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Abstract: Given compatible semi-uniformities (or contiguities, or mero-
topies) on some subspaces of a closure space, we are looking for a common

extension of these structures.

Notations. In addition to the notations and conventions introduced
in §0 (seein [1]),let A2 =Ax A4, A" =X\ A (for AC X)), if U
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is a semi-uniformity then sl denotes the collection of the symmetric
entourages contained by Y.

2. Extending a family of semi-uniformities in a
closure space

A. WITHOUT SEPARATION AXIOMS

2.1 If a family of semi-uniformities can be extended in a closure space
then the closure is necessarily symmetric; this condition will turn out to
be sufficient, too. We are going to construct the finest and the coarsest
extension.
Definitions. For a family of semi-uniformities in a closure space,

a) Let U° be these semi-uniformity on X for which the following
entourages form a subbase B:

(1) UiOZU,'U(Xz\XiZ) (’iEI, UisEUi);
2) Usp={c}2UB? (zeX, BCX, z¢c(B)).

b) Let U?! consist of the entourges U on X that satisfy the following
conditions:

(3) Uz € v(z) (z € X);
(4) UlXiEui ('iEI). &
B is a collection of symmetric entourages, and, assuming X # 0,
B is non-empty (take B = ( in (2)), so it is indeed a subbase for a
semi-uniformity. #° would not change if si{; were replaced by I; in (1).
It is straightforward to check that &' is a semi-uniformity, too.
Similarly to the convention introduced in §1 for proximities, we
shall write, if necessary, U*(c,U;), or even U¥(c,{U; : i € I}). In
particular, U¥(c) = L, U*(¢,0). (k = 0,1). Analogous notations will
be used for Riesz and Lodato semi-uniformities, as well for merotopies
and contiguities.
Theorem. A family of semi-uniformities in a symmetric closure space
always has extensions; U° is the coarsest and U the finest eztension.
Proof. 1° U° is coarser than U*. It is enough to show that B C U?.
U?:z: = X if ¢ € X; otherwise U?:z: = Uz U X7, which is clearly
a c-neighbourhood of z, since U;z € s;(z). For j € I,
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U2 X; = (Uil X3;) U (X2 \ X7) = (U;|X35) U(X2\ X2)

holds with a suitable U; € U; (by the accordance); hence U} |X; D U;,
and so U}|X; € U;. This means that U? satisfies (3) and (4), i.e.
U} e .

U.,By € v(y) for y € X; this follows from U, gz = B" for y = =z,
from U,,p = X for 2 # y € B", and from U, gy = {¢}" for y € B,
because in the last case ¢({y}) C ¢(B), « € c({y}), ¥y € c({z}). U.,B
satisfies (4), too: U, g|X; = X? if z € X7, and in case ¢ € X; we can
choose a U; € sUf; with U;z N (BN X;) =0 (as ¢ € ¢(B) D c;(BN X;)),
and then U; C UZ,B|X,'.

2° U'|X; is coarser than U;. This is evident from (4).

3° U; is coarser than U |X;. If U; € U; then U; = U?|X; € B|X; C
ciy® |Xi.

4° ¢(U?*) is coarser than c. This is clear from (3).

5° ¢ is coarser than c(U°). Observe that

(5) v(z) = {U, gz : z ¢ ¢(B)}.

6° U°® and U" are extensions. It follows from 1°, 4° and 5° that ¢/°
and Y* are compatible, respectively from 1°, 2° and 3° that & °X; =
=U; =U"|X;.

7° U° is the coarsest extension. Let U be another extension; we
have to show that B C U.

For U; € slU;, choose U € U such that U|X; = U;; now U C U?,
thus U} € U. If ¢ & ¢(B) then Uz N B = { for some U € si{, and
therefore U C U, p.

8° U! is the finest extension. If I{ is another extension then each
U € U satisfies (3), because U is compatible, and (4), because U |X; =
=U;. Hence U C U*. O

2.2 a) Formulas analogous to 1.3 (1) and (2) are valid for semi-uni-
formities (and also for merotopies and contiguities). The proofs are
essentially the same as the ones given in 1.3 for proximities. We are
going to set out the categorical background of these formulas.

Let C and D be topological categories, and F : D — C a concrete
functor. (In contrast to the situation outlined in the introduction of
Part I, it is not necessary to assume here that F' commutes with the
restriction to subsets.) We denote the C-structures by ¢, and the D-
structures by d (with indices when necessary), and use the conventions
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introduced in §0, except that a family of D-structures in a C-space is
not required to be either compatible or accordant; in particular, F(d)
will also be written as ¢(d). ¢ < ¢' denotes that ¢ is coarser than c'.
Consider a family of D-structures in a C-space. We say that the
D-structure d on X is a
00-overeztension if it is just an extension;
01-overeztension if ¢ = ¢(d) and d; < d|X; (i € I);
10-overeztension if ¢ < ¢(d) and d; = d|X; (i € I);
11-overeztension if ¢ < ¢(d) and d; < d|X; (i € I).
A pg-undereztension (p,q = 0,1) is defined in the same way, replacing
< by >.
Let now a non-empty family of D-structures in a C-space be fixed.
1° If d°[i] is the coarsest pg-overextension of {d;}, and there exists

a pg-overextension of the whole family then sup d°[i] is the coarsest pg-

overextension. (The proof is straightforward.)

2° Assume that (i) the empty family in (X, c) has a coarsest pg-
overextension d°(c) (if p = 0 then this means that d°(¢) is the coarsest
compatible structure); (ii) each {d;} has a coarsest 1g-overextension
d®*[i] with respect to the indiscrete C-structure on X; (iii) the whole
family has a pg-overextension. Then

(1) sup{d°(c), sup d*°[i]}

is the coarsest pg-overextension. (The statement is more symmetrical
than it looks to be: d°(c) is the coarsest pl-overextension if each d; is
replaced by the indiscrete D-structure on X;.)

3° The analogue of 1° is valid for pg-underextensions.

4° In the analogue of 2° for pg-underextensions, the condition
corresponding to (ii) is superfluous, since d'![i] always exists in a topo-
logical category: take the coproduct of d; and the discrete structure
on X]. (The reason for the difference is that 2° and 4° are not dual:
subspaces have not been replaced by quotient spaces.)

Observe that Definition 2.1 gives U° in the form (1), and Y* sim-
ilarly as an infimum.

b) It is possible to deduce Theorems 1.1 and 1.2 from Theorem
2.1; this will be discussed in Part III, where a result on extending semi-
uniformities in a proximity space will enable us to do the converse,
too, i.e. to partly prove Theorem 2.1 in two steps, first extending the
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proximities §(14;) in (X, ¢), and then the semi-uniformities in (X, 6°) or

(X, 6Y).

B. RIESZ SEMI-UNIFORMITIES IN A CLOSURE SPACE

2.3 If a family of semi-uniformities in a closure space has a Riesz exten-
sion then each semi-uniformity is Riesz, the closure is weakly separated,
and the trace filters are Cauchy (because the neighbourhood filters in
a Riesz semi-uniform space are Cauchy). We are going to prove that
these conditions are sufficient, too.

Definition. For a family of semi-uniformities in a closure space, let

(1) Up={UclU': AcIntU}. ¢

U}, is clearly a semi-uniformity.
Theorem. A family of semi-uniformities in a weakly separated closure
space has a Riesz extension iff the trace filters are Cauchy; if so then
U° is the coarsest and U}, the finest Riesz eztension.
Proof. Assume that the trace filters are Cauchy.

1° U° is coarser than Up. In view of 1° from the proof of Theorem
2.1, it is enough to show that A C Int U holds for each U € B.

A C Int U?, because for ¢ € X, thereis an 4 € si(z) such that
A? C U;, and then B = AUXT € v(z), thus (z,z) € Int B? and
B?* cU?.

Similarly, A C Int U, g, because for y € X, there is an 4 € v(y)
such that 4% C U, g, namely

_ | B"  if yec({z}),
A‘{{z}f if y ¢ c({z}).

(If y € ¢({z}) then, c being weakly separated, from & ¢ c(B) we have
y & ¢(B), thus B" € v(y) indeed.)

2° U}, is a Riesz extension. By 1°, the evident statement Uy C U,
and Theorem 2.1, U is an extension. The compatibility of U, implies
that it is Riesz, as Int in (1) is now the ¢(Ug) x c(U})-interior.

3° U° is Riesz, too, because it is coarser than a Riesz semi-
uniformity inducing the same closure. Given a Riesz extension U, we
have i C U' by Theorem 2.1, and the elements of & satisfy (1), thus
U C Ug. On the other hand U° C U, again by Theorem 2.1. O
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If {intX; : 1 € I} covers X and each U; is Riesz then it is not
necessary to assume that the trace filters are Cauchy: For z € X and
U; € U;, take j € I with = € intX;, and U; € Y; such that U;|X;; =
= U;|X;j. AsU; is Riesz, thereis an A € sj(z) with A? C U;. z € intX;
implies that A € v(z), thus AN X; € si(z), and (AN X;)? C Us.
Corollary. A family of Riesz-semi-uniformities in a weakly separated
closure space has a Riesz extension iff U; C Ug(c)|X: (1 € I).

Proof. Just like the proof of Corollary 1.4.

C. LODATO SEMI-UNIFORMITIES IN A CLOSURE SPACE

2.4 If a family of semi-uniformities in a closure space has a Lodato
extension then each semi-uniformity is Lodato, the closure is an S;-
topology, and the trace filters are Cauchy. A modification of Example
1.8 shows that these conditions are not sufficient: replace §, by the
Euclidean uniformity ¢y on X, and 6%(¢) by a Lodato semi-uniformity
V compatible with it (e.g. by Uk(c)); now Uy and U; = V|X; satisfy
the necessary conditions, but if they had a Lodato extension U then
the Lodato proximity §(¢{) would extend §, and §;. In Example 2.10,
we shall define Lodato semi-uniformities in a closure space that do not
- have a Lodato extension, although the Lodato proximities induced by
them do have one.

Notation. In a closure space (X, c), put
(1) Va,p = Vo,Bix = c({z})™ U e(B)™

forze X,BC X,z ¢gc(B). ¢

Lemma. If ¢ is weakly separated then V, p = Int U, g; so if U is a
compatible Lodato semi-uniformity then V; p € U.

Proof. V, p C Int U, p is evident. Conversely, let (y,2) € IntU, g. If
¥,z € c({z}) then clearly (y,2) € V, B. If, say, y € ¢({z}) then take
M,N such that y€int M,z €int Nyand M x N CU, . Nowz e M
implies N C B", thus z € ¢(B)". On the other hand, y € ¢(B)" follows
from the weak separatedness. Hence (y,2) € V, p again.

The second statement follows from the first one, using Theorem
2.1 applied to I = 0. ¢

2.5 Deflnition. For a family of Lodato semi-uniformities in an .S-
space, let
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(1) Ul = {U el :IntU e U'}.

In other words, the ¢ X c-open elements of ' form a base for U}. {
Lemma. For a family of Lodato semi-uniformities in an S;-space, U}
18 a compatible Lodato semi-uniformity; it is the finest one among those
Lodato semi-uniformities U on X that induce a closure coarser than c,
and for which U|X; is coarser than U; (i € I).

Proof. U} is clearly a semi-uniformity. Ui C U?, so it follows from
Theorem 2.1 that U] | X; is coarser than U; and c(} ) is coarser than c.

1° ¢(UL) is finer than c. It suffices to see that U, p € U} (z € X,
B C X,z ¢ c(B)). V,,pis clearly a ¢ X c-open entourage contained by
U:,B, so we have only to check that V, g € ur.

2.1 (3) is satisfied, since V, py is open for y € X.

To prove 2.1 (4), fix ani € I. If ¢({z}) N X; = 0 then X? C V, g,
thus V g|X; € U; is now evident. Otherwise, pick a point y € ¢({z})N
NX;; then (c being an S;-topology) c¢({y}) = ¢({z}) and y & ¢(B) >
D A=¢(B)NX;. As Ais c;-closed, Lemma 2.4 gives

Vyaix: = (Xi \ e:({y}))? U (X:\ 4)? € U,
Now V;,B|X; = Vy 4;x; follows from ¢;({y}) = c({y}) N X; = ¢({z})N
NX;. Thus VZ,B|X~; € U; again.

2° U] is Lodato. We have established that U} is compatible, so
it is Lodato by (1) (since c is a topology).

3° Uj is finest. Let U be another Lodato semi-uniformity with
UIX; C U; (i € I) and ¢(U) coarser than ¢; we have to show that
U C U. U C U is evident; moreover, U has a base consisting of
c(U) X c(U)-open entourages, which are then ¢ x c-open, too. {

2.6 Definition. For a family of Lodato semi-uniformities in an S;-
space, let U2 be the filter on X? generated by the subbase By, consisting
of the following sets:

Int U} (1 €I, U; € slhy);
Ve,B (BCX,z€ec(B)). ¢
The elements of By, are symmetric, thus Y} is a semi-uniformity iff
each Int U? is an entourage, i.e. iff the trace filters are Cauchy. It does
not change U} iff sl; is replaced by U; and/or V, g by c({z})"> U B™.
Observe that

(1) B ={IntU : U € B},
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{Int U € U°} is a base for YUY, and U° C U}.
Lemma. If a family of Lodato semi-uniformities is given in an S;-
space, and the trace filters are Cauchy thenUy is the coarsest one among
those compatible Lodato semi-uniformities U on X for which U|X; is
finer than U; (i € I).
Proof. Theorem 2.1 and #® C U} imply that U?|X; is finer than U;
and c(U}) is finer than c. ¢(U) is also coarser than ¢, since the elements
of the subbase By, are open; hence U} is compatible and Lodato.

Let U be another compatible Lodato semi-uniformity with U; C
C U|X;. Now U} € U, and so Int U? € U (as U is Lodato). V, g € U
by Lemma 2.4. {

2.7 Lemma. A family of Lodato semi-uniformities in an S;-space has
a Lodato eztension iff U] C U}; if so then both U} and U} are Lodato
ezlensions.

Proof. Lemmas 2.5 and 2.6, using that if Y} C U} then the elements
of U? are entourages, thus the trace filters are Cauchy. ¢

Theorem. A family of Lodato semi-uniformities in an S,-space has a
Lodato eztension iff the trace filters are Cauchy, and for any 1,5 € I,

(1) (It UY)|X; elU; (Ui € Us);

if s0 then U] is the coarsest and U} is the finest Lodato extension.
Remark. The accordance can be written in the following equivalent
form: UQ|X; € U; fori,j € I, U; € U;, of which (1) is clearly a strength-
ening. For ¢ = j, (1) is equivalent to the statement that U; is Lodato,
so it was in fact superfluous to assume that the semi-uniformities are
Lodato.

Proof. The necessity is obvious. By Lemma 2.6, the sufficiency will
also follow if we show that UQ|X; CU;,ie. that Br|X; CU;
(7 € I). For IntU?, this is just (1). V, g € U' was checked in 1° of the
proof of Lemma 2.5, so V, g|X; € U; by Theorem 2.1. The remaining
statements follow from Lemmas 2.7, 2.6 and 2.5. {

Corollary. A family of semi-uniformities in an S;-space has a Lodato
eztension iff {U;,U;} has a Lodato eztension for any i,j € I.

2.8 Corollary. A single Lodato semi-uniformity given in an S;-space
has a Lodato eztension iff the trace filters are Cauchy.

2.9 Theorem. Let a family of Lodato semi-uniformities be given in




Simultaneous ezlensions of prozimities, semi-uniformities, ... 27

an Si-space. Assume that either each X; is open and the trace filters
are Cauchy or each X; 1s closed. Then there ezists a Lodato eztension.
Proof. We are going to check that if U; € U; is open then

(2) Int U? D) Illt]' (U?'Xj);

this is sufficient for 2.7 (1), because the open entourages form a base
for U; (as U; is Lodato), and the right hand side of (1) belongs to U;
(as the semi-uniformities are accordant, and i; is Lodato). Take (z,y)
from the right hand side of (1).

1° Let X; be closed. If z,y € X;; then, U; being open, we can
pick c-open sets A 5 z and B 3 y such that (4 x B)|X; C U;, which
implies that A x B C U?; thus (z,y) € IntU}. If, say, = € X; \ X; then
(z,y) € XT x X, which is a ¢ X c-open set contained by U}.

2° If X; is open then there are c-open sets A 3 ¢ and B 3 y such
that A,BC X;and Ax BCU|X; CU?. ¢

The analogue of Theorem 1.13 is not valid for semi-uniformities
(although it holds for merotopies and contiguities, see Theorems 3.8
and 4.5), not even under the stronger assumption

(2) X\ X;)Ne(X;\Xi)=0 (i, jel):
Example. Let H =]0,1[, T = {0} U {1/n:n € N},
X = (TU[2,3]) x H,Xo = X\ ({0} x H),X; = X \ (]2,3[xH).

Let ¢ be the Euclidean topology on X, and {Uj(¢) : € > 0} a base for
U; on X; (i =0,1), where, with P ® @ denoting (P x Q) U (@ x P),

Us(e) = U(e)| Xo U LEJN(({l/n}X]O,E[) ® ([2,2 + 1/n[x]0,e])),
Ui(e) = U(e)| X1 U ((T'x]0, €]) ® ({2} x]0,¢[)),

and, for z,y € X, z U(¢)y iff the Euclidean distance of ¢ and y is < e.
{Up, U1} is a family of Lodato semi-uniformities in (X,c), the trace
filters are Cauchy, and (2) holds. But there is no Lodato extension: 2.7
(1) fails for 2 = 0, j = 1, U; = Up(1), since

((0,€/2),(2,€/2)) € Ur(e) \ (Int Us (1)°)1X1.

2.10 By Theorem 1.13, the induced proximities have a Lodato ex-
tension in the above example. We can give, however, a much simpler
example with this property:

Example. With X, X, X; and ¢ as in Example 1.8, let /; be the




28 A. Csdszdr, J. Dedk

Euclidean uniformity on X;, Uy the precompact uniformity compatible
with the Euclidean proximity on X,. Now the trace filters are Cauchy,
and the induced proximities have a Lodato extension (namely the Eu-
clidean proximity on X), but Uy and ¢; do not have one, since 2.7 (1)
fails fori =1 and j =0.

2.11 Concerning extensions of a single uniformity, see [6], [5], [7], [2]
85, [3], [4] §2. The same can be said about simultaneous extensions of
uniformities as in the case of Efremovich proximities, cf. 1.16; see [4]
Remark 1.13 c¢) and Example 1.13 b) for details.

3. Extending a family of merotopies in a closure
space

A. WITHOUT SEPARATION AXIOMS

3.1 If a family of merotopies can be extended in a closure space then
the closure is symmetric; this condition will be proved to be sufficient,
too. Definitions, results and proofs are very similar to those in §2.
Definitions. For a family of merotopies in a closure space,

a) Let M® be the merotopy on X for which the following covers
form a subbase B:

(1) C,?Z{C.?=C,'UX{:C{EC1'} (iEI,C,;EM-;);
(2) ¢z, = {{z}",B"} (B C X,z € ¢(B)).

b) Let M' consist of the covers ¢ of X that satisfy the following
conditions:

(3) St (z,c) € v(z) (z € X);
(4) c|X; € M; (z€I) .

Theorem. A family of merotopies in a symmetric closure space always
has eztensions; M® is the coarsest and M? the finest eztension.
Proof. 1° M° is coarser than M*. It is enough to show that B ¢ M®.
If z € X7 then St(z,c}) = X € v(z);  otherwise  St(z,c}) =
= St(z,c;) U X] € v(z), since St(z,¢;) € s;(z). It follows easily from
the accordance that c? satisfies (4), too. Thus ¢! € M.
St(y,cz,B) is equal to BT if y = z, to X if ¢ # y € BT, and to
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{z}" if y € B; thus it belongs to v(y), in the last case by the symmetry
of c. ¢, p satisfies (4), too: if ¢ € X[ then {X;} € ¢z B|Xi; otherwise
pick ¢; € M; with St(z,¢;) N B = 0, and then c; refines ¢, g|X;.

2° M and M! are extensions. Just like in the proof of Theorem
2.1, replacing 2.1 (5) by

(5) v(z) = {St(z,c,B) : ¢ & c(B)}.

3° M® is coarsest, M! is finest. Check that if M is an extension

then B C M, and, on the other hand, each ¢ € M satisfies (3) and (4). ¢

B. RIESZ MEROTOPIES IN A CLOSURE SPACE

3.2 If a family of merotopies in a closure space has a Riesz extension
then the merotopies are Riesz, the closure is weakly separated, and the
trace filters are Cauchy. These conditions are also sufficient.
Definition. For a family of merotopies in a closure space, let

(1) My = {c € M' :intc is a cover of X}.
Observe that
(2) int ez, g = {c({z})",c(B)"}.

Theorem. A family of merotopies in a weakly separated closure space
has a Riesz eztension iff the trace filters are Cauchy; if so then M® is
the coarsest and M}q the finest Riesz extension.
Proof. Assume that the trace filters are Cauchy.

1° M? is coarser than M. By M® ¢ M*, it is enough to show that
int ¢ is a cover for ¢ € B.

int ¢? is a cover, because the trace filters are Cauchy. int ¢, g is
also a cover, since ¢ is weakly separated, and so ¢({z}) N ¢(B) = 0.

2° The remaining statements can be proved in the same way as in
2° and 3° in the proof of Theorem 2.3, replacing entourages by covers
and Int by int. {
Corollary. A family of Riesz merotopies in a weakly separated closure
space has a Riesz extension iff M; C My(c)|X: (i € I). ¢

C. LODATO MEROTOPIES IN A CLOSURE SPACE

3.3 If a family of merotopies in a closure space has a Lodato extension
then the merotopies are Lodato, the closure is an S;-topology, and the
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trace filters are Cauchy. Example 1.8 can be modified for merotopies in
the same way as for semi-uniformities (cf. 2.4) showing that the above
conditions are not sufficient; a better example will be given in 3.8.
Notation. d, g =d, g,x =intc, g for BC X and z € ¢(B)" (cf. 3.2
(2)). ¢

Lemma. If M is a compatible Lodato merotopy then d, g € M. {

3.4 Definition. For a family of Lodato merotopies in an S;-space, let
Mi ={ce M!:intcec M'}.

In other words, the open covers contained by M? form a base for Mi. O
Lemma. For a family of Lodato merotopies in an S;-space, M} is a
compatible Lodato merotopy; it is the finest one among those Lodato
merotopies M on X that induce a closure coarser than c, and for which
M|X; is coarser than M; (i € I).
Proof. The argument runs along the same lines as the proof of Lemma
2.5, therefore we confine ourselves to showing that ¢(M}) is finer than
c. It is enough to see that d; B € M!, because then cz,B € M7, and 3.1
(5) can be applied. 3.1 (3) is satisfied, since d, p is an open cover.

If c({z}) NX; = 0 then {X.L} € dz,BlX-i thus dz1B|X1‘ e M;.
Otherwise, pick a point y € ¢({z}) N X;. Now ¢({z}) = ¢({y}), thus
d. B =dy . But

dy,B|X:i = dy (5| Xi = dy,c(Bynxisx; € M
by Lemma 3.3. So d, 5|X; € M; again, i.e. 3.1 (4) is fullfilled, too. ¢

3.5 Definition. Given a family of Lodato merotopies in an Si-space
such that the trace filters are Cauchy, let M} be the merotopy on X
for which the following covers form a subbase By,:

int ¢! (1€ I,c; € My);
d:.B (BC X,z €c(B)). ¢

By isindeed a subbase for a merotopy (intc! is a cover, because the
trace filters are Cauchy; this condition could be dropped as in Definition
2.6, but then the notion of a subbase had to be generalized from covers
to arbitrary collections). We have By = {intc:c € B}. {intc:c e M°}
is a base for M}.

Lemma. If a family of Lodato merotopies is given in an Si-space, and
the trace filters are Cauchy then M% 1s the coarsest one among those



Simultaneous extensions of prozimities, semi-uniformities, ... 31

compatible Lodato merotopies M on X for which M|X; is finer than M;
(e I). :
Proof. Similar to the proof of Lemma 2.6. $

3.6 Lemma. A family of Lodato merotopies in an S;-space has a
Lodato extension iff the trace filters are Cauchy and M} C ML; if so
then both M% and M}, are Lodato extensions.

Theorem. A family of Lodato merotopies in an Sy-space has a Lodato
eztension iff the trace filters are Cauchy, and, for any 1,7 € I,

(1) (int C?)|Xj € M; (Ci e M;);

if s0 then MY is the coarsest and M7 is the finest Lodato eztension.
Remark. The accordance of merotopies can be written in the following
form: ¢!|X; € M;.

Proof. Similar to the proof of Theorem 2.7, using that d; g € M' was
established in the proof of Lemma 3.4. $

Corollary. A family of merotopies in an S,-space has a Lodato ezten-
sion iff {M;,M;} has a Lodato eztension for any i,5 € I. &

3.7 Corollary. A single Lodato merotopy in an S;-space has a Lodato
eztension iff the trace filters are Cauchy.

3.8 Theorem. Let a family of Lodato merotopies be given in an S-
space, assume that the trace filters are Cauchy, and

(1) (XN\X)N(X\ X)) =0 (5,5 €l).

Then there ezists a Lodato eztension.
Proof. To prove 3.6 (1), it is enough to show that if ¢; € M; is open
(which may be assumed, as M; is Lodato) then int; (c?|X;) is a refine-
ment of (intc!)|X;, because the former belongs to M; by the accordance
and the Lodato property of M;. The above statement is a consequence
of
(2) int; (G N X;) C int G},
where GG; is c;-open. '

For the proof of (2), take a point z from the left hand side of it.
If z € X;; then z € Gy, implying ¢ € int G}. If z € X; \ X; then pick
a c-open set H such that z € H and H N X; C G?; we may assume by
(1) that H N (X; \ X;) =0, thus HN X; C GY, implying H C GY. ¢

Corollary. Let a family of Lodato merotopies be given in an S;-space.
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Assume that either each X; is open and the trace fileters are Cauchy or
each X; is closed. Then there ezists a Lodato extension.

Example. Take S = {1/n:n €N}, X = S x ({0}US), Xo =S x {0},
X; = X[. Let c be the Euclidean topology (inherited from ]Rz) on X,
and My the merotopy on X, that consists of all the covers containing
at least one cofinite set. For € > 0, consider the cover

(3)  ale)={(p.p+elxlgg+e)NX;:0<p<1, 0<qg<1}U
- U{({1/n}x]0,e) N X; : n € N},

and let {c;(¢) : € > 0} form a base for the merotopy M; on X;. Both
merotopies are compatible and Lodato; they are evidently accordant;
the trace filters are Cauchy by the second line of (3). U(My) and U(M,)
‘have a common extension, namely the Euclidean uniformity on X. Let
M be the Euclidean merotopy on X, which means that {c(¢) : € > 0}
is a base for M, where

c(e) ={(p,p+elxlg,g+e[)N X : p,q €R}.

Now I‘(M) is an extension of I'(My) and I'(M;). And yet, My and M,
cannot be extended, as 3.6 (1) is not fulfilled for ¢ = 1, 7 = 0 and
;i =c¢(1). ¢ : ‘

4. Extending a family of contiguities in a closure
space

A. WITHOUT SEPARATION AXIOMS

4.1 The exact counterparts of the results from §3 hold for contiguities.
It is in fact possible to do the proofs all over again, inserting the word
"finite” in appropriate places; it will be, however, simpler to deduce
the results for contiguities from those for merotopies. We shall need
some elementary (and well-known) facts about the connexion between
contiguities and merotopies (the special case for I = (} of an extension
problem to be discussed in Part IV):

- Each contiguity I' can be induced by a coarsest merotopy MO(F),
for which T' (or-any base for I') is a base; a merotopy of this form
(i.e. omne that has a base consisting of finite covers) is called contigual.
I is Riesz or Lodato iff M?(T") has the same property. The function
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' — M°(T") gives a one-to-one correspondence between contiguities and
contigual merotopies, keeps the relation finer/coarser, and commutes
with the restriction to a subset as well as with taking the induced
closure.

If a family of contiguities can be extended in a closure space then
the closure is symmetric; similarly to the case of merotopies (and other
structures), this condition is sufficient, too.

Definitions. For a family of contiguities in a closure space,

a) Let I'® be the contiguity on X for which the covers f} (z €
€l,f;el;)andc, p (B C X,z € ¢(B)") form a subbase.

b) Let I'! consist of the finite covers f of z that satisfy the following
conditions: St(z,f) € v(z) (z € X) and f|X; e I; (1 € I). O

In other words
(1) Ik = F(Mk(c, MO(Pt))) (k= 0,1).

Theorem. A family of contiguities in a symmetric closure space always
has eztensions; T'C is the coarsest and T the finest extension.

Proof. It follows from (1) and the foregoing observations that I'’ and
I'" are extensions. If I' is an extension then M°(T) is an extension of
the merotopies M°(T;), thus

M°(e, M*(T;)) € M°(T) € M*(¢, M(T;)),
implying I'° c T c T ¢

B. RIESZ CONTIGUITIES IN A CLOSURE SPACE

4.2 If a family of contiguities in a closure space has a Riesz extension
then the contiguities are Riesz, the closure is weakly separated, and the
trace filters are Cauchy. These conditions are also sufficient.
Definition. For a family of contiguities in a closure space, let

'L ={feTI!:intfis a cover of X}. ¢
This means that I'};, = T(M%x(c, M*(T%))).

Theorem. A family of contiguities in a weakly separated closure space
has a Riesz eztension iff the trace filters are Cauchy; if so then I'" is
the coarsest and I'}, the finest Riesz eztension.

Proof. I';-Cauchy means the same as M°(T';)-Cauchy. ¢
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C. LODATO CONTIGUITIES IN A CLOSURE SPACE

4.3 If a family of contiguities in a closure space has a Lodato extension
then the contiguities are Lodato, the closure is an S;-topology, and the
trace filters are Cauchy. These conditions are not sufficient: modify
again Example 1.8, or see 4.5 for a better example.
Definitions. For a family of Lodato contiguities in an S;-space,

a) Let I't = {feT'?!:intfe I''}.

b) Assuming that the trace filters are Cauchy, let T'Y be the con-
tiguity on X for which {intf:f € I'} is a base. {

Observe that T'¥ = I'(M% (¢, M%(T;))) (k = 0,1).
Lemma. A family of Lodato contiguities in an S;-space has a Lodato
eztension iff the trace filters are Cauchy and T'Y C I'}; if so then both
I'Y and I'} are Lodato eztensions.
Theorem. A family of Lodato contiguities in an S1-space has a Lodato
extension iff the trace filters are Cauchy, and, for any 1,7 € I,

(1) (1ntff)[XJ € Fj (f-,, € Fi);

if so then '} is the coarsest and I'L the finest Lodato eztension.
Corollary. A family of contiguities in an S;-space has a Lodato ezten-
sion iff {I';,T';} has a Lodato eztension for any 1,5 € I. {

4.4 Corollary. A single Lodato contiguily given in an S;-space has a
Lodato eztension iff the trace filters are Cauchy.

4.5 Theorem. Let a family of Lodato contiguities be given in an S;-
space, assume that the trace filters are Cauchy, and 3.8 (1) holds. Then
there exists a Lodato extension. O
Corollary. Let a family of Lodato contiguities be given in an S, -space.
Assume that either each X; is open and the trace filters are Cauchy or
each X; is closed. Then there ezists a Lodato eztension.
Example. Let X, Xy, X1,c and Mg be as in Example 3.8. Take I'y =
=T'(My), and let {f;(k): & € N} be a subbase for I'; on X;, where
fi(k) = {{(1/m,1/n) : m,n > k,m # (mod3)}: p =0,1,2}U
U{{({1/m,1/n):n >k} : m < k}U
U{{(1/m,1/n) :m >k} :n < k}U
U{{(1/m,1/n)} : m,n < k}.

Now {T'y,I';} is a family of Lodato contiguities, the trace filters are
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Cauchy, theinduced proximities have a Lodato extension (the Euclidean
one on X), but I'y and I'; do not have one, as 4.3 (1) fails for i = 1,
j == 0, f.i - f]_(l) <>
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