A NON-COMPLETELY REGULAR QUIET QUASI-METRIC*

J. Deák

Mathematical Institute of the Hungarian Academy of Sciences, H-1053 Budapest, Reáltanoda u. 13 - 15, Hungary.

Received October 1989

AMS Subject Classification: 54 E 15

Keywords: Quiet quasi-uniformity, balanced quasi-metric.

Abstract: We improve on an example of Fletcher, Hejcman and Hunsaker [4] for a non-completely regular quiet-uniformity: our example is quasimetrizable.

1. Introduction

Doitchinov [2,3] introduced a class of quasi-metrics, respectively quasi-uniformities, admitting a satisfactory theory of completeness and completion. We shall only deal here with these classes, and not with completions. See [5] for basic definitions concerning quasi-metrics and quasi-uniformities.

^{*} Research supported by Hungarian National Foundation for Scientific Research, grant no. 1807.

112 J. Deák

Definitions. A sequence pair (a filter pair) is an ordered pair of sequences (of filters).

The sequence pair $(\langle x_k \rangle, \langle y_n \rangle)$ in the quasi-metric space (X,d) is Chauchy if for any $\varepsilon > 0$, there is an $m \in \mathbb{N}$ such that $d(x_k, y_n) < \varepsilon$ (k, n > m). A filter pair (f,g) in the quasi-uniform space (X,\mathcal{U}) is Chauchy if for any $U \in \mathcal{U}$, there are $F \in f$ and $G \in g$ with $F \times G \subset U$.

The quasi-metric d is balanced [2] if for any Chauchy sequence pair $(\langle x_k \rangle, \langle y_n \rangle)$, and for any $x, y \in X$, we have

(1)
$$d(x,y) \leq \sup_{n} d(x,y_n) + \sup_{k} d(x_k,y).$$

(Equivalently: one can write lim sup instead of sup.) The T_1 -quasiuniformity \mathcal{U} is quiet [3] provided that for any $U \in \mathcal{U}$ there is a $V \in \mathcal{U}$ such that if $x, y \in X$, (f, g) is a Cauchy filter pair, $Vx \in g, V^{-1}y \in f$, then xUy. (See [1] §§7 – 8 for related notions.) \diamondsuit

The notions of a balanced quasi-metric and of a quiet quasi-uniformity are in close connexion: if d is balanced then $\mathcal{U}(d)$ is quiet ([3] p. 6); it is also pointed out in [3] that the quietness of $\mathcal{U}(d)$ can be reformulated in terms of d, namely: $\mathcal{U}(d)$ is quiet iff for any $\varepsilon > 0$ there is a $\delta > 0$ such that $d(x,y) < \varepsilon$ whenever there is a Cauchy sequence pair $(\langle x_k \rangle, \langle y_n \rangle)$ with $d(x,y_n) < \delta$ $(n \in \mathbb{N})$ and $d(x_k,y) < \delta$ $(k \in \mathbb{N})$.

Conversely, if \mathcal{U} is quasi-metrizable and quiet then it can be induced by a quasi-metric d satisfying a condition strictly stronger than the one in the preceding paragraph, but strictly weaker than the one in the definition of balanced quasi-metrics: there is a constant C such that for any Cauchy sequence pair $(\langle x_k \rangle, \langle y_n \rangle)$, and for any $x, y \in X$,

(2)
$$d(x,y) \leq C(\sup_{n} d(x,y_n) + \sup_{k} d(x_k,y)).$$

A routine application of the Metrization Lemma ([6], 6.12) gives this with C=8; taking then $d'=\sqrt[4]{d}$ with some $j\in\mathbb{N}$, (2) will be satisfied for d' with $C=\sqrt[4]{8}$; i.e. for any C>1, there is a quasi-metric compatible with \mathcal{U} such that (2) holds with this C.

The topology induced by a balanced quasi-metric is completely regular [2], while a quiet quasi-uniformity induces a regular topology (Doitchinov, cited in [4]). Considering the similarity of the two notions, it is somewhat surprising that, as shown by an example of Fletcher,

Hejcman and Hunsaker [4], a quiet quasi-uniformity is not necessarily completely regular.

The aim of this note is to give a similar example, which, in addition, is quasi-metrizable. Observe that the two notions are now even closer to each other: compare (1) and (2), where, as we have seen, one can take $C = 1 + \varepsilon$.

2. The example

Let \mathbb{Q} denote the set of the rationals, $\mathbb{N}_0 = \mathbb{N} \cup \{0\}$, $Q_i =]i, i+1[\cap \mathbb{Q}(i \in \mathbb{N}_0), \mathcal{E}$ the Euclidean topology on \mathbb{Q} . For a convergent sequence s in \mathbb{Q} , denote its \mathcal{E} -limit by $\lambda(s)$. Let an injection $\nu: \mathbb{Q} \to \mathbb{N}$ be fixed. Take a maximal almost disjoint collection A_0 of strictly decreasing sequences in Q_0 that \mathcal{E} -converge to some point in Q_0 . For a sequence $s = \langle x_j \rangle$ in Q_0 , and for each $i \in \mathbb{N}_0$, let $s+i=\langle x_j+i \rangle$. Define $A_i=\{s+i:s\in A_0\}$ $(i\in \mathbb{N}), A=\bigcup_{1}^\infty A_i, Q=\bigcup_{0}^\infty Q_i, X=\{\omega\}\cup Q\cup A$. For $i\in \mathbb{N}$ and $s=\langle x_j>\in A_i$, let $s^*=\langle 2i-x_j>$. Now $A_i^*=\{s^*:s\in A_i\}$ is a maximal almost disjoint collection of increasing sequences in Q_{i-1} that \mathcal{E} -converge to some point in Q_{i-1} , while A_{i-1} is a similar collection of decreasing sequences, and $A_{i-1}\cup A_i^*$ is clearly almost disjoint, too. Define a function d on $X\times X$ as follows:

$$d(x,y) = egin{cases} 1/i & ext{if} \quad x = \omega, \ y \in A_i \cup Q_{i-1}, \ i \in \mathbb{N}, \ y - \lambda(x) & ext{if} \quad y \in x \in A, \
u(y) >
u(\lambda(x)), \ \lambda(x^*) - y & ext{if} \quad x \in A, \ y \in x^*, \
u(y) >
u(\lambda(x^*)), \ 0 & ext{if} \quad x = y, \ 1 & ext{otherwise}. \end{cases}$$

Claim 1. d is a non-Archimedian quasi-metric.

Proof. In the second line of the definition, y is in a decreasing sequence tending to $\lambda(x)$, hence the value of d is positive in this case, and similarly in the third line. So we have only to check that

$$d(x,z) \leq \max\{d(x,y),d(y,z)\}.$$

114 J. Deák

This is evident if the right hand side is 1 or x = y or y = z; otherwise $x = \omega$, $y \in A_i$ for some $i \in \mathbb{N}$, and $z \in Q_{i-1} \cup Q_i$, thus the right hand side is $\geq 1/i$, and the left hand side is 1/i or 1/(i+1). \diamondsuit

Claim 2. The topology $\mathcal{T}(d)$ is regular.

Proof. All the open balls round points different form ω are closed (because if x_1, x_2 are distinct points in A then $x_1 \cup x_1^*$ and $x_2 \cup x_2^*$ are almost disjoint), while

$$\left\{\{\omega\}\cupigcup_{i=j}^{\infty}(A_i\cup Q_i):j\in\mathbb{N}
ight.
ight\}$$

is a neighbourhood base of ω consisting of closed sets. \Diamond

Claim 3. Any T(d)-neighbourhood of the T(d)-closure of an interval in Q_i contains an interval in Q_{i-1} .

Proof. Let $\emptyset \neq H =]a, b[\cap Q_i, a^* = 2i - a, b^* = 2i - b, H^* = =]b^*, a^*[\cap Q_{i-1}, F \text{ the } \mathcal{T}(d)\text{-closure of } H, G \text{ a } \mathcal{T}(d)\text{-neighbourhood of } F.$ Now $s \in F$ whenever $s \in A_i$ with $\lambda(s) \in H$, thus each $t \in A_i^*$ with $\lambda(t) \in H^*$ is almost contained by G.

Assume indirectly that G does not contain a subinterval of H^* . Then we can pick a strictly increasing sequence in $H^* \setminus G$ that \mathcal{E} -converges to some point of H^* , contradicting the maximality of the almost disjoint collection A_i^* . \diamondsuit

Claim 4. T(d) is not completely regular.

Proof. If f is a continuous real function on X, and $f(\omega) > 0$ then, according to Claim 3, there is a $q \in Q_0$ with f(q) > 0; thus ω and Q_0 cannot be separated by a continuous function. \diamondsuit

Claim 5. The topology $\mathcal{T}(d^{-1})$ is discrete.

Proof. For $y \in Q_i$, choose $\varepsilon > 0$ such that $z \in]y - \varepsilon, y + \varepsilon[\cap(Q_i \setminus \{y\}) \Rightarrow \nu(z) > \nu(y)$, and assume also that $\varepsilon < 1/(i+1)$. Then the d^{-1} -ball of radius ε round y is equal to $\{y\}$ (see the condition on $\nu(y)$ in the definition of d). The points outside Q are evidently isolated. \diamondsuit

Claim 6. If (f,g) is a U(d)-Cauchy filter pair then $\{z\} \in f$ for some $z \in X$, and g T(d)-converges to z.

Proof. It is enough to show that f contains a singleton, because the second assertion is then clear from the definition of the Cauchy property. Choose $F \in f$ and $G \in g$ such that

$$(3) d(x,y) < 1 (x \in F, y \in G).$$

Now if F is finite then f contains a smallest element F_0 , and, according to the Cauchy property, $\mathbf{g} \ T(d)$ -converges to each element of F_0 , i.e. F_0 is a one-point set, since T(d) is T_2 . On the other hand, if F is infinite then there are different points $x_1, x_2 \in F \cap A$, because (3) implies that $|F \cap Q| \leq 1$. Thus from (3) we have

$$G \subset (\{x_1\} \cup x_1 \cup x_1^*) \cap (\{x_2\} \cup x_2 \cup x_2^*) \in g$$

and this intersection is finite by the almost disjointness, i.e. there is a point $z \in \cap g$. According to the Cauchy property, $f \mathcal{T}(d^{-1})$ -converges to z, and then Claim 5 implies that $\{z\} \in f$. \diamondsuit

Claim 7. The quasi-uniformity U(d) is quiet.

Proof. Let $U_j = \{(x,y) : d(x,y) \le 1/j\}$. We are going to show that the condition in the defintion of quietness holds for $U = U_j$ and $V = U_{j+1}$. Take a filter pair (f,g) with $\{z\} \in f$ and g $\mathcal{T}(d)$ -converging to z (by Claim 6, all the Cauchy filter pairs are of this form). We have to show that if $U_{j+1}x \in g$ and $U_{j+1}^{-1}y \in f$ then xU_jy ; this is a consequence of the following statement: if

$$(4) d(x,y_n) \leq 1/(j+1) (n \in \mathbb{N}),$$

$$(5) d(z,y_n) < 1/n (n \in \mathbb{N}),$$

$$(6) d(z,y) \le 1/(j+1)$$

then

$$(7) d(x,y) \leq 1/j.$$

It is indeed enough to prove that (4), (5) and (6) imply (7): if $U_{j+1}x \in g$ then points $y_n \in U_{j+1}x$ satisfying (5) can be chosen because g converges to z, and then (4) holds evidently; moreover, $U_{j+1}^{-1}y \in f$ implies (6), and xU_jy is equivalent to (7).

If $z = \omega$ then (4) and (5) imply $x = \omega$, thus (7) follows from (6). If $z \in Q$ then $y = z = y_1$ by (6) and (5), thus (7) follows from (4). Finally, assume that $z \in A_i$ for some $i \in \mathbb{N}$. From (4), (5) and the almost disjointness we have x = z or $x = \omega$. (6) implies (7) in the first case; on the other hand, if $x = \omega$ then, by (5), $y_1 \in Q_{i-1} \cup Q_i \cup A_i$, thus $d(x, y_1)$ is either 1/i or 1/(i+1), hence (4) implies $i \geq j$; according to (6), $y \in Q_{i-1} \cup Q_i \cup A_i$, thus $d(x, y) \leq 1/i \leq i/j$. \diamondsuit

Remarks. a) Similarly to the example in [4], our example is complete in the sense of Doitchinov [3]. (Clear from Claim 6, since, by definition, the completeness of \mathcal{U} means that the second element of any Cauchy filter pair is $\mathcal{T}(\mathcal{U})$ -convergent.)

b) The topology $\mathcal{T}(d)$ can be regarded as a special case of a general construction from [7], and it was very likely described long before. (Added in proof. See the addition in proof in [7]).

References

- [1] DEÁK, J.: Extensions of quasi-uniformities for prescribed bitopologies II, Studia Sci. Math. Hungar., (to appear).
- [2] DOITCHINOV, D.: On completeness in quasi-metric spaces, Topology Appl.
 30 (1988), 127 145.
- [3] DOITCHINOV, D.: On completeness of quasi-uniform spaces, C. R. Acad. Bulg. Sci. 41 (1988) No 7, 5 - 9.
- [4] FLETCHER, P; HEJCMAN, J. and HUNSAKER, W.: A non-completely regular quiet quasi-uniformity, *Proc. Amer. Math. Soc.*, (to appear).
- [5] FLETCHER, P. and LINDGREN, W.F.: Quasi-uniform spaces, Marcel Dekker, New York, 1982.
- [6] KELLEY, J.L: General topology, Van Nostrand, New York, 1955.
- [7] TZANNES, V.: Spaces containing two points not separated by a continuous real-valued function, *Topology, Theory and Applications II* (Proc. Sixth Colloq., Pécs, 1989), Colloq. Math. Soc. J. Bolyai 55, North-Holland, Amsterdam, (to appear).