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tions having one and two real characteristics, respectively are treated. Here
a nonlinear problem for a nonlinear system of three equations is studied by
utilizing a method from the theory of elliptic systems (see e.g. [3],[4]) based on
Schauder imbedding. The case of three equations is important in particular
because every elliptic second order equation in two independent variables may

be reduced to a first order composite type system of three equations.

1. Formulation of the initial and boundary value
problem

In this paper, we consider the nonlinear system of first order com-
posite type equations

(11) le; = F(Z,UJ,LUZ,S),
F = Qiw, + Q2037 + Ajw + A, + Ags + Ag,

(1.2) 8y = G(z,w,s),
G = Blw -+ B25-|- B38 + B4,

in a bounded simply connected domain D, where

QJ' = Qj(z1wawza3): .7 = 112, A] = Aj (Z,wws):
szBj(z,w,s), j:1,...,4,

and w(z),Q;,A4;,B;(j =1,2), A4 are complex valued functions, By =

= By, s(z), As, B;(j = 3,4) are real valued functions. For the sake

of convenience, we may assume that D is the unit disk and the lower

boundary of D is v = {|z| = 1, y < 0}. We suppose that system (1.1)

and (1.2) satisfy the following condition.

Condition C

(1) Qj(z,w,U,s),7 = 1,2, A;(2,w,s), = 1,...,4 are measurable in
z € D for all continuous functions w(z), s(z) and all measurable
functions U(z) on D, satisfying

LP[AJ'(Z"‘J(ZLS(Z))’E] Sky < oo, j= 1,2,4,

O3 L la(se(a),5(2), D) < &,
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where p(> 2), ko(> 0) and e(> 0) are positive constants.

(2) The above mentioned functions are continuous in w € € (the com-
plex plane) and s € R (the real axis) for almost every point z € D
and U € C.

(3) The complex equation (1.1) satisfies the uniform ellipticity condi-
tion

(1.4) |F(z,w,U1,8) — F(z,w,Us,38)| < qo|U1s — Ual,

for almost every point z € D and w,U;,Uz € C, s € R, in which
go(< 1) is a non-negative constant.

(4) Bj(z,w,s) (j = 1,...,4), G(z,w,s) are continuous for z € D for
a.ll Holder continuous functions w_.,(z) s;(z) € Ca(D) (j = 1,2)

satisfying
Cﬂ[BJ'(Zawlvsl)a_D_] < kp<oo, j=1,...,4,
(1.5) G(z,w1,81) — G(z,w2,82) = Bf(wy — wy) + B3 (wy; —w3)+
+B;(31 _32)1

in which Cp[B},D] < ko,8(0 < § < 1) is real, for j =1,2,3.
For system (1.1) and (1.2) we discuss the following nonlinear initial
and boundary value problem.

Problem A
(1.6) Re[mw(t)] = P(t,w,s)t,e I' = 0D,
(1.7) a()s(t) = Qt,w,s),t € 7.

Here A(t), P(t,w,s) are Holder continuous functions, |A(f)| = 1, and
A(t), Po(t) = P(t,0,0), P (t,w, s) satisfy

Ca[A[t (0], L] < ko, Co[Po[t()], L] < k1, L=((T),
(1.8) CalP (t({),w1,81) — P(t((),w2,82), L] <
< E{Ca[wl —w21L] + Oa[sl - 321£]}’£ = C(7)’

for all w;[t(¢)] € Ca(L),s;(t) € Ca(f), j = 1,2, where ((z) is the
homeomorphic solution to the Beltrami equation Cz = ¢q(z)(; with a
proper ¢(|g(z)] < go < 1) which maps D onto the unit disk H such
that ¢ (0) = 0, ¢ (1) = 1;z(¢) is the inverse function of {(z), k1 and
¢ are positive constants. Moreover, |a(t)| =1, Qo (t) = @ (¢,0,0) and
Q (t,w, s) satisfy '
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‘ Cp[Qo (1),7] < ks,
(19) Cﬂ[Q(tawhsl)“"Q(taw2152),7] <
< szﬁ (wl - ““’217) + Ecﬁ (31 - 3277)7
in which k; is a positive constant. Obviously Problem 4 is not neces-

sarily solvable. Hence we consider the modified initial-boundary value
problem (Problem B) where (1.6) is replaced by

(1.10) Re [A(t) w (t)] = P(t,w,s) + h(t), t €T,
with
if K > K= At
(1.11) h(t):{O,tEF, 1f{(K:10, . —2WAparg (),
ho +Red . = (h}, +ih;)t™, te T, if K <0,

where ho,hL (m =1,...,-K — 1) are unknown real constants to be
determined appropriately. If K > 0, we assume that the solution w (z)
to Problem A satisfies the side conditions

(1.12) Im[A(a;)w(a;)] =b;, j=1,...,2K +1,

where a; (j =1,...,2K + 1) are distinct points on T, and bi(7 =
=1,...,2K +1) are real constants with the condition |b;]| < k;.

In the following, we first give an a priori estimate of solutions
to Problem B. Afterwards, we prove Problem B and Problem A to be
solvable by using the Schauder fized-point theorem. Under some more
restrictions, we can discuss the uniqueness of the solution to Problem B.

2. A propri estimate of solutions to the initial and
boundary value problem

First of all, we discuss the system of first order composite type
equations

(2.1) : wE:F*(z’w’wZ’s),
F* = Qlwz + sz}‘+ Alw + Azm + A,

5y = G*(z,w, s),
(22) {G* = Bjs -l—B,
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together with the following linear initial and boundary value problem.
Problem B¥*

(2.3) Re[A (t)w (t)] = Po (t) + h (), t €T,
(2.4) Im[X(aj)w(a;)] =bj, i =1,...,2K +1, K >0,
(2.5) a(t)s(t) = Qo (t), t €7,

where Q;,A; (7 = 1,2), Bs, A, Po,h,bj,a,Qq are defined as in 1, and
A = A(z,w,s), B = B(z,w,s) are similar to A4, By, but satisfsying the
conditions

(2'6) LP[A’_E] < k37Cﬁ[B7E] < ks,

for any w (z),s (z) € Cg(D), in which ks, k4 are non-negative constants.
Lemma 2.1. If [w(z),s(z)] is a solution to Problem B* for the system
(1.1), (2.2), then [w(2), s (2)] satisfies the estimates

(2.7)  Cplw, D) < Mi(k1 + k3), Ly [lwz| + lwzl, D] < My (ks + ks),
(2'8) CE[S,E] = Cﬁ[sv—D—] + C[‘S!HD_] < Ms (kz + k4),

where M; = M; (go,po, ko, 0, k, K), 7 =1,2,3, k = (k1,k2,ks3,ks), B =
= min(a, 1- p%)v Po = min(?; i—i;)

Proof. Substituting the solution |w, s] to Problem B* into the complex

system (2.1), (2.2), and assuming that k' = max(ks,k3)>0,k" =
= max (ka,ks) > 0, we put

(2.9) W (z) = 42 5(z) = 22,

It is clear that W(z) is a solution to the boundary value problem

(2.10) Ws=QiW, + Q. Wz + AW + A, W + %,
EWY Py(t)+h(

(2.11) ReA(}) W (1)) = Reltlth(®) "y e 1

(2.12) Im[A(a;)W (a;)] = %,, j=1,...,2K+1,K >0.
Noting that
(2.13) L, [#,D] <1,Ca B4 1] <1, |3I<,

and according to Theorem 5.6 of Chaﬁter 5 in [3] or Theorem 4.3 of
Chapter 2 in [4], we know that W (z) satisfies the estimate

(2.14) Cp[W, D] < My, Ly, [|Wz| + |W,|, D] < M.
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Moreover, S (z) is a solution to the initial value problem

(2.15) Sy =BsS+ &,
(2.16) a(t)S(t) =28, t ¢,

where Cp [75—,,5] <1,Cpg [%#, 'y] < 1. On the basis of Theorem 2.4 in
[2], S(z) can be seen to satisfy the estimate

(2.17) C3 (S, D] < M.

From (2.14), (2.17) it follows that (2.7), (2.8) for &' > 0, k" > 0 are
true. If k' =0 or k" = 0, then (2.7), (2.8) for k' = e >0o0r k" =¢ >0
hold. Letting € tend to 0, we obtain (2.7), (2.8) for ¥’ =0 or k" = 0. ¢
Theorem 2.2. Let the complez system (1.1) and (1.2) satisfy Condi-
tion C and the constant € in (1.3), (1.8) and (1.9) be small enough.
Then the solution [w(z),s(z)] to Problem B for (1.1), (1.2) satisfies
the estimate

(2.18) U = Cglw, D] + Ly, [|lwz| + |ws|, D] < Ma,
(2.19) V =Cj[s, D] < Ms,

where M; = M; (qo,po, ko, a,k,K), j = 4,5.

Proof. Let the solution [w(z),s(z)] be inserted into the complex sys-
tem (1.1), (1.2), the boundary condition (1.10), the side condition (1.12)
and the initial condition (1.7). We see that A= Azs+ Ay,
B = Biw + Byw + By, P (t,w,s), Q(t,w,s),b; satisfy

(2.20) L,[A,D] < eC[s, D] + L,[A4, D] < eC[s, D] + kq,

(2.21) Cg[B, D] < Cy[Byw + Byw, D) + C[By, D] < 2kCplw, D] + ko,

Ca[Pa L] < Ca[PO(t(C))7L] + Ca[P[t(C)awv 3] - PO[t(C)]’L] <

2.22

(2:22) < ks + e{Culw, L] + Cols, 4},

(2.23) | Ib;| < ki, j=1,...,2K +1,K >0,

3g  0PlQS OplQu (7] + keCilonn] + <Ol <

< k3 + k2Cslw, D] + €Cpls, D).
Using (2.7) and (2.8) we have '
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U < (Ml + M2){EC[S7-D—] + kO + kl + E[Ca (w’L) + Ca[S,E]} <
(2.25) < (M1 + Mz)[ko + ky + ECﬁ (w,ﬁ) + 60;«)(8,5)] <
< (Mi+ M) (ko + k1 + €U +€V),

V < Ms[2koCp (w,D) + ko + ks + k2 Cp (wD) + eCpg (s,D] <
< Mslko + k2 + (2ko + k2) U + €V
Choosing the constant € so small that
(My + My)e < 5, Ms[142(2ko + ko) (My + Mp)]e < 1,
one can show

Mi+Mj)(ko+ki1+eV
(227) U < MapMalobhiteV) < o (My + Ma) (ko + by + V),

(2.26)

V < Mslko + k2 + 2(2ko + k2) (M1 4 M3) (ko + k1 + eV) +eV] <
M;lko + kz + 2 (2ko + ka) (ko + k1) (M; + M) <

1 — Ms[1l+2(2ko + ko) (M1 + M;)] e -
< 2Mjslko + k2 + 2 (2ko + k2) (ko + k1) (M7 + M,)] = Ms,

(2.28) <

3. Solvability of the initial and boundary value
problem

First we prove the existence of solutions to Problem B for the
system

(3 1) {wE:F(vaawz), F:Q1w2+QZU_J§+A1W+AzG+A3,
. QJ :Qj(z7wz), .7:1727AJ :Aj(z)7 j:172737

and (1.2) by using the parameter extension method, and then verify
the existence of solutions to Problem B for the system (1.1) and (1.2)
by using Theorem 2.2 and the Schauder fized point theorem. Finally,
we give conditions for Problem 4 for (1.1), (1.2) to be solvable.
Theorem 3.1. Let the system (3.1), (1.2) satisfy Condition C and the
constant € be small enough. Then Problem B for (3.1), (1.2) is solvable.
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Proof. We consider the following initial boundary value problem with
parameter ¢ (0 <t < 1).

Problem B’

(3.2) wz = tF (z,w,w,) + A(2) in D, A € L,(D),

(3.3) Re[A(z)w(2)] =tP (2,w,8) +p(2) +h(2), on T,p € Cu(T),
(34)  Im[A(ej)w(e;)]=b; j=1,...,2K+1,K >0,
(3.5) sy =tG(z,w,s) + B(z)in D, B € C3(D),

(3.6) a(2)s () = tQ (z,w,5) + 4(2) on 7,4 € Cs(7).

When t = 0, Problem B’ has a unique solution [w (z),s(z)] with w €
€ Cg (D), s € C5(D) - see [2], [3] and [4].

Assuming that Problem B' for ¢y (0 <ty < 1) is solvable, we will prove
that there exists a positive constant § such that Problem B’ on

(3.7) E={tt—t| <60<t<1}

for any A € L,, (D), B € Cs(D), p € Cp(l') and ¢ € Cp(7) has a
unique solution [w(z),s(z)], w € Cg (D) N W , (D), s € C5 (D).

We rewrite (3.2) — (3.6) as

(3.8) ws — toF (z,w,w,) = (t — 1) F (z,w,w,) + 4 (2),

(3.9) Re[A(2)w (2)] — toP (2,w,5) = (t —to) P (2,w,8) + p(2) + h(z),
(3.10) ImA(aj)w(e;)] =b;, j=1,...,2K +1,K >0,
(3.11) sy — t0G (z,w,8) = (t — ty) G (z,w,s) + B (z),

(3.12) a(z)s(z) —tQ (z,w,5) = (t — t0) Q (2, w, s) + g (2).

Choosing arbitrary functions wy € Cg (D) N W, (D), s0 € 0) (D), for
instance wo (2) = 0, s9(2) = 0, we substltute wo (2), s0 (2 ) into the
corresponding positions of the rlght hand sides in (3.8) — (3.12). By
assumption, for ¢y the initial-boundary value problem (3.8) - (3.12) has
a unique solution [w; (2),s1 (2)], w1 € Cg (D) N W} (D),s; € C3 (D).
Let us substitute w; (2), s; (2) into the right hand 51des of (3 8) - (3 12)
and find unique solution [w, (2), 3 (2)],w2 € Cg (D) N W, (D), 55 €
€ Cj (D) to this system. Thus, we obtain wn(2),8.(2),n =1,2,...,
satisfying ’

(313) Wnt1z — tOF(zawn-{—l, Wnt1 z) = (t - tO)F(Z)wnawnz) + A(Z)a



An initial and boundary value problem 57

Re[Awni1] — toP (2,Wnt1, 8nt1) =
= (t —t0) P (z,wnsn) + p(2) + h(2),
(3.15) Im[X (a;) wnyi(a;)] =bj, 5 =1,...,2K +1,K > 0,
(8.16)  Spt1y — t0G (2,Wnt1,8n+1) = (t — to) G (2,wn, 8n) + B(z),
(3.17) a(2)snt+1 —t0Q (2, Wnt1,8n41) = (t — o) @ (2,wn, 3a) + ¢ (2).

Setting Wn+1 = Wnpt1 — Wy, Sn+1 = 8n+41 — 8n from (313) - (317), we
have

(3.14)

Wit1z — to [F (z, Wata, Wn+17.) - F("",Wm an)] =

(818) = (¢~ 10)IF (2, Wi, W) = F(2, W1, Wa1,)],

Re [XW.,H_]_] - tU[P (z,wn+1,5n+1) — P(z,wn,sn)] =

(3.19) = (t — t0)[P(2,Wn, 82) — P(2,wn—1,8n1)] + h(2),

(320)  Im[N(a})Wara(a;)] = 0,5 =1,...,2K +1,K >0,
(3.21) Sﬂ-+1y —1p [G (Za“"n+1: 3n+1) -G (Zawnasn)] =

= (t — 1) [G (Zawm sn) -G (Z,wn—lv-’n—l]a
(3.22) a(2)Snt1 — t0[Q (2,Wnt1,8n+1) — Q (2,Wn, 8n)] =
=(t—10)[Q (z,wWn,82) — Q(2,wn-1,5n-1)].

By Condition C

LPU[F (Z’W'"-’W"z) - F(Z1Wn—1,Wn—1z)1D] <
< Lpy[Whnz, D] + 2keCp [Wy, D],
Caf{P[z ({),wn (2(()); 3n(2 ({))]-
(3.24) —P[z((),wn-1(2(¢)),8n-1 (2 ()], L <
< e{Ca[Wn(2({) Il + CalSn (2(€)), £}
Cﬂ[G (z7wn73n) - G(Zawn—hsn—l),—] < ‘
< 2kgC3[Wa, D] + koCj[Sn, D],

(3.23)

| (3.25)
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Cﬂ[Q (z7wn73n) - (Z Wy — 1’311.—1)77]

3.26
( ) < szﬁ[ -n,,’)'] + ECﬁ[Sﬂd 7]

can be obtained.
According to the method in the proof of Theorem 2.2, we can conclude
that '

Unt1: = Cg[Wai1, D] + Ly [[Wai1z| + [ W1 |, D] <

3.27
( ) < |t —to| MgUsy,

(328) Vn+1 = CE [Sn+1,ﬁ] S |t - tol MGVn,

where Mg = Mg (g0, Po, ko, k, K,€) > 0.
Choosing § = m, then for |t —1| <6, 0<t<1, and =n>
> N +1 > 1, we can derive the inequality

Unt1 < 3Un < 3501, Voy1 < 5% V1.
Moreover, if n,m > N + 1, then

Cﬁ [wﬂ wva] + Lpo[l""n wm) | + |("'-’n - “’m)zlvﬁ] <
(3-30) > 2N EJ =0 2_1 Ul 2Nl—lU17 .
C'ﬁ[ — 8m, D] < 2N—ICE [s1,D].

This shows that Cglwn — Wm, D] + Ly, [|[(wn — wm)z| + [(wn — wim)al,
D] -0, Chlsn — 8m,D] = 0,if n,m — co. Hence there exist w, €
€ Cp (D) N 1}0 (D), s« € 0 (D), such that Cslw, —w.,D]+
+Lg [|(6n = w2)3] + |(@n — )21, D] — 0, Cfsn — 8, D] 0, as m. —
— 00, and [wy, (2), 8 (2)] is just a solution to Problem B' on E for (3.2)
— (3.6). Thus, we know that when ¢ = 0,1,...,(3]6,1, Problem B' for
(3.2) — (3.6) is solvable. In particular, whent =1, 4 =0,p =0, B =0,
g =0, Problem B'i. e. Problem B for (3.1), (1.2) is solvable. ¢
Theorem 3.2. Under the same hypotheses as in Theorem 2.2, Problem
B for (1.1), (1.2) has a solution.

Proof. We intioduce a bounded and closed convex set Bjs in the Ba-
nach space C' (D) x C (D), the elements of which are vectors of functions
w = [w, 8] satisfying the condition

(3.31) Cw,D] < M,,Cl[s,D] < Ms,
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where My, M5 are the constants stated in (2.18), (2.19). We choose an
arbitrary vector of functions } = [W, S] € B and insert W (2), S (z)
into the appropiate positions of the complex equation (1.1). Following
Theorem 3.1, there exists a solution [w (z), s (z)] to the initial boundary
value Problem B':

wz-_—.f(Z,w,VV,S,wz),
(332) f:Ql (Z7Waw375)wz+Q2 (Z,VV,UJZ,S)E;—}—
+ Ay (2, W,8)w + Az (2, W,8)w + A3 (2, W, 8),

and (1.2), (1.6), (1.10), (1.12), (1.7). -
According to Theorem 2.2, the solution [w(z),s(z)] satisfies the esti-
mates (2.18) and (2.19), obviously w = [w,s] € Bp. Denoting this
mapping from ) € Bys onto w by w = § [1], it is clear that § is an
operator which maps Bj; onto a compact set in Bjyy.

To prove that § is continuous in Bas, we select a sequence of vectors

[Wh, Snl(n =0,1,2,...) satisfying the condition

(3.33) C [Wy — Wo,D] — 0,C[Sp — S0,D] — 0 as n — oo

and consider the difference wy, — wy = S (2,) — § (). We have
(3.34) [wn — wolz = f (2,wn, Wa,wnz) — f(2,w0, Wo,woz),

(3.35) Re[A () (wn — wo)] = P (2,wn, 8n) — P (2,w0,80) + h(t),t € T,
(3.36)  Tm[M(a3) (wn (a5) —wo (2;))] =0, G =1,...,2K +1,K >0,
(3.37)  (sn—0)y = G (2,wn,5n) — G (2, w0, 50),

(3.38) a(t)[sn — s0] = Q (t,wn, 5n) — Q (¢, w0,50), T € 7.

The complex equation (3.34) can be written as

[w‘n. - wO]E - [f(z7wn7Wn)wnZ) - f(z7w01W‘n-7w02)] = Cn,
cn = f(z,wo, Wa,woz) — f(z,wo, Wo,wp).
Using the method in the proof of Theorem 2.2 of Chapter 4 in (3] or

Theorem 2.6 of Chapter 2 in [4], we can verify that L, [cn,D] — 0 as
n — oo. Hence, applying the method used in the proof of Theorem 2.1,

(3.40) Cplwn — wo, D], Cglsn — 50, D] < My Ly, [¢n, D]

(3.39)

can be concluded where My is a non-negative constant. If n — oo, then
Clwp—wy, D] — 0, C[s, —s9,D] — 0. Hence, w = S(Q) is a continuous
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mapping from Bps onto a compact set in Bps. On the basis of the
Schauder fized point theorem, there exists a vector w = [w, s8] € Bay, so
that w = § (w), and w = [w, s] is just a solution to Problem B for the
system (1.1) and (1.2). ¢

Theorem 3.3. Suppose that the system (1.1), (1.2) satisfies the same
conditions as in Theorem 2.2, then the following statement holds

(1) If K > 0, Problem A for (1.1), (1.2) is solvable.

(2) If K < 0, there are —2K —1 conditions for Problem A to be solvable.
Proof. Let us substitute the solution [w(z),s(z)] to Problem B into
the boundary condition (1.10). If h(z) = 0,z € T, then [w(z),s(2)] is
also a solution to Problem A for (1.1), (1.2). The total number of real
equalities in h(z) = 0 is just the total number of conditions stated in
the theorem. ¢

Finally, in order to discuss the uniqueness of the solution to Problem B
and Problem A for (1.1), (1.2) the following additional condition is
imposed.

There exist A}, A} € L,,(D), with L, [43, D] small enough, such that
(3.41) F(Z,LU]_,U,S]_) - F(Z,U)z,U,Sz) = AT (wl — U)z) + A;(Sl — Sz),

for any functions w;,s; € Cg(D),j = 1,2, and U € L,, (D) (2 < py <
< p).

Theorem 3.4. (1.1), (1.2) satisfies Condition C and (3.41), and the
constant € in (1.3), (1.8), (1.9) is small enough, then the solutions to
Problem B are unique. '

Proof. Let [w; (2),81 (2)], [w2 (2), 52 (2)] be two solutions to Problem
B for (1.1), (1.2). It is clear that [w,s] = [w1 — wa, 81 — 2] is a solution
to the initial-boundary value problem

wz = Qw, + Ajw + A3s,

F(z,wy,w1:,81)—F (z,w1,w2;,82)
Q — { wy y Wz ?é 01
0, w,=0;

sy = Bfw + B;w + Bgs,
Re[A(t)w (t)] = P(t,w1,81) — P(t,ws,82) + h(t),t €T,

Im[A(e;)w(e;)]=0,7=1,2,...,2K +1(0 < K);

a(t)s(t) = Q(t,wy,s1) — Q (t,ws,s2),t € 4.
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With the method used in the proof of Theorem 2.2, we can show

Cplw, D] + Ly, [lwz| + |w.|, D] = 0,
CE(&,D) =0,

so that w(z) = 0,8(2) =0, i.e. wy (2) = wy (2)s1(2) = s2(2) in D.
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