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Abstract: Arrangements of chromosomes according to Bennett’s model can
be characterized by a certain type of permutations of n objects. The number
of these permutations is determined for arbitrary even n and upper and lower
bounds are given for any odd n. As a consequence it is proved that in both
cases the relative frequency of the considered permutations converges to zero
with n increasing to infinity (which is of interest especially from the biological

point of view).

In cytogenetics the question is important whether there exists an
ordered arrangement of the n chromosomes of a haploid genome during
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metaphase (a certain stage of cell division). The best known theory
in favour of an ordered disposition of the chromosomes is Bennett’s
model (cf [1], [4], [5]). In terms of permutations the problem of the
existence of an ordered arrangement according to Bennett’s model can
be formulated as follows (cf [2]):

Given 7 € S,,, does there always exist h,p € S, such that

(1) |h(2k) — h(2k +1)| =1 for k=1,2,...,[Z]
(2) Ip(2k — 1) — p(2k)| =1 for k=1,2,...,[3]
and m = hp~17?

Here S, denotes the symmetric group on n letters, [r] indicates
the greatest integer that does not exede 7, h(n + 1) stands for h(1) and
hp~! is ment to indicate that first the inverse of p has to be performed
and than h. If 7 € S, admits a representation in the form 7 = hp™*
with h and p satisfying (1) and (2), 7 is called admissible.

The essential question now is: How many admissible permutations
exist in S,.7

Let AP, be the set of admissible permutations of S, and A(n) =

= |AP,|. For n odd an n < 11 the numbers A(n) were computed in
[3]; in particular, for n < 5 AP, = S, and for 5 < n <11 the number
A(n) does not much deviate from |S,|. The question arises whether
this is also true for an arbitrary odd n. (Some theoretical background
on finding A(n) for odd n can be found in [2].) On the other hand for
even n computations show that A(n) deviates very fast from n! with
increasing n.

In the following we will determine the exact value of A(n) for all
even n as well as lower and upper bounds for any 'odd n. As a conse-
quence, we prove that in both cases the relative frequency of admissible
permutations converges to zero.

As it was pointed out in [2] (for odd n but is analogously true
for even n), an ordered arrangement of chromosomes according to Ben-
nett’s model can also be considered as an unorientated graph G =
=< V, E > with vertex set V = {1,2,...,n} and edge set E which is
the product of two 1-factors F; and F5,i.e. G = F; X F;. We assign two
colours to the edges of G, namely colour 1 to the edges of F; and colour
2 to the edges of F>. Now, if 7 is an admissible permutation to which
the ordered arrangement represented by G belongs, and m = hp~! with
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h,p satisfying (1) and (2), then according to [2]

Fl =< Vy{[1a2]7[374],' --,[n - 1777‘]} >

(3) By =<V, {[r1,72],[n3,74],...,[r(n — 1),7n] >

for even n and

Fl :<V,{[1,2],---,[P—2,P'—1],[P+1,P+2],---,[n—1,n]}>
(4) Fr =<V/{[rl,x2],...,[r(q — 2),7(qg - 1)],
[*(¢+1),7(g+2),...,[x(n - 1), mn]} >

for odd n with p,q € {1,3,5,.. .n}.

Further G = F; X F, is a Hamiltonian circle in the even case and a
Hamiltonian path in the odd case, with edges of alternating colours in
both cases (shortly: alternating H-circle and H-path resp.). Moreover
the sequence of vertices within the alternating H-circle and H-path
resp. is given by hl,h2,...,hn, and the notation is chosen in such a
way that the first edge [h1, 2] always belongs to F. Hence, if n is
odd, hl = p and hn = wq. The same graph G' may be induced by dif-
ferent admissible permutations 7. On the other hand, G is determined
uniquely by m if n is even, but not for odd n.

The graph G = F; X F; can be defined by (3) or (4) for an arbitrary
7™ € Sn. But then in general G consists of several alternating H-circles
in the even case, of an H-path and one or more circles in the odd case.
Actually, for n even, 7 is admissible if and only if G is an alternating H-
circle. For an odd n, this is the case if p, g can be chosen appropriately
so that an alternating H-path results.

Now, for any n, let a,, = i(,ﬁ. This is the relative frequency of

admissible permutations. For odd n we define further:

Kn=2""1 (2712 = (n — 1)%(n — 3)2...22,

— Ky _ (n=1)(n—3)...2
kn = n!l T a(n—2)..-31

Remark 1. lim k&, = 0, since

=049+ ) (14 5) =
=1+(3+3+..-+1)+... 5 co.

n—1
Theorem 1. For any even n, a, = kn—1, hence ,lll_r’xg_o a, = 0.
Proof. The number of possible alternating H-circles is 2%_1(1_; - 1)L
To see this, we assume one edge of colour 1, say [1,2], in a fixed position,
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provide the edge with an orientation, which we keep also fixed, then we
count the number of permutations of the remaining edges of the same
colour and consider that each edge may be orientated in two ways.
Thus there are 27 - 5! permutations m which induce the same set of
edges {[w1,#2],...,[r(n — 1),7n]}, i.e. the same alternating H-circle.
This gives A(n) =2""1(Z2 - 1)!12 =n(n—-2)*(n—4)*...-22 = nK,_;,
therefore a, = "Kﬁl =kp1. ¢
In the odd case, the difficulty arises that an adimissible permu-

tation m may induce different alternating H-pathes trough different
choices of p and ¢ in (4). We recall that the corresponding H-path is
given by the sequence h1,h2,...,hn, where h = hp, h, p satisfy (1) and
(2), k1 = p, and pn = q. First we compute the number of admissible
permutations for fixed p, ¢, then for a fixed p with arbitrary gq.
Lemma 1. Let n be an odd number and A,(p,q) be the set of permuta-
tions ™ = hp~! € AP, with hl = p and pn = q. Then |A,(p,q)| = K,
for any p,q € (1,3,...,n}.
Proof. There are l;—l! possiblities to choose the order of the edges of
F; (or F3) in the alternating H-path and for each edge there are two
possible orientations to fit them in. Then, each H-path is induced by
25 . n-1y permutations in A4,(p, q) which gives the total number of
2 (22 =K, O
Lemma 2. Let n be odd and A—n(p) the set of allm = hp~' € AP, with
hl = p. Then |4,(p)| = 2(1 — (%)#)Kn for any p = {1,3,...,n}.
Proof. We now write F(p), Fr(q) instead of Fy, F, in (4), in order to
express theire dependence on p,q and 7. Let # = hp™' € A,(p, q¢) with
g > 3, thus F(p) x Fy(q) is an alternating H-path. Then 7 belongs to
A.(p,q — 2) if and only if F(p) x F.(g — 2) is an alternating H-path,
too, i.e. if and only if the substitution of the edge [r(g — 2),m(qg — 1)]
by [7(q — 1),mq] produces another Hamiltonian path. This is the case
if (g — 1) = hi, (g — 2) = k(2 + 1) for some i (then i = p~1(g—1) is
odd and i + 1 = p~'(q — 2) is even). If, on the contrary, p~2(g — 1) is
even, i.e. w(q — 2) = hi, m(¢ — 1) = h(: + 1) for some i, then deleting
the edge [r(g — 2),7(q — 1)] and linking (g — 1) to mq splits the path
into a path (possibly a single vertex) and a circle.
‘ For any m € An(p,q) let @' = 77141 4 » where 741 4> is the

transposition interchanging ¢ —1 with ¢ —2. Then 7' also is in 4,(p, q),
but ©' € A.(p,q —2) if and only if # ¢ A,.(p,q — 2). Thus, to any 7w €
An(p,9)NAn(p, g—2) there corresponds a ' € A,(p,q)—An(p,9—2) and
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vice-versa. Since |A,(p, q)| = |4n(p,q—2)| by Lemma 1, exactly half of
the elements of one set belong to the intersection of the two. Taking into
account that 7 and ' as above either both belong to A,,(p,r) for some
T > g or neither of them does, we infer that an analogous argument is

valid for the sets An(p,q) — U 4An(p,7) and A,(p,q—2) — U (p,7)
Cr>q r>q

Now let B, = A.(p,q) — L>J A, (p,r) for any odd ¢ < n, then
r>g

B, = An(p,n), Bn—z = An(p,n — 2) — A,(p,n), etc. Further 4,(p) =

= B, UB,_; U...U By, where these sets are pairwise disjoint, and

|By—2| = [(An(p,q—2) - l;J An(p,7)) — (4n(p;q) - L>J Aa(p,7))| =
r>q r>q

= %lAn(p, q) — L>J An(p,7)| = %]Bq]. Consequently, |A_n(p)| = |Bn|+
r>q

+|Bn—z|+...+|B1| = |An(p,n)(1+%+. . .+;i;—_1) = Kn(z—(%)’%) —
=21 - (3))Ka ©

As an immediate consequence we get the following lower bound
for the relative frequency of admissible permutations.
Theorem 2. For any odd n,a, > 2(1 — (%)ﬂzi)k,1 O
Finally we deduce an upper bound of a,, by a similar method.
Theorem 3. For any odd n, a, < 2(1 — (%)Ezu)zkn Therefore,
li_r& a, = 0.
Proof. For m € A,(p), ™ = Tp—1 p—a7 also belongs to A, (p). It suffices
to interchange the vertices p — 1 and p — 2 in a corresponding H-path.
Now let 7 € A,(n), sow € Ap(n,q) for some g € 1,2,... ,n). As in the
proof of Lemma 2, 7 € A,(n—2,q) holds if and only if [n —2,n—1] can
be substituted by [n — 1,n] so that another alternating H-path results.
This is the case if and only if h™'(p — 2) is even and A=(p — 1) is odd
(then p—2 = hi, p—1 = h(i+1) for some :). Otherwise, 7 € A,(n—2,q)
but still 7 € An(n — 2,¢') is possible for same ¢' # ¢ (it is easy to find
examples). Since w ¢ A,(n—2,q) implies 7' € A,(n—2,¢9)C
C A,(n —2), at least half of the elements of A,(n) belong also to
An(n —2). Therefore, since [A,(n) = [A(n—2)] by  Lemma 2,
A (n—2)— A—n(n)] < %l—;’l—.,:(n)l In the same way, with Cp, = A,(p)—
- U A_n(s), we infer |Cp_z| < %]Cpl. Since AP, = C,UC,_,U...UC,

8>p

with C,, = Z(n) we obtain  A(n) = |AP,| < |4.(n)|(1 + % + ...+
+—=5) = 4(1 - (%)#)ZK,,. To complete the proof, we need only

-1
2 2

n_2
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divide by n!. ¢

Remark 2. The upper bound of Theorem 3 is not strict (for small
n, we obtain values greater than 1), but it is sufficient to prove that
the relative frequency of admissible permutations converges to zero.
Compare the table below where we indicate the upper and lower bounds
of a,, according to Theorem 2 and 3 for some biologically relevant values

of n.
n lower bound upper bound
5 0.9333334 1.633334
7 0.8571429 1.607143
g9 0.7873017 1.525397
11 0.7272728 1.431818
13 0.6766568 1.342741
15 0.6340328 1.263112
17 0.5979067 1.193478
21 0.5402465 1.079985
25 0.4962781 0.992435
29 0.4614604 0.9228927
33 0.433052 0.8660973
39 0.3988169 0.7976331
45 0.3715961 0.743192
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