THE ITERATES ARE NOT DENSE IN C

K. Simon

Institute of Mathematics, University of Miskolc, H-3515 Miskolc--Egyetemváros, Hungary.

Received March 1990

AMS Subject Classification: 54 H 20, 26 A 18

Keywords: iterates, density.

Abstract: It is proved that the set of all iterates of continous functions are not dense in C.

Let C denote the set of continuous functions mapping [0,1] into itself endowed with the sup norm. Denot by f^k the k^{th} iterate of the continuous function f. The structure of the set $W^k = \{f^k : f \in C\}$ was examined by M. Laczkovich and P.D. Humke. They proved in [1] and [2] that W^2 is not everywhere dense in C and W^k is an analytic non-Borel subset of C. The author of this paper proved in [3], [4] that the set $\bigcup_{k>1} W^k$ of iterates of continuous functions is a first category set and W^2 is nowhere dense. The aim of this paper is to prove the

set and W^2 is nowhere dense. The aim of this paper is to prove the following

Theorem. The set $\bigcup_{k>1} W^k$ of iterates of continuous functions is not everywhere dense in C.

In other words: there exists an open ball B (see Figure 1) such that B does not contain any iterates of any continuous function.

The centre of the ball B is the continuous function g which is linear on $[0,\frac{1}{2}]$, $[\frac{1}{2},1]$ and g(0)=0.03, $g(\frac{1}{2})=0.99$, g(1)=0.03 and the radius of the ball r = 0.01.

We introduce the following notations. We denote the lower boundary of B by $g_1(x) = g(x) - 0.01$ and the upper one by $q_2(x) = q(x) + 0.01.$ $\operatorname{Put} u_1 = \sup \ g_1(x) =$ $0.98, \quad u_2 = \inf$ $\{g_1(x)|g_2(x)>u_1\}=$ $=u_1-2r=0.96,u_3=$ $=g_2(u_2)$ and $u_4=$ $=g_2(u_3).u_4 < g_2^{-1}(\frac{1}{2}).$ Both g_1 and g_2 have u_4 only one fixed point, say r_1 , r_2 respectively; put $D = [r_1, r_2]$. It

 $Fix(f) \subset D$ holds, is clear that for every $f \in B$ where Fix(f) = $= \{x | f(x) = x\}.$

For every $H \subset [0,1]$ we denote by \overline{H} the complement of H. Let $A, B \subset [0,1]$ we shall write A < B if a < b for every $a \in A$ and $b \in B$. **Proof of the Theorem.** Assume that there exists $f \in B \cap \bigcup W^k$ say $f = \varphi^n$ for $\varphi \in C$ and n > 1. We define $I = \{x | g_2(x) > u_1\}$.

We choose a, b such that I = (a, b). It is easy to see that $u_4 < a$. For every $y \in \overline{I}$ $\varphi(y) \neq \varphi(\frac{1}{2})$ since $\varphi(y) = \varphi(\frac{1}{2})$ implies $f(y) = f(\frac{1}{2})$ which contradicts the definition of I.

There are four cases to consider:

Case 1. (i)
$$\varphi(\frac{1}{2}) < \varphi(\overline{I}),$$

Case 2. (ii)
$$\varphi([0,a]) > \varphi(\frac{1}{2}) > \varphi([b,1])$$

Case 2. (ii)
$$\varphi([0,a]) > \varphi(\frac{1}{2}) > \varphi([b,1]),$$

Case 3. (iii) $\varphi([0,a]) < \varphi(\frac{1}{2}) < \varphi([b,1]),$

Case 4. (iv)
$$\varphi(\frac{1}{2}) > \varphi(\overline{I})$$
.

We prove that each of them leads to a contradiction.

Case 1: (i) holds. Now $\varphi(\frac{1}{2}) > a$ since otherwise $Fix(\varphi) \cap [0, b] \neq \emptyset$ and thus $\operatorname{Fix}(f) \cap [0,b] \neq \emptyset$ which is impossible since $\operatorname{Fix}(f) \subset D$. Hence $\varphi(\overline{I}) > \varphi(\frac{1}{2}) > a$ and, in particular, $\varphi(a) > a$. On the other hand, $f([0,1]) \cap [0,a) \neq \emptyset$ and hence there is y with $\varphi(y) < I$. Then $y \in I$ and $\varphi(y) < y$. It follows that $\operatorname{Fix}(\varphi) \cap I \neq \emptyset$. Therefore $\operatorname{Fix}(f) \cap I \neq \emptyset$ which is impossible since $\operatorname{Fix}(f) \subset D$ and $D \cap I = \emptyset$. \diamondsuit Case 2: (ii) holds. First we prove

$$\varphi([0,u_3])\cap [u_1,1]\neq \emptyset.$$

It is clear that (ii) implies

(2)
$$\min_{x \in [u_3,b]} \varphi(x) < \min_{x \in [0,u_3]} \varphi(x).$$

We also know that $\varphi([0,1]) \cap [u_1,1] \neq \emptyset$, hence by (ii), $\varphi([0,b]) \cap [u_1,1] \neq \emptyset$. Thus if (1) doesn't hold then

$$\max_{\boldsymbol{x} \in [u_3,b]} \varphi(\boldsymbol{x}) > \max_{\boldsymbol{x} \in [0,u_3]} \varphi(\boldsymbol{x})$$

must hold. From (2) and (3) we get $\varphi([0,u_3]) \subset \varphi([u_3,b])$ and thus $f([0,u_3]) \subset f([u_3,b])$ which is false and (1) follows. Pick $x_0 \in \varphi^{-1}([u_1,1]) \cap [0,u_3]$. Then

$$\varphi(f(x_0)) = f(\varphi(x_0)) < u_3$$

holds by the definition of u_3 . Since $f(x_0) < u_4$ (implied by $x_0 \in [0, u_3]$) from (4) we have

$$\min_{x \in [0,u_4]} arphi(x) < u_3$$

and further (1) implies $\max_{x \in [0, u_4]} \varphi(x) > u_1$. Thus $\operatorname{Fix}(\varphi) \subset \varphi([0, u_4])$ since $\operatorname{Fix}(\varphi) \subset D \subset [u_3, u_1]$. Hence $f([0, u_4]) \cap \operatorname{Fix}(f) \neq \emptyset$ which contradicts $f \in B$. \diamondsuit Case 3: (iii) holds. Let $d = \max \operatorname{Fix}(\varphi)$. First, we show

$$\varphi([0,d]) \le u_1.$$

Suppose instead that

$$(6) \exists m \leq d \text{ such that } \varphi(m) > u_1.$$

Since

(7)
$$\varphi(x) < x \text{ for every } x > d,$$

we have $\varphi([d,u_1]) < u_1$. From the assumptions (6) and (iii) it follows that $\varphi([a,m]) \supset \varphi([d,u_1])$ and thus $f([a,m]) \supset f([d,u_1])$ which contradicts $f \in B$. Thus (5) holds. Choose m such that $\varphi(m) > u_1$. From (5) and (7) we have $m > u_1$ whence $f(m) < u_4$. Thus $\exists 0 \leq j \leq n-1$ for which $[\varphi^j(m)\varphi^{j+1}(m)] \cap \operatorname{Fix}(\varphi) = \emptyset$. Let z be an arbitrary element of the set $[\varphi^j(m), \varphi^{j+1}(m)] \cap \operatorname{Fix}(\varphi)$. Then $z \in \varphi^j([\varphi(m), m])$ and hence

$$z=\varphi^{n-j}(z)\in f([\varphi(m),m])\subset f([u_1,1])$$

which is impossible as $z \in D$. \diamondsuit

Case 4: (iv) holds. Assume first that $n \geq 3$. We need 3 Lemmas. Lemma 1. Put $j = \min\{x \in [a,b] | \varphi(x) \geq u_1\}$. (It follows from (iv)

that such a j exists.) Then the following inequalities hold:

(8)
$$\varphi(f(j)) < u_3,$$
 $\varphi(f^2(j)) < u_4.$

Proof. The relations $\varphi(j) \geq u_1$ and $f([u_1, 1]) < u_3$ imply that $f(\varphi(j)) = \varphi(f(j)) < u_3$ which proves (8), while (9) follows from the definition of u_4 :

$$arphi(f^2(j)) = f^2(arphi(j)) = f(f(arphi(j))) \in f([0,u_3]) < u_4. \ \diamondsuit$$

Lemma 2. $\varphi([u_2,1]) < j$.

Proof. Assume that $\varphi([u_2,1]) < j$ doesn't hold. It follows from (8) that

$$\min_{x \in [u_2,1]} \varphi(x) < u_3 < j$$

thus $\exists x_0 \in [u_2, 1]$ such that $\varphi(x_0) = j$. Hence

$$(10) \hspace{3.1em} \varphi^2(x_0) \geq u_1.$$

On the other hand: $\varphi([0, u_3]) \cap \operatorname{Fix}(\varphi) = \emptyset$ since otherwise $f([0, u_3]) \cap \operatorname{Fix}(f) \neq \emptyset$ would hold which is impossible. Thus from $f^2(j) \in [0, u_3]$ and from (9) we have $\min \varphi([0, u_3]) < \operatorname{Fix}(\varphi)$. Using (8) we find

$$\varphi^{2}(f(j)) = \varphi(\varphi(f(j))) \in \varphi([0, u_{3}]) < \operatorname{Fix}(\varphi).$$

From this and (10) we get

$$\min_{x \in [u_2,1]} \varphi^2(x) < \operatorname{Fix}(\varphi) < u_1 \le \max_{x \in [u_2,1]} \varphi^2(x),$$

thus $\varphi^2([u_2,1]) \supset \operatorname{Fix}(\varphi)$, that is $f([u_2,1]) \cap \operatorname{Fix}(f) \neq \emptyset$ contradicting $f \in B$. \diamondsuit

Since $f(j) > u_1$ and $f^2(j) < u_3$, it follows from (9) that $\varphi([0, u_3]) \cap [0, u_4] \neq \emptyset$. On the other hand, $\varphi(j) \geq u_1 > j$ and, as $u_3 < u_4 < j$, it follows that there is a $v_2 < j$ such that $\varphi(v_2) = j$.

Lemma 3. $\varphi^{-1}(v_2) \cap (0,j) \neq \emptyset$.

Proof. We first show that $u_4 < v_2$. Assume that $v_2 \le u_4$. Then

(11)
$$\varphi([0,u_4])\supset [u_4,j]$$

since $\varphi(v_2) = j$ and $\varphi(f^2(j)) < u_4$. Further $\varphi([0, u_4]) < \operatorname{Fix}(\varphi)$, since otherwise $\operatorname{Fix}(f) \cap f([0, u_4]) \neq \emptyset$ which is impossible. Now by (11) $\varphi^2([0, u_4]) \supset \varphi([u_4, j]) \supset [\varphi(u_4), \varphi(j)] \supset \operatorname{Fix}(\varphi)$ but this implies

$$f([0,u_4]) \cap \operatorname{Fix}(f) \neq \emptyset$$
,

a contradiction. Thus $u_4 < v_2$. We know that $\varphi(f^2(j)) \in [0, u_4]$ so using (8) and the definition of v_2 we get a point z such that $\min f^2(j) < z < v_2$ and $\varphi(z) = v_2$. Thus $\varphi^{-1}(v_2) \cap (0,j) \neq \emptyset$. \diamondsuit

Choose $v_1 \in \varphi^{-1}(v_2) \cap (0,j)$; the action of the first 3 iterates on v_1 is shown bellow:

$$v_1 \stackrel{\varphi}{\Rightarrow} v_2 \stackrel{\varphi}{\Rightarrow} j \stackrel{\varphi}{\Rightarrow} \varphi(j) \in [u_1, 1].$$

Then $\varphi^3(v_1) \geq u_1$ and by Lemma 2 $\varphi^3(\varphi_2) = \varphi(v^3(\varphi_1)) < j$. Thus we get

$$\varphi^3([v_1,v_2])\supset [j,u_1].$$

But $\varphi(j) \geq u_1$ and it follows from Lemma 2 that $\varphi(u_1) < j$ whence

(13)
$$\varphi([j,u_1])\supset [j,u_1].$$

From (12) and (13) we get

$$f([v_1, v_2]) = \varphi^{n-3}(\varphi^3[v_1, v_2]) \supset \varphi^{n-3}([j, u_1]) \supset \varphi^{n-4}([j, u_1]) \supset \ldots \supset [j, u_1]$$

and it follows from the definition of I that $[v_1, v_2] \cap I \neq \emptyset$, whence $v_2 \in I$. Thus

$$arphi([v_2,j])\supset [arphi(v_2),arphi(j)]\supset \mathrm{Fix}(arphi)$$

and further $[v_2,j] \supset I$ since $v_2 \in I$. Thus we get $f(I) \cap Fix(f) \neq \emptyset$ which is a contradiction.

It remains to consider Case 4 with n=2. We keep the definition of j from Lemma 1. We have

(14)
$$\varphi(j) \in [u_2, 1] \text{ and } \varphi(\varphi(j)) \in [u_2, 1].$$

Whence $\varphi([u_2,1]) \cap [u_2,1] \neq \emptyset$ but $\varphi(f(j)) = f(\varphi(j)) < u_3$ shows that $\varphi([u_2,1]) \cap [0,u_3] \neq \emptyset$ and hence $f([u_2,1]) \cap \operatorname{Fix}(f) \neq \emptyset$ which is a contradiction. \diamondsuit

References

- [1] HUMKE, P.D., LACZKOVICH, M.: Approximation of continuous functions by squares (to appear in Ergod. Th. & Dyn. Sys.).
- [2] HUMKE, P.D., LACZKOVICH, M.: The Borel structure of iterates of continuous functions, *Proc. of the Edinburg Math. Soc.* 32 (1989), 483 494.
- [3] SIMON, K.: Typical continuous functions are not iterates (to appear in Acta Math. Hung. 51-52 (1990)).
- [4] SIMON, K.: The set of second iterates of continuous functions is nowhere dense in C (to appear in Proc. Amer. Math. Soc.).