A NOTE ON CYCLE DOUBLE CO-VERS IN CAYLEY GRAPHS

F. Hoffman

Department of Mathematics, Florida Atlantic University, Boca Raton, Florida, U.S.A.-33431-0991.

S.C. Locke

Department of Mathematics, Florida Atlantic University, Boca Raton, Florida, U.S.A.-33431-0991.

A.D. Meyerowitz

Department of Mathematics, Florida Atlantic University, Boca Raton, Florida, U.S.A.-33431-0991.

Received April 1990

AMS Subject Classification: 05 C 70, 05 C 25, 05 C 10

Keywords: Cayley graph, Hamilton cycle double cover

Abstract: We show that every finite Cayley graph of degree at least two has a cycle double cover.

All graphs in this note are finite. Lovász ([4], Problem 11) conjectured that every connected vertex-transitive graph has a Hamilton path. One well-studied class of vertex-transitive graphs is the class of Cayley graphs. Tarsi [5] and Goddyn [1] proved that every 2-edge-connected graph with a Hamilton path has a cycle double cover. Combining these

ideas led the authors to consider cycle double covers in Cayley graphs.

We prove that every Cayley graph of degree at least two has a cycle double cover.

Lemma 1. Let G be a graph whose edge set can be decomposed into a collection of 1-factors and 2-factors, where the number of 1-factors is not 1. Then G has a cycle double cover.

Proof. This is virtually trivial. We have a decomposition of the edge set of G into a set of cycles C and a set of 1-factors F_1, F_2, \ldots, F_k . Each of the graphs induced by $F_i \cup F_{i+1}$, $i = 1, \ldots, k$ (addition modulo n) is a 2-factor \mathcal{F}_i of G. The collection of cycles in the \mathcal{F}_i together with two copies of each of the cycles in C, constitutes a cycle double cover of G. \diamondsuit

Now suppose that Γ is a group, and $S \subseteq \Gamma$, where

- (i) $id \notin S$,
- (ii) $v \in S \Rightarrow v^{-1} \in S$, and
- (iii) S generates Γ

We write $\operatorname{Cay}(\Gamma, S)$ for the Cayley graph of Γ with respect to this set of generators. $\operatorname{Cay}(\Gamma, S)$ has vertex set Γ , and its edge set is $\{(g, gs) : g \in \Gamma, s \in S\}$.

Theorem. If $G = \operatorname{Cay}(\Gamma, S)$, with $|S| \geq 2$, then G has a cycle double cover.

Proof. Each element g of S corresponds to a set of edges E_g of G. If order(g) = 2, then E_g is a 1-factor of G. If order $(g) \neq 2$, then E_g is a 2-factor of G.

Case 1. If every element of S has order greater than two, or if at least two elements of S have order two, then Lemma 1 applies.

Case 2. If $\operatorname{order}(x) = 2$, for exactly one $x \in S$, then there is some $y \in S$ with $\operatorname{order}(y) > 2$. The sets E_g , $g \in S' = S - \{x, y, y^{-1}\}$, correspond to 2-factors of G. We note that $G - \cup \{E_g : g \in S'\}$ may not be connected, and may consist of several disjoint copies of $\operatorname{Cay}(\langle x, y, y^{-1} \rangle, \{x, y, y^{-1}\})$. Thus, we need only consider the case in which |S| = 3. If Γ is abelian, then G has a Hamilton cycle (see Holsztyński and Strube [2]) and therefore a cycle double cover. Thus, we may assume that Γ is non-abelian.

Since $\{x,y\}$ generates Γ , $\{y,xy\}$ generates Γ . Suppose that $y(xy)^j = id$, for some j. Then $y = (xy)^{-j}$, and $\{xy\}$ generates Γ , contradicting the assumption that Γ is non-abelian. Therefore, we may assume that $y(xy)^j \neq id$, for any j. Similarly, we may assume that

 $x(yx)^j \neq id$, for any j.

We now describe a cycle double cover of G. For $g \in \Gamma$, let

$$C_g = g_0 g_1 g_2 \dots g_{2k-1} g_0,$$

denote the closed trail of G with vertices $g_{2i} = g(xy)^i$, $g_{2i+1} = g_{2i}x$, $0 \le i < k = \operatorname{order}(xy)$. We claim that C_g is, in fact, a cycle of G. If C_g is not a cycle, then $g_{\alpha} = g_{\beta}$, for some α, β , where, without loss of generality, $0 \le \alpha < \beta < 2k$. We consider four cases depending on the parities of α and β .

- (i) If α and β are both even, then $(xy)^{(\beta-\alpha)/2} = id$, which contradicts order(xy) = k.
- (ii) If α and β are both odd, then $g_{\alpha+1}=g_{\beta+1}$, and case (i) applies.
- (iii) If α is odd and β is even, then $y(xy)^{(\beta-\alpha-1)/2}=id$, contradicting the fact that $y(xy)^j\neq id$, for any j.
- (iv) If α is even and β is odd, then $y(yx)^{(\beta-\alpha-1)/2} = id$, contradicting the fact that $x(yx)^j \neq id$, for any j.

Therefore, C_g must be a cycle. We note that the cycles C_g and C_{gxy} are really the same cycle, and thus that each cycle has k names.

Let g and h be adjacent vertices in $Cay(\langle x, y, y^{-1} \rangle, \{x, y, y^{-1}\})$. Thus, h = gx or h = gy or $h = gy^{-1}$. If h = gx, the edge (g, h) is contained in the cycles C_g and C_h . If h = gy, the edge (g, h) is contained in the cycle C_{gx} and in E_y . If $h = gy^{-1}$, the edge (g, h) is contained in the cycle C_{hx} and in E_y . We also note that every vertex g is on exactly two of the cycles of the form C_w , specifically, C_g and C_{gx} .

Thus the set $C = \{C_g : g \in \Gamma\} \cup E_g$ is a cycle double cover of G. \diamondsuit

We leave open the question of whether or not every vertex-transitive graph has a cycle double cover. There have been many papers establishing that certain classes of vertex-transitive graphs have Hamilton paths. We mention only one such result. Lipman [3] proves that every graph with a transitive nilpotent automorphism—group,—and every vertex-transitive graph on a prime power number of vertices must have a Hamilton path. Thus, by [1,5], each of these graphs has a cycle double cover. It is easy to see that if |S| is even, then the Cayley graph has a cycle cover.

References

- [1] GODDYN, L.A.: Cycle double covers of graphs with Hamilton paths, Journal of Combinatorial Theory, Series B 46 (1989), 253 254.
- [2] HOLSZTYŃSKI, W. and STRUBE, R.F.E.: Paths and circuits in finite groups, Discrete Mathematics 22 (1978), 263 272.
- [3] LIPMAN, M.J.: Hamilton cycles and paths in vertex-transitive graphs with abelian and nilpotent groups, *Discrete Mathematics* 54 (1985), 15 21.
- [4] LOVÁSZ, L.: Combinatorial Structures and their Applications in: (Proceedings of the Calgary International Conference, Calgary, Alberta, 1969) Gordon and Breach, London (1970), 497.
- [5] TARSI, M.: Semi-duality and the cycle double cover conjecture, Journal of Combinatorial Theory, Series B 41 (1986), 332 - 340.