

where X denotes Lebesgue measure.
Now we consider the Jacobi-Perron algorithm for n = 2. The associated
map is given by

1
T(Z,y): [y‘_ah;"bl] )

z

a=ay)=[Y, b=by)= H .

z T

If a;(z,y) = a1(T7Y(=z,y)), bj(z,y) = by(T771(z,y)) then this se-

quence of digits is subject to the following conditions:

(11) 1 S bj, 0 S aj S bj;

(1.2) if a;=0b;, then 1<ajy.
Similarly one defines p,,, 7, gn by

Pn—2 Pn—-1 Pn n 0 0 1
(1.3) Tpez2 Tpe1 Tn | : = H 1 0 a;f.
j=1 0 1 bj

dn—-2 9n—-1 9Yn J
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Then
lim [&, 1.1] = (z,y).

B —r OO qn qn

We put

B ={(2,9): 0<z <y <1},
By :={(z,9):0<y<z<1}.

Then the transfer operator A is given by

(A¢)(m,y)=fj§bj¢[ i) s on By

’ 3
(1.4) b=1a=0 bty b+y) (b+y)
oo b—1
1 atz 1
(Ap)(z,y) b§=1:a§=0:¢ b+y' bty ) (b+y) on D2
Therefore

(1.5)  (A"1)(2,9) = ) (gn + Gn1y + gn2z) * =
(n)

-3
S (1 ety ) 7
(=) o I

Here the sum runs over all admissible sequences (a;,b;), 1 <j <n and
depends on (z,y). Again p(z,y) is the density of an invariant measure if
and only if p satisfies Kuzmin’s equation Ap = p. We define a sequence
of measure (v,,), n > 1 by

— -3 gn—-1 9n-—2
(16) ) =30 p (L2 2]

If again v := lim v, exists then

o= | ] el
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(where the domain of integration depends on (z,y)) should be the den-
sity of an invariant measure. To understand the following construction
we note that

-1
dn—1 — [bn +a, dn—2 + drn—3 ] :
dn . dn—1 dn—1

—1
gn—-2 Qn 2 [b +a " -2 + Qn—-3] .
n qn. 1 n—1 n—1

(L.7)

2. The basic construction

We now introduce a modified Jacobi-Perron algorithm. Actually
it is a change in notation only.

S(,n) == [_—B1+A17 i Bl] )

B, = Bi(§,n) == E‘] , A1 =A1(¢m) = B1 — [g] ,

Bj(é,m) := Bu(S77(&,m),  Aj(€&m) = Au(S7TH(Em)).
Then this sequence of digits is subject to the following conditions:

(2.1) 1<B;, 0<A4;<Bj;

(2.2) if 4; =0, then Aji1 < Bjyi.

The most important fact is the following observation:

Define (4;,B;) := (@nt1-j,bnt1-j)y 1 < j < n, then the sequence
(a;,b;), 1 < j < m, is admissible for T if and only if the sequence
(4;,B;), 1 < j < n, is admissible for S, in short: § is a dual or
backward algorithm for T (see Schweiger 1979, Ito 1986). Similarly to
(1.3) we define P, Ry, Qn by

P,y P, Pn n (0 0 1
(2.3) Rn.—2 R, = I] |1 0 B;j—4;
Qn—2 Q-n.-—-l Qn ji=1 0 1 Bj
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Again the property

i (grg:) =n

holds. Note that
5(6,177') = (6’77)

is equivalent to

1 B1—-A1+£]

€,n") = [B+n’ Bra

for appropriate A; and B;.
Next we define sequences ajn, Bjn, 0 < 7 < 2, n > 1 by the matrix

relation
0 1 0
1 ]
0 A B;

If (an+1_j,bn+1_j) = (An,Bn), 1 S ] S n, then

-1

i=1

1 n-1 ﬁln aln.
(2.4) ayn_1 Pan

Qg,n—1 ,B(Jn aO'n,

(25) n—2 = Qin, {Gn-1 =025y, Qqn = Ogn.

Note that v, may be rewritten as

(26) OB B

Qon Qon
(n)

Here the sum runs over all admissible sequences (4;,B;),1<j <n,
or over all admissiable sequences (A4;,B;), 1 < j < n, with the initial
condition 4; < Bj.

If &jn,ﬁjn, 0<37<2,n>1, are given by

A1,n-1 Pin Qin n 1 0
a3 n—-1 Ban Oan = H 0 1 ’
Ogn-1 Pon &on j=2 AJ B;
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then

(2.7) Qon aon Qon

%in _ O2n [BI+A1§2—"+ﬁ]

-
aon Qon Qon Con

-1
g?_’l [BI+A19;3.’1+222] ,
a

The relation (2.7) reflects (1.7).
For any finite admissible sequence (4;,B;), 1 < j < n, we define

(25) ai
fn = _’la = =

n +—
Qon ’ Qon

If (€,7) = ((4;,Bj), 7 > 1) is the expansmn of (¢,n) into an infinite
Jacobi-Perron a.lgonthm we define

fn(fﬁl) fm gn(ﬁ,n) = Gn
in the obvious way. Then we can prove the following:

Lemma 1. The following hmzt ezists:

Lim (fa(€,7),9a(&m)) =: (£(€,7),9(£;m))-

Proof. We follow an idea of R.Fischer 1972. Put =, := (fn,gn)-
Then
Tnt1 = KnTn + AnTn_1 + fnTn—2

where the weights are given by

K, = B'n.+1a0n
Bnii0on + Apagn_1 + 0on—2
An — Anao,n—l
Bpii10on + Anagn_1 + 0on-2
_ ag,n—2
Hin = Bptiaon + Anogn_1 + con—2 )

Therefore 7,1 lies in the triangle spanned by 7,_5, 7,1 and 7,,. Since
Qgn = Bpagn-1 + Po,n-1 clearly k, > %. Similarly

1 ! !
Tnt2 = KT + Aan7r'n.—-1 + PpTn—2-
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Here k!, = kpknt1 > %.
Put §(n) := max(||mn — mn-a||, |0 — Tn—2l, ||ma—1 — 7n—2]l).
The function §(n) is decreasing. We see

||7n = Tnga | < (1 — kq)8(n),

lmnts — Fng2ll < (1 = Kny1)b(n + 1),
1T — Tnga|| < (1 = &3,)8(n).

Hence §(n + 2) < $6(n).

Lemma 2. If
ron 1 B-A+¢
@,n%—[B+n, o ]
then
(2.8) f(&,n') = (B+ Af(&m) + g(¢,m)) 71,

9(&' ') = f(&n)(B + Af(&,m) + 9(é,m)) .

Proof. This follows immediately from (2.7).

Remark. The functions f and g are not continuous and not injective.
In the case of continued fractions the corresponding function reduces to

the identity f(€) = €.

With the help of the functions f and g we now define the sequence of
measures (k,) on B* by

() = [ B(FE),9nl€ 1) dmnlEs)

and the measure k on B* by

o) = [ B(F(€m)al€,m)an(é,n)

(if the limit measure exists).
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Lemma 3. Ifv ='1‘i_1£° vy, ezists then

de(€,1)

(2.9) dr(¢',') = (B + Af(&,m) +9(¢,7m))%

Proof. This again follows from

- P -~
Qon = B1ao1~. + A1a2n + ain-

Remark. If the map (¢&,7) — (f(€,m), g(§,7)) 1s absolutely continuous
then it is easily seen that ~

e, = D3 dn

has the transformation property (2.9).

3. The invariant measure

The heuristic considerations in section 1 now suggest:

Theorem 1. The density of the invariant measure i s given as follows:

[ dsem)
p(z,y)—l/ (1 + f(&my + g(&,m)=)? for(z,9) € Bu,

p@ﬂy=[/ dr(€,m) for (2,9) € Bs.
B}

(1 + f(& )y + g(é,m)z)

Here

Bf ={(&m):0<é < <1},
By ={(¢,m):0<n<¢< 1}
B* = B UB;.
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Proof. Remember that

B*(a, b) = {(f,ﬂ) : Al(fﬂ?) =a, Bl(fa”’) = b}'

Then

= U B*(a,b),

b=1 a=0
= U B*(b,b),
b=1

SB*(a,b) =B* if a>1,
SB*(0,b) =

The following identity is basic:

(1 +f(£,n) +g(€,17) )3 (y+0)° =

_ y 2f(¢m) *
B [1 bt af@n) ToEm b+ af(é,m)+ 9(&m) ]

(b + a‘f(£7"7) + 9(5,77))3-
Therefore we obtain (by use of relation (2.9))

// dr(€,m) _
)L+ fEmTE + 9 g)® (v +0)°

de(¢',7'") :
// (14 f(&n" )y + g(€',7')z)? foaxl

and

// dr(€,n) _
(1 + f(&n) 5 +9(&m) 75 (v + b)°

-] an(g', ') |
1+ F(&7" )y +9(¢',7')z)®
B*(0,b)
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Since

U UB (a,b) U GB*(o,b‘),’ A‘
- b -

= UB*(a,b) U UB* (0,8),

b=1 a=1

a comparison with (1.4) shows that p satis_ﬁes Kuzmin’s equation Ap =

Remark. The map

(v _ 1_ 1 b-—a+€]
5(93,%5,77)— [:B a"m b’b+f17’ . b+£

can be seen as the natural extension of T (see Ito 1986 Bosma-Jager-

-Wiedijk 1983). The measure

dz dy dx(é,n) .
(1+ F(&m)y +9(€m)e)®

is invariant with respect to €.

4. « is singular

As before we denote by u the invariant absolutely continuous pro-
bability measure for the map T. We introduce a new set function 7 as
follows: o ‘

7(B((a1,b1),--1(an,ba))) = [.L(B_((bn —ap,b,),. .., (b1 —aq,b1))).

Then it is checked easily that 7 is in fact an invariant measure for T'.
Furthermore 7 also is an ergodic measure. Therefore 7 = p or 7 and u
are mutually singular. We will prove that 7 = p is impossible.

Theorem 2. The measure T is singular with respect to p.
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Proof. Suppose the contrary, namely 7 = p. This means

p(B((a1,b1),...,(an,bn)) = p(B((bn — @nybn),. .., (b1 — ay,b1)))

for all admissible sequences.
It is well known that there is a constant D > 1 such that

D7gq;® < p(B((a1,b1),--.,(an,bn))) < Dgz*

and hence

D_IQ;:S < /‘(B((bn _anabn)1---7(bl - alabl))) S DQ;S
If in fact g = 7 we obtain
3
(4.1) D% < (%] < D%

But this is impossible. It is sufficient to take (aj,b;) =(0,1),1 <j<mn.
Then
ga ~a™ and Q, ~ A"

where a is the greatest root of 3 — 22 — 1 = 0 and f is the greatest
root of z* —2? — 2 —1=10. Then 1 < a < 3 and (4.1) cannot be true.

Remark. However the corresponding entropies coincide:
h(p,T) = h(r,T).
Corollary.

lim Gn =0 for almost all  (£,7) € B*.

n— oo aon

Proof. Since 7 is singular with respect to p the martingale convergence
theorem shows that

lim 7(B((a1,b1);. . ,(@n,bn))  lim [ gn ]3 —0

~~= u(B((a1,b1),...,(an,bp)) === -Q—"
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for (Lebesgue) almost all (z,y) € B. Therefore by symmetry we obtain

lim [gﬁ]s=0

n—> oo qn

for (Lebesgue) almost all (¢,7) € B*.
Finally note that ag, = gy,.

Remark. In the case of continued fractions it is well known that @, =
= ¢n. Therefore p(B(ky,...,kn))) = u(B(kn,...,k1))) for all admissi-

ble sequences.

Lemma. The limits v = lim v, resp. k = lim k, ezist.
N~ OO0

A — 00

Proof. It is sufficient to show that

lim v,(¢) =:v(¢)

n— oo

exists for any function 1 which is Lipschitz continuous on B*.

The map ®(¢,7) := (f(&,7), g(§,7m)) does not satisfy a Lipschitz con-
dition generally, but it satisfies an appropriate condition on cylinders.
The proof of lemma 1 shows that if

(6m), (6517) € B* (41, Br), .., (An, Bn)))

then
|8(&,7) — (€%, 77)|| << 6(n)

hence

[¥(2(&,m)) — $(B(E", NI << §(n).

An examination of the proof of Kuzmin’s theorem for J acobi-Perron
algorithm shows that the Lipschitz condition is used on cylinders only
(Schweiger - Waterman 1973). Therefore

Z¢ [q, [pn + Pn—1Y + Prn—2Z Tn +Tn_1y + Tn_2z ] ] _
() gn + @n—-1Y + gn—22% ’ n + qn-1Y + @n—-2Y

1 .
(qn + gn-1y + q-n.—zz)

— p(z,y)c(¥) as n — oo.
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Q[pn Tn.] _ [az'n aln]

- V=17 1"

dn qn Qon Ogn

Since the summation Y depends on (z,y) € B; resp. (z,y) € Bz we

(n)
take im  with (z,y) € By resp. 1)111%0

(=,)—+(0,0)

Note that

[+]

) with (z,y) € Bs.

If we write L; for the first limit and L, for the second limit then we
obtain as n — oo

Yo (22,22) =5 o Loy)

’
44 o a
(n) 0on on on

if the sum runs over all admissible sequences ((41,B1),...,(An,Bn))

and S [azn a1n] 13 — Ly c(¥)

b
[24 o (84

if the sum runs over all admissible sequences ((41, B1),...,(An,Bn))
with the additional condition 4; < B;.

Theorem 3. The limit measure k is singular with respect to Lebesgue
measure on B*.

Proof. Since

A(B*((AlvBl)v AR (An’B'n))) ~ Qy—;s,

this follows at once from Theorem 2 (applied to the measure 7 trans-
posed to §) or its Corollary.

Remark. Since € maps the set B((a1,b1),...,(@n,bs)) x B* onto
BxB*((bp—an,bpn),-..,(b1—a1,b1))) (if an < b,), well known theorems
from ergodic theory (see Friedman 1970) show that ¢ does not admit a
finite invariant measure equivalent to Lebesgue measure on B x B*.
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