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Abstract: It is proved that the set of all iterates of continous functions are

not dense in C.

Let C denote the set of continuous functions mapping [0, 1] into
itself endowed with the sup norm. Denot by f* the k** iterate of the
continuous function f. The structure of the set W* = {f* : f € C}
was examined by M. Laczkovich and P.D. Humke. They proved in [1]
and [2] that W? is not everywhere dense in C' and W* is an analytic
non-Borel subset of C. The author of this paper proved in (3], [4] that

the set (J W* of iterates of continuous functions is a first category
k>1

set and W? is nowhere dense. The aim of this paper is to prove the
following

Theorem. The set |J W* of iterates of continuous functions is not
k>1
everywhere dense in C.

In other words: there ezists an open ball B (see Figure 1) such
that B does not contain any iterates of any continuous function.
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The centre of the ball B is the continuous function g which is
linear on [0, 1], [3,1] and g(0) = 0.03, g(3) = 0.99, g(1) = 0.03 and the
radius of the ball » = 0.01.

We introduce the fol- «;
lowing notations. We %2
denote the lower
boundary of B by
g1(z) = g(=) — 0.01
and the upper one by
g2(z) = g(z) + 0.01. "

Putu; =sup ¢i1(z) = i

z€[0,1] i
= 098, u, = inf ::
{9:1(2)|g2(z) > u1} = f
= 1U —2r = 0.96,11«3 = :i
= ga(uz) and uy= h
=g2(us).us <g; (3). 1

Both g; and g; have 4 I
only one fixed point, 4, 1
say T1, T2 respective- TiyT2 TJ
ly; put D = [ry,7r2]. It U3 Figure 1 D w2
is clear that for every f € B Fix(f) C D holds, where Fix(f)=
— {olf(s) = 2. ~

For every H C [0,1] we denote by H the complement of H. Let
A,B C [0,1] we shall write A < Bif a < b for every a € A and b € B.

Proof of the Theorem. Assume that there exists f € BN |J W*
k>1
say f = ¢™ for p € C and n > 1. We define I = {z|g2(z) > u1}.

We choose a, b such that I = (a,b). It is easy to see that us < a. For
every y € I ¢(y) # p(3) since p(y) = ¢(3) implies f(y) = f(3) which
contradicts the definition of I.

There are four cases to consider:
Case 1. (i)  o(3) < (D),
Case 2. (i)  o([0,a]) > o(3) > w([b,1]),
Case 3. (iil) ([0,a]) < p(3) <([b,1])
Case 4. (iv) (3) > o(I).
We prove that each of them leads to a contradiction.
Case 1: (i) holds. Now ¢(3) > a since otherwise Fix(¢)N[0,5] # @ and
thus Fix(f) N [0,b] # 0 which is impossible since Fix(f) C D. Hence

g2
g1

)
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o(I) > (,o(%) > a and, in particular, ¢(a) > a. On the other hand,
f([0,1]) N [0,a) # @ and hence there is y with ¢(y) < I. Then y € I
and p(y) < y. It follows that Fix(¢) NI # 0. Therefore Fix(f) NI # 0
which is impossible since Fix(f) C D and DNI=0. $

Case 2: (ii) holds. First we prove

(1) ([0, us]) N [u1,1] # 0.
It is clear that (ii) implies

2 i < i .
(2) ,in p(z) Do p(z)

We also know that »([0,1])N[u1,1] # 0, hence by (ii), ¢([0,b])N[uy,1] #
# 0. Thus if (1) doesn’t hold then

3

(3) (max p(e) > max ¢(z)

must hold. From (2) and (3) we get ¢([0,u3]) C ¢([us,b]) and thus
)

F([0,us]) C f([us,b]) which is false and (1) follows. Pick =z, €
€ ¢ 1 ([u1,1]) N [0,u3). Then

(4) p(f(z0)) = fle(zo)) <us

holds by the definition of us. Since f(z¢) < us (implied by z¢ € [0,u3])
from (4) we have
min <
,Din p(z) < us

and further (1) implies max ¢(z) > u;. Thus Fix(e) C ¢([0,u4])
z€

1lg

since Fix(¢) C D C [ug,uq]. Hence f([0,us]) N Fix(f) # 0 which
contradicts f € B. ¢
Case 3: (iii) holds. Let d = max Fix(¢). First, we show

(5) #([0,d]) < uy.

Suppose instead that
(6) Im < d such that ¢(m) > u;.

Since
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(7) p(z) <z for every = > d,

we have ¢([d,u;]) < u;. From the assumptions (6) and (iii) it follows
that @([a,m]) D ¢([d,u1]) and thus f([a,m]) D f([d,u1]) which contra-
dicts f € B. Thus (5) holds. Choose m such that ¢(m) > u;. From (5)
and (7) we have m > u; whence f(m) < ug. Thus 30 < j <n —1 for
which [p?(m)pit1(m)] N Fix(p) = 0. Let z be an arbitrary element of
the set [p7(m), 771 (m)] N Fix(p). Then z € @?([p(m), m]) and hence

z=¢"(2) € f(lp(m),m]) C f([u1,1])

which is impossible as z € D.

Case 4: (iv) holds. Assume first that n > 3. We need 3 Lemmas.
Lemma 1. Put j = min{z € [a,b]lp(z) > u1}. (It follows from (iv)
that such a j ezists.) Then the following inequalities hold:

(8) o(£(3)) < us,
(9) w(£2(5)) < ua-

Proof. The relations ¢(j) > u; and f([uq,1]) <us imply that
f(¢(4)) = ¢(f(j)) < us which proves (8), while (9) follows from the
definition of u4:

e(F2(5)) = F(e(9)) = F(f(2(4))) € £([0,us]) <uq. O

Lemma 2.  ¢([u,,1]) < 7.
Proof. Assume that ¢([uz,1]) < j doesn’t hold. It follows from (8)
that
min_p(z) <uz <J
z:E[uz,l]
thus Jzg € [ua,1] such that ¢(zo) = j. Hence
(10) *(z0) 2 us-

On the other hand: ¢([0,u3]) N Fix(p) = 0 since otherwise f([0,u3])N
NFix(f) # 0 would hold which is impossible. Thus from f2(j) € [0,us)
and from (9) we have min ¢([0,us]) < Fix(yp). Using (8) we find

P2 (£(4)) = (e(£(4))) € ([0, us}) < Fix(p).
From this and (10) we get

. 2 Fi < 2
in ¢ (2) <Fix(p) <wi < max ¢ (),
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thus ¢?([uz,1]) D Fix(yp), that is f([uz,1]) N Fix(f) # 0 contradicting
fE€B. ¢

Since f(j) > w1 and f?(j) < us, it follows from (9) that ¢([0,us])N
N[0, u4] # 0. On the other hand, ¢(j) > u; > j and, as uz < ug < j, it
follows that there is a v, < 7 such that ¢(vg) = j.
Lemma 3. ¢ (vy)N(0,5) # 0.
Proof. We first show that ug < vy. Assume that vy < us. Then

(11) ¢((0,24]) D [us, 7]

since p(vy) = j and ¢(f%(5)) < us. Purther ([0, u4]) < Fix(p), since
otherwise Fix(f) N f([0,u4]) # 0 which is impossible. Now by (11)
?([0,u4]) D @([us,5]) D [p(us), ¢(5)] D Fix() but this implies

F([0,ue]) NFix(f) # 0,

a contradiction. Thusus < v;. We know that o( f2(5)) € [0,u4] so using
(8) and the definition of v, we get a point z such that min f2(j) < z < v,
and ¢(z) = v2. Thus ¢~} (v2) N (0,5) # 0. &

Choose v; € ¢~ 1(v3) N (0,7); the action of the first 3 iterates on
v1 is shown bellow:

U1 :‘g Vo 2%] :‘& (P(]) € [ul,l].

Then ¢*(v1) > u; and by Lemma 2 ¢*(ip3) = p(v3(p1)) < j. Thus we
get

(12) ¢*([v1,v2]) D [7,w].
But ¢(7) > u; and it follows from Lemma 2 that p(u1) < j whence
(13) o(7,u1]) D [5,wa].

From (12) and (13) we get
f([vl,’vz]) = 90"_3(903[711,”2]) 2 80"—3([9',1111]) 2
D™ ([hwal) O D [yual

and it follows from the definition of I that [v;,v,] NI # 0, whence
vy € I. Thus

©([v2,4]) D [p(v2),(5)] D Fix(e)
and further [vz,j] D I since v, € I. Thus we get f(I)N Fix(f) # 0

which is a contradiction.
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It remains to consider Case 4 with n = 2. We keep the definition
of j from Lemma 1. We have

(14) o(j) € [ua,1] and p(p(4)) € [u2,1].

Whence o([uz,1]) N [uz,1] # 0 but o(f(5)) = f((s)) < us shows that
o([uz,1]) N [0,us] # @ and hence f([uz,1]) N Fix(f) # @ which is a

contradiction. ¢
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