63

Mathematica Pannonica

2/1 (1991), 63 — 66

A NOTE ON CYCLE DOUBLE CO-
VERS IN CAYLEY GRAPHS

F. Hoffman

Department of Mathematics, Florida Atlantic University, Boca
Raton, Florida, U.5.4.-88481-0991.

S.C. Locke

Department of Mathematics, Florida Atlantic University, Boca
Raton, Florida, U.§5.A.-33431-0991.

A.D. Meyerowitz

Department of Mathematics, Florida Atlantic University, Boca
Raton, Florida, U.5.A.-39431-0991.

Received April 1990

AMS Subject Classification: 05 C 70, 05 C 25, 05 C 10
Keywords: Cayley graph, Hamilton cycle double cover

Abstract: We show that every finite Cayley graph of degree at least two has

a cycle double cover.

All graphs in this note are finite. Lovasz ([4], Problem 11) conjec-
tured that every connected vertex-transitive graph has a Hamilton path.
One well-studied class of vertex-transitive graphs is the class of Cayley
graphs. Tarsi [5] and Goddyn (1) proved that every 2-edge-connected
graph with a Hamilton path has a cycle double cover. Combining these
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ideas led the authors to consider cycle double covers in Cayley graphs.

We prove that every Cayley graph of degree at least two has a
cycle double cover.

Lemma 1. Let G be a graph whose edge set can be decomposed into a
collection of 1-factors and 2-factors, where the number of 1-factors is
not 1. Then G has a cycle double cover.

Proof. This is virtually trivial. We have a decomposition of the edge
set of G into a set of cycles C and a set of 1-factors F3, Fy, ..., Fi. Each
of the graphs induced by F; U F;,;,: = 1,...,k (addition modulo n)
is a 2-factor F; of G. The collection of cycles in the F; together with
two copies of each of the cycles in C, constitutes a cycle double cover
of G. ¢

Now suppose that I' is a group, and S C I', where

(i)  dégS§,

(ii) veES=>v1€S, and

(iii) S generates I

We write Cay(T', S) for the Cayley graph of I' with respect to this set
of generators. Cay(T',S) has vertex set I', and its edge set is {(g,gs) :
geTl,se S}

Theorem. If G = Cay(T',S), with |S| > 2, then G has a cycle double
cover.

Proof. Each element g of S corresponds to a set of edges Eg of G. If
order(g) = 2, then E, is a 1-factor of G. If order(g) # 2, then E; is a
2-factor of G.

Case 1. If every element of S has order greater than two, or if at least
two elements of S have order two, then Lemma 1 applies.

Case 2. If order(z) = 2, for exactly one z € §, then there is some
y € S with order(y) > 2. The sets E;, g € S' = § — {z,y,y '},
correspond to 2-factors of G. We note that G — U{E; : g € 5’} may
not be connected, and may consist of several disjoint copies of Cay(<z,
¥, ¥~ 1>,{z,y,¥7}). Thus, we need only consider the case in which
|S] = 3. If T is abelian, then G has a Hamilton cycle (see Holsztynski
and Strube [2]) and therefore a cycle double cover. Thus, we may
assume that I' is non-abelian.

Since {z,y} generates I, {y,zy} generates I'.  Suppose  that
y(zy)? = id, for some j. Then y = (zy)~?, and {zy} generates T,
contradicting the assumption that I' is non-abelian. Therefore, we may
assume that y(zy)? # id, for any j. Similarly, we may assume that
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z(yz)? # id, for any j.
We now describe a cycle double cover of G. For g € T, let

Cy = 909192 - - - §2k—190,

denote the closed trail of G with vertices gz; = g(zy)?, g2i41 = gaiz,

0 <i < k = order(zy). We claim that C, is, in fact, a cycle of G. If

Cy is not a cycle, then g, = gg, for some «, 3, where, without loss of

generality, 0 < a < f < 2k. We consider four cases depending on the

parities of a and S.

(i) If @ and G are both even, then (zy)#~*)/2 = id, which contradicts
order(zy) = k.

(ii) If o and B are both odd, then got1 = gg+1, and case (i) apphes

(iii) If @ is odd and 3 is even, then y(zy)#~=1)/2 = id, contradicting
the fact that y(zy)? # z'd, for any j.

(iv) If @ is even and £ is odd, then y(yz)(F~*~1/2 = id, contradicting
the fact that z(yz)’ # id, for any j.

Therefore, C; must be a cycle. We note that the cycles Cy and Cy,y

are really the same cycle, and thus that each cycle has k names.

Let g and h be adjacent vertices in Cay(< z,y,y" ! >,{z,y,57'}).
Thus, h = gz or h = gy or h = gy~ '. If h = gz, the edge (g,h)
is contained in the cycles Cy and C},. If h = gy, the edge (g,h) is
contained in the cycle Cy; and in E,. If h = gy™!, the edge (g,h) is
contained in the cycle Ch, and in E,. We also note that every vertex g
is on exactly two of the cycles of the form Cy, specifically, Cy and Cy,.

Thus the set C = {C, : g € '} UE, is a cycle double cover of G. {

We leave open the question of whether or not every vertex-tran-
sitive graph has a cycle double cover. There have been many papers
establishing that certain classes of vertex-transitive graphs have Hamil-
ton paths. We mention only one such result. Lipman [3] proves that
every graph with a transitive nilpotent automorphism group, and
every vertex-transitive graph on a prime power number of vertices must
have a Hamilton path. Thus, by [1,5], each of these graphs has a cycle
double cover. It is easy to see that if | S| is even, then the Cayley graph
has a cycle cover.
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