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Abstract: An algorithm is provided in order to decide whether a given
phenotype system is a factor-union system and to construct a corresponding

factor-union representation (if such a representation exists).

Factor-union phenotype systems were introduced by Cotterman
(cf. [1]). A characterization of such systems was given in [2]. In [4]
Markowsky provided an algorithm in order to decide whether a given
phenotype system is a factor-union system and to construct a corre-
sponding factor-union representation (if such a representation exists).
The aim of this paper is to present another such algorithm which is
very simple.
In the following let G denote a fixed non-empty finite set (of genes)
and put M := {4 € 2%|1 < |4| < 2}. The following two definitions
are essentailly a "more algebraic” reformulation of the corresponding
definitions originally given by Cotterman (cf. [1]).
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Definition 1. By a phenotype sysiem (with respect to G) one means
an equivalence relation on M.

In the following let a denote a fixed phenotype system.

Definition 2. By a factor-union representation (FU-representation)
of a on means an ordered pair (F, f) where F' is some set (of so-called
"factors”) and f is a mapping from G to 2F such that {(4,B)¢

€ M?| U f(z) = U f(z)} = a}. ais called a factor-union system

(FU- .sy.stem) if there emsts an FU-representation of a.

In the following, for every # C (26\{0})? let <> denote the congru-
ence on (25\{0},U) generated by 8.

Remark 1. <a> is the transitive hull of {(AU C,B U C)|(4, B) €
€ a;C C G}.

Remark 2. Let (F, f) be an FU-representation of a. Since (29\{0},U)
is the free semilattice with free generating set G (every g € G is here
identified with the one-element set {g}), f can be extended to a homo-
morhism g from (29\{0},U) to (2¥,U). Now kerg is a congruence on
(26\{0},U) and < (kerg) N M? >C kerg. Here, in general, equal-
ity does not hold as can be seen from the following example: Put
G := {a,b,c,d} (a,b,c,d mutually distinct), F := {1,2,3,4,5} and

= {(a,{1,2}), (5,{2,3}), (¢,{3,4}), (d,{1,2,3,5})}. Then (F,f)
is an FU-representation of {{a}}? U {{b}}? U {{c}}? U {{d}, {a,d},
{6,d}}?U{{a,}}2 U{{a, }}U{{b, c}}’ U{{c,d}}*, < (kerg)N M? >=
= {{a}}? u{{6}}*U{{c}}* U{{d}, {a,d}, {b,d}, {a,b,d}}* U{{a,b}}U
U{{a7 c}}2 U{{bv c}}z U{{e,d},{a,c, d}7{b’ ¢, d}1{a'7 b,c, d}}2 U{{a,?b, c}}2
and ker g =< (kerg) N M? > U{{a,c}, {a,b, c}}*.

Definition 3. By a (join-)semilaitice on means a commutative idem-
potent semigroup, i.e. an algebra (S,V) of type 2 in which the laws
zVy=yVez,zVe=zand (eVy)Vz==2zV(yVz) hold. The cor-
responding partial order < is defined by e <y iff e Vy =y (z,y € S).
a € S is called meet-irreducible if for all z,y € S with Ay = a it holds
a € {z,y} (A denotes the infimum with respect to <).

The aim of this paper is to prove the following
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Theorem.
(1) a is an FU-system iff <a> NM? = a.
(ii) If <a> NM? = a and if L denotes the set of all meet-irreducible
elements of the (join-)semilattice (26\{0},V)/ <a> then (L, {(z,
{y € Ly # [{z}] <a>})|z € G}) is an FU-representation of .

The proof of the theorem makes use of the following

Proposition (cf. [3]). Let (S,V) be a finite join-semilattice and let L
denote the set of all meet-irreducible elements of (S,V). Then {(z,{y €
€ L|y Z z})lz € S} is an injective homomorphism from (S,V) to
(25,0).

Proof. Put f := {(z,{y € Lly # z})|z € S}. Since S is finite,
every element a of S is the meet of elements of L and hence the meet
of all elements of L which are > a. This shows injectivity of f. A
straightforward calculation yields f(zVy) = f(z)Uf(y) forall z,y € S.

Proof of the Theorem. First assume o to be an FU-system. Then
there exists an FU-representation (F,f) of a. Let g denote the ho-
momorphism from (26\{0},U) to (2F, U) extending f. (This homo-
morphism exists according to Remark 2 following Definition 2.) Then
kerg is a congruence on (2%\{0},U) and since (F,f) is an FU-re-
presentation of a, a = (kerg) N M2. Because of a C kerg we have
<o>C kerg and hence a C<o> NM? C (kerg) N M? = a which shows
<a> NM? = a. Conversely, assume <a> NM? = a. Let L denote
the set of all meet-irreducible elements of (26\{0},U)/ <a> and put
h:= {(z,{y € Lly # =})|= € (26\{0})/ <a>}. Then, according to the
above proposition, k is an injective homomorphism from ((2%\{0})/
<o>, U) to (25,U). Now for all 4, B € M the following are equivalent:

U h({z}] <a>) = U h([{z}] <a>), h(|4] <a>) = h((B] <a>),

[A] <a>= [B] <a>, (A B) €<a>, (A,B) € a. This completes the
proof of the theorem.

Remark. The FU-systems (with respect to G) are exactly the restric-
tions of the congruences of (26\{0},U) (or of (2¢,U)) to M; for let B
be some congruence of (26\{0},U) and suppose a = 8 N M2. Then
a C f and hence <a>C (. From this we conclude a C<a> NM? C
C BN M? = a whence a =< a > NM?, i.e. ais an FU-system.




110 H. Linger

The above theorem gives rise to the following

Algorithm. Construct the undirected graph (with vertex-set 2¢\{0})
corresponding to a. Next construct in an obvious graph-theoretical
manner <a> as the transitive hull of {(AUC,BUC)|(4,B) € o;C C
C G}. Then check if <a> NM? = a. If this is the case then construct
the Hasse-diagram of (26\{0},U)/ <a> in order to obtain the FU-re-
presentation of a described within the above theorem.

Example (human ABO blood group system). Put G := {4, B, 0} and
o = {{A},{4,01}* U {{B}, {B,0}}? U {{0}}* U {{4, B}}?. Then
<a>= aU{{4,B},{4,B,0}}? and hence <a> NM? = a. Therefore
a is an FU-system. The above theorem yields the FU-representation
({a,5, ¢}, {(4, 15}, (B, {a}), (0, 0)}) of & where a = [{A}] <a>, b i=
:= [{B}] <a> and ¢ := [{4, B}] <a>.

Remark. From the above theorem it follows that if & is an FU-system
(with respect to @) then there exists an FU-representation (F, f) of
a with |F| < 2!l — 1. Knowing this, the problem whether a is an
FU-system or not can be decided in a finite number of steps. (Take an
arbitrary fixed set of cardinality 2/G! — 1 as the set of possible factors.)
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