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Abstract: The generalized modus ponens inference rule is examined in a for-
mal way and a characterization of the [0,1]2-[0,1] mappings, especially fuzzy
implication operators, is given according to their behaviour with respect to the
sup-triangular norm inference rule. The analogies between triangular norms
and their dual triangular conorms on the one hand, and fuzzy implication
operators on the other hand are described. Finally it is proven that a fuzzy
implication operator that is an extension of the classical formula (NOT P) OR
Q in the sense that the negation is replaced by a strict complement operator
and the disjunction by a triangular conorm, never satisfies the sup-minimum

inference rule.

1. Introduction

The compositional rule of inference was introduced by L. A. Zadeh
[17] as an extension of the classical reasoning scheme “modus ponens”.
Its main purpose is to infer a possibility distribution, given a rela-
tionship between two linguistic variables modelled as possibility dis-
tributions on their respective universes of discourse and a possibility
distribution which represents the vague knowledge about the matching
of the antecedent. This inference rule can be represented as

zis A=>yis B

zis A’

yis B'.

Here, A and A’ are possibility distributions on a universe of discourse
U, B and the derived distribution B’ are possibility distributions on a
universe V. The distribution B’ is calculated as

B':V —[0,1]:v - Z‘é{’,min(A'(u),f(A(u),B(v))),

where F is a [0,1]?*-[0,1] mapping representing the relationship be-
tween A and B. This generalized inference scheme is very powerful as
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it is able to deduce knowledge from incomplete and uncertain infor-
mation [15,18]. As mentioned in [4] and [7] the formalism for deriving
the distribution B' can be easily generalized by replacing the mini-
mum operator by a general triangular norm T (Definition 1.2, [14]).
When F is a fuzzy implication operator (Definition 1.1) the proposed
inference scheme is an extension of the classical "modus ponens” infer-
ence scheme. In [7,8,9] extensive case studies are presented by Martin-
Clouaire and Mizumoto where the minimum operator is replaced by
a general t-norm and F is a fuzzy implication operator. The results
of these studies and the idea of modus ponens generating functions by
Trillas and Valverde [15] suggest a strong connection between the choice
of the fuzzy implication operator used to model the linguistic rule and
fuzzy relation "IF z is A THEN y is B” and the triangular norm in
the generalized modus ponens inference rule or compositional rule of
inference. With regard to other inference schemes like “modus tollens”
and “syllogism” the same remark can be made. In the sequel a for-
mal treatment of the properties of [0,1]?-[0, 1] mappings and especially
fuzzy implication operators, w.r.t. their relationship with the trian-
gular norm in the sup-triangular norm generalized inference scheme is
presented. The family of equations

(Vy € [0,1])(y = sup T(z,F(z,y)))

z€[0,1

is examined and the mapping F is characterized w.r.t. the triangular
norm in the sup-triangular norm inference rule. In every example F
is a fuzzy implication operator. This section is mainly concerned with
definitions and notations. In section 2 some properties of [0,1]?—[0,1]
mappings, based on properties of fuzzy implication operators are pre-
sented. In section 3, the restrictions for the modus ponens inference
rule yield three possible classes of mappings. Section 4 deals with the
properties of one of these classes. Section 5 deals with the similarities of
triangular conorms and the properties of the fuzzy implication opera-
tor, and in section 6 it is proven that the classical formula (NOT P)
OR Q cannot be generalized without loss of the sup-min modus ponens
inference rule.

Definition 1.1. A [0,1]®-[0,1] mapping I satisfying the boundary

conditions

7(0,0) = Z(0,1) = Z(1,1) = 1 and Z(1,0) = 0
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is a fuzzy implication operator.

Definition 1.1 of a fuzzy implication operator is weaker than Weber’s
definition [16]. These conditions are the weakest that can be imposed: a
fuzzy implication operator is a [0,1]2-[0, 1] mapping that is an extension
of the material, binary implication operator.

Definition 1.2. [14]. A [0,1]?-[0,1] mapping T satisfying

(T1) boundary conditions:

(Vz € [0,1])(T(1,z) = ),
(T2) symmetry property:
(V(z,y) € [0, 1] )(T(2,y) = T(y,)),
(T3) associative property:
(V(2,y,2) € [0, 1 N(T(x, T(y,2)) = T(T(=,y),2)),
(T4) monotonicity:

(V(z,y) € [0,1]*)(Y(=',y') € [0,1]*)
(e <2')A(y <y') = T(=2,y) < T(',9")),
is a triangular norm (shortly t-norm).
Definition 1.3. A [0,1]2-[0,1] mapping S satisfying
(T1’) boundary conditions:

(Ve € [0,1])(5(0,2) = =)

and (T2)—(T4) is a triangular conorm (shortly t-conorm).

Definition 1.4. A [0,1]-[0,1] mapping C that is strictly decreasing and
involutive and satisfies C(0) = 1 and C(1) = 0 is a strict complement
operator.

Remark. The following two well-known properties can be easily proved
[3]:
1. If T is a t-norm and C a strict complement operator then S is a
t-conorm, where

§7 (0,12 = [0,1] : (z,9) = C(T(C(x), C(y)))-

2. if S is a t-conorm and C is a strict complement operator then 7%
is a t-norm, where

75 :[0,1* = [0,1] : (=,y) = C(S(C(2), C()))-
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Definition 1.5. Let T be a t-norm and F a [0,1]%2-[0,1] mapping then
F satisfies the sup-T' modus ponens inference rule iff

(Vy € [0’ 1])('!/ = Zl[]bpl] T("’,f(zvy)))

This definition is a natural extension of the sup-min modus ponens
inference rule.

Definition 1.6. Let f and g be two [0,1]2 —[0,1] mappings then f < g
iff (V(z,y) € [0,1*)(f(=,) < 9(=,9)).

2. Potential properties of the fuzzy implication
operator

Let 7 be a fuzzy implication operator and C a strict complement
operator. The following potential properties for 7 are defined [6].
Definition 2.1. T satisfies the contrapositive symmetry iff

(V(z,y) € [0,11*)(Z(=z,y) = Z(C(y), C(2)))-
Definition 2.2. 7 satisfies the ezchange principle iff

(V(z,y,2) € [0,1]*)(Z(=, I(y, 2)) = Z(y, (=, 2))))-
Definition 2.3. T is hybrid monotonous [2,6] iff

((z,v) € [071]2) (V(=',y') € [0’1]2)
(s < o) Ay > 9/) = Z(e,) > I(&",9").

Although the definition of the hybrid monotonicity of Z seems
rather strange, it satisfies the intuitive idea that the less the antecedent
is true and the more the consequence is true, the more the implication
should be true. The following property is easily verified.

Property 2.1. If T is a hybrid monotonous fuzzy implication operator
then
(V2 € [0, 1)(Z(0,2) = 1).

Definition 2.4. 7 satisfies the neutrality principle iff
(Vz € [0,1])(Z(1,2) = =).

Remark. Obviously these definitions can be extended to general
[0,1]2-[0, 1] mappings.
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3. Natural restrictions for the generalized modus
ponens inference rule

In this section some natural restrictions on the mapping

supT :{0,1] - [0,1] : y — sup T(z,F(z,y))
z€[0,1]

are introduced, where T', F respectively, is a t-norm, a [0,1]?-[0,1]
mapping respectively. These restrictions generate three disjoint classes
of mappings that are examined to determine whether or not these map-
pings satisfy the generalized modus ponens.
Property 3.1. If F is a [0,1]2-[0,1] mapping and T a t-norm then

(Vy € [0,1])(F(1,y) < sup T(z,F(z,y)) < sup min(z, F(z,y))).

. zg[0,1] z€[0,1]

Proof. As (Vy € [0,1])(F(1,y) = T(1,F(1,¥))) and T < min for every
t-norm T the result is immediately obtained. ¢

Considering Property 3.1 three disjoint classes of mappings can be de-
fined:

Class I: (Vy € [0,1])(F(1,y) = ), i.e. F satisfies the neutrality princi-
ple,
Class II: (Vy € [0,1])(F(1,y) < y) and (Fyo € [0,1])(F(1,%0) < o),
Class III: (3y, € [0,1)}(F(1,90) > yo)-
Remarks.
1. The three disjoint classes are a partition of the set of the [0,1]%—
—[0,1] mappings.
2. For the mappings of classes I and II the following property is easily
proven:

Property 3.2. Let T,T; and Ty be t-norms. If F satisfies the sup-T}
and the sup-T, modus ponens inference rule and if Ty < T < Ty then
F satisfies the sup-T" modus ponens inference rule.

Proof.
(M(z,y) € [0,1]*)(T1(z, F(2,y)) < T(z, F(z,y)) < Ta(z, F(z,y)))
and thus

(Vy € [0,1])( sup Ti(z, F(z,y)) < sup T(z,F(z,y)) <
z€[0,1] z€[0,1]
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< sup Ti(z, F(=,y)))-¢
z€[0,1]
3. From Property 3.1 it follows that the mappings of class III never
satisfy the generalized modus ponens.
In section 4 some results on mappings satisfying the neutrality
principle are presented.

4. [0,1]>—[0,1] mappings satisfying the neutrality
principle

In this section T is an arbitrary t-norm and F a [0,1]?-[0, 1] map-
ping that satisfies the neutrality principle.
Definition 4.1 ([4,16}):

o7 1 [0,1)% — [0,1] : (2,5) — sup{z | T(2, 2) < g}

The following theorem is based on some theorems proved by Du-
bois and Prade [3,4] and deals with the existence of a maximal solution
F of the family of equations

(Vy € [0,1])(y = sup T(=,F(z,y)))
z€fo,1
it gives a sufficient and necessary condition to determine whether or not
F, satisfying the neutrality principle, is a solution of the above family
of equations.
Theorem 4.1. Let T be a t-norm such that every partial mapping of
T is infra-semicontinuous and F a [0,1]2-[0,1] mapping satisfying the
neutrality principle. F satisfies the sup-T' modus ponens inference rule
’l.ﬁ F S D.
Proof.l. If F satisfies the sup-T' modus ponens then F < >p [4].
2. pr is a solution of the family of equations
(Vy € [0,1])(y = sup T(=,F(z,y))).
z€[0,1]
Although this has already been proven for a continuous t-norm T this
property holds for every t-norm which has infra-semicontinuous partial

mappings. The proof is entirely based on the exchange of supremum
and T. This property is proven in the Appendix.
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3. It has already been proven that if F satisfies the generalized
sup-T' modus ponens then F < pg. The reverse implication is estab-
lished now. Let F be a mapping that satisfies the condition F < g
and T a t-norm with infra-semicontinuous partial mappings then

(Vy € [0,1])(F(1,y) < sup T(=,F(z,y)) < sup T(z,z>ry))
z€f0,1] z€[0,1)
or
(Vy € [0,1])(y < sup T(z,7(z,y)) < 9)-0
z€[0,1
Remarks.
1. If the partial mappings of T' are not infra-semicontinuous Theorem
4.1 cannot be generalized. Counterexample: let T' be Z then

15 V((B,y)E[O,l[X[O,l]

DZ:[0,1]2—+[0,1]:(Z,3/)'_’{y : 2 =1.

It is easily verified that sup Z(z,zpgzye) = 1 or the sup-Z modus
z€f0,1]
ponens inference rule does not hold when F = vg.
2. Consider for a €]0,1] the mapping

0 ;  if max(z,y) <a

. 2 .
Ta . [07 1] - [071] . (z?y) = {mln(z,y) ; e].SCWhel'e-

Then every partial mapping of T, is infra-semicontinuous and T,
is a t-norm. Hence, there exists t-norms that are not continuous
and that have infra-semicontinuous partial mappings.
Corollary 4.1. If T is an arbitrary t-norm and F satisfies the sup-T
modus ponens then F < bp.
Proof. This is an immediate consequence of the first part of the proof
of Theorem 4.1. {
Corollary 4.2. If F is a [0,1]2-[0, 1] mapping satisfying the neutrality
principle and the sup-min modus ponens then F satisfies the sup-T
modus ponens inference rule, where T 1s an arbitrary t-norm.
Proof. Obvious considering Property 3.1. {
Corollary 4.3. Let Ty and T, be arbitrary t-norms then T, satisfies
the sup-T; modus ponens inference rule.
Proof. For every t-norm T3 the inequality 75 < min < bpy;, holds. As
(Vz € [0,1])(T2(1,z) = =) considering Theorem 4.1 and Corollary 4.2,
T, satisfies the sup-T7 modus ponens. ¢
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Example 4.1. In the examples only [0,1]2-[0,1] mappings that are
implication operators are considered. Let T be W (Lucasiewicz t-norm
[14]) or explicitly

W :[0,1]* — [0,1] : (z,y) — max(0,z +y — 1)
and F be the Kleene-Dienes implication operator[13]
F:[0,1]2 = [0,1] : (z,y) — max(1l — z,y).

Considering Theorem 4.1 and the inequality F < by, F satisfies the
sup-W modus ponens inference rule. ‘
Example 4.2. Let T be the well-known algebraic product x, then by

is the operator G43 of [1,5,13]:

oo 0,1 = [0,1): 2,9) -~ {
Consider as defined in F [10]

F 110,17 —[0,1]: (2,3) > max(min(z,y),1 o).
Let g = 1/3 and yo = 1/8 then F(zo,y0) = 2/3 and >y (z0,y0) = 3/8.

Considering Theorem 4.1 F does not satisfy the sup-x modus ponens
inference rule.

Example 4.3. Let T be any t-norm, then define

1 ; i z<y
y/z ; elsewhere.

(0,0) = 1
Tr:[0,1]> = [0,1]: { (0,1) > 1
(z,y) —» T(z,y) ; elsewhere.

Obviously T7 is a fuzzy implication operator that satisfies every sup-T'
modus ponens inference rule, whatever T is (Theorem 4.1 and Corollary

4.2).

5. On the extension of the classical formula

(NOT P) OR Q

The properties of the mappings that are extensions of the classical
formula (NOT P) OR Q are examined. The negation is fuzzified by a
strict complement operator C' and the disjunction by a t-conorm S.
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These extensions are the implication operators of type I of Dubois and
Prade [3].

Definition 5.1. Let S be a t-conorm and C a strict complement
operator. The mapping ZS is defined as

7§ - [0,1]2 = [0,1] : (=, y) — S(C(=),y).

Obviously the mapping Z§ is a fuzzy implication.
Properties 5.1.

1. IS satisfies the contrapositive symmetry,

2. IS satisfies the ezchange principle,

3. IS is hybrid monotonous,

4. Ig satisfies the neutrality principle,

5. If § is continuous then IS is continuous.
Proof. Immediate from the symmetric and associative properties, the
monotonicity and the boundary conditions of S and the involutive prop-
erty of C. Property 5. is proven by the chain rule for continuous func-
tions. ¢
Definition 5.2. Let 7 be a fuzzy implication operator and C a strict
complement operator. The mapping Sf is defined by

Slc" : [071]2 — [0,1] : (z,y) = I(C(=),y)-

It is easily proven that SC is an extension of the classical union
operator; i.e. §¢ {0,132 is the classical union operator U.
Properties 5.2.
1. if T satisfies the contrapositive symmetry then Sf 18 symmetric,
2. if T salisfies the ezchange principle and the contrapositive symme-
try then SY is associative,
3. if T is monotonous then S2 is increasing,
4. if T satisfies the neutrality principle then S¢ satisfies the condition

(Vy € [0,1])(5£(0,y) = v),

5. if T is continuous then SZ is continuous.
Proof. As an example 1. is proved. Let (z,y) € [0,1]? then

57 (2,y) = I(C(=),y)
and as C is involutive and 7 satisfies the contrapositive symmetry

I(C(=),y) = I(C(y), C(C(2))) = Z(C(y), ) = SZ(y,2)¢
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Corollary 5.1. Let S be a t-conorm and T a fuzzy implication operator
then

c _ . c .
$G =S i I%=T.

Corollary 5.2.

1. SS is a t-conorm iff T satisfies the contrapositive symmetry, the
ezchange principle and neutrality principle and I is hybrid mono-
tonous;

2. SS is continuous iff T is continuous.

Proof. Straightforward taking into account Properties 5.1, 5.2 and
Corollary 5.1. ¢ '

6. A special case : the sup-min modus ponens
inference rule

In this section the special case of the sup-min modus ponens infe-
rence rule is considered. As minimum is a continuous mapping Theorem
4.1 assures us that if F satisfies the neutrality principle then F satisfies
the sup-min modus ponens inference rule iff 7 < bpi, where bpjy, is the
Godel implication [4,5,7,13,16]]. The condition F < bnj, can be easily
transformed into the formula of Theorem 6.1.

Theorem 6.1. If F is [0,1]>-[0,1] mapping satisfying the neutrality
principle then F satisfies the sup-min modus ponens inference rule iff

(Y(=,y) € [0,1]*)(= > y = F(z,y) < y)

Proof. Obvious considering Theorem 4.1 and the definition of the
Godel implication. ¢
Example 6.1. Let F be by then

F:[0,1]2 = [0,1] : (z,y) —> min(1,1 — 2z +y).

Let 2o = 0.9 and yp = 0.8 then F(zq,%0) > yo. Considering Theorem
6.1 the sup-min modus ponens inference rule does not hold for >y .
Example 6.2. Let F be the Kleene-Dienes implication operator [13]:

F:[0,1]%2 — [0,1] : (z,y) — max(l —z,y).
Let zo = 0.5 and yo = 0.3 then F(z¢,yo) > yo. Considering Theorem
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6.1 the sup-min modus ponens inference rule does not hold for this

implication operator.
Theorem 6.2. If F is a [0,1]?-[0,1] mapping satisfying

(Vy € [0,1])(?(1,’_1/) S y) and (ayo € [011])(f(11y0) < yO)
then the sup-min modus ponens inference rule holds iff
(V(z,y) €[0,1]*)((z >y = F(=,y) < y) and

( sup min(z, F(z,y)) =y or sup min(z, F(z,y)) = y)).
0<z<y y<z<

Proof. Considering Corollary 4.1, the inequality

(Y(=,y) € [0,1*)(= > y = F(z,y) < y)

is immediately obtained as F < by, should be satisfied. The second
part of the conjunction is proven as follows. Suppose

(3yo € [0, 1])( sup min(z, F(z,y0)) # Yo and

<z<Lyo
sup min(z, F(z,%0)) # Yo)
yo<z<1
then
sup min(z,F(z,y)) = max( sup min(z,F(z,30)),
0<z<1 0<z<yo
sup min(z, F(z,y0))) # Yo
yo<z<1

or the sup-min modus ponens inference rule does not hold, which is
clearly a contradiction.

The reverse implication is obtained in a similar way. ¢

Example 6.3. Let F be I, of [9] or explicitly

Tq : (0,11 > [0,1[: (2,) "*{ o (12455) 1 Vew o1 1)

; elsewhere.

If 2o = 0.5 and yo = 0.5 then To(zo,%) = 1 > yo so sup-min modus
ponens inference rule does not hold for Z,.
Example 6.4. Let
1 s e <
. 2 . i )
F:[0,1] = [0,1] : (z,3) = {min(l —z,y) ; elsewhere.
By definition
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(V(z,y) € [0,11*)(= > y = F(=,9) <)
holds and sup min(z,F(z,y)) = y and thus the sup-min modus po-
0<z<y
nens inference rule holds although F does not satisfy the neutrality
principle.
Theorem 6.3. Let S be a t-conorm and C a strict complement operator
then IS never satisfies the sup-min modus ponens inference rule.

Proof.
1. As C is a continuous, strictly decreasing [0,1]-[0,1] mapping and

c(0) =1, (1) =0,
(3o €]0,1[)(C(po) = po)-
2. Let yy < ¢ < po, then py < C(zy) < C(yo) and hence
(3(zo,%0) € [0,1]*)(=0 > yo A C(20) > o)
3. § is a t-conorm, hence
S(C(z0),y0) = max(C(zo),y0) = C(zo).

4. Combining (2) and (3) yields

(3(=0,30) € [0,1]%)(20 > yo and Z§ (20,¥0) > ¥o).

By Theorem 6.1, IS does not satisfy the sup-min modus ponens infer-
ence rule. $

Corollary 6.1. If T is a fuzzy implication operator satisfying the
exchange principle, neutrality principle, contrapositive symmetry and
which is hybrid monotonous then I does not satisfy the sup-min modus
ponens inference rule.

Proof. Immediate from Theorem 6.3 and Corollary 5.1. ¢

7. Conclusion

The interaction between [0, 1]2-[0,1] mappings F and, as special
cases the fuzzy implication operators, and the generalized sup-T modus
ponens inference rule have been investigated. As indicated in the intro-
duction there is a very strong connection between F, in practice a fuzzy
implication operator, and the t-norm T' of the inference rule. Several
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authors already suggested this connection [2,3,7,15].

Weber [16] considers a [0,1]2-[0,1] mapping as a fuzzy implica-
tion operator iff there is some relationship with a t-norm or conorm
and a strict complement operator and if the mapping is an extension
of the binary, material implication. Theorem 6.3 proves that this rela-
tionship cannot be the fuzzification of the classical formula (NOT P)
OR Q without loss of the sup-min modus ponens inference rule when
negation and disjunction are fuzzified by a strict complement operator
respectively a t-conorm.

Whenever T has infra-semicontinuous partial mappings, a map-
ping F that satisfies the neutrality principle and the inequality F < by
satisfies the sup-T modus ponens inference rule : this is a remarkable
fact since F should not even be an extension of the binary implication.

8. Appendix

Let F be a [0,1] — [0,1] mapping then F is infra-semicontinuous
iff
(Vzo € [0,1])(Ve > 0)(36 > 0)(Vz € [0,1])(| & — 2 |[< 6 =
S F(zs) - ¢ < F(z).

Theorem Al. Let T be a t-norm, then T is completely distributive
w.r.l. supremum iff every partial mapping of T is infra-semicontinuous.
Proof.

1. The ”if” part is established now for t-norms with infra-semicon-
tinuous partial mappings. Let T be a t-norm with infra-semicontinuous
partial mappings. First the inequality

sup T(z;,y) < T(supzj,y) ; Vye€[0,1]
jeJ jeJ
is proved, (#;)jcs being a family in [0,1] and J an arbitrary index set.
From z; < supz; and the non-decreasingness of T'(-,y) it follows that
jeJ
(Vi € J)(T(2s,9) < T(%lelr; z;,9))
i

and hence
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sup T'(z;,y) < T(supz;,y).
ieJ jed

To prove the equality, suppose T(supz;,y) > supT(z;,y) and let
jed jed

g0 = T(supz;,y) —sup T'(z;,y) > 0.
jed j€J

The infra-semicontinuity of T'(-,y) in sup z; implies for € = €
jedJ

(360 > 0)(Vz € [0,1])(sup z; — b <z <supzj+ bo =
j€eJ jeJ

= supT(z;,y) < T(z,y)).
jeJ
From the characterization of supremum it is deduced that supz; — 6o

JjE€J
is no lower an upper bound for (z;);es and hence

(Fio € J)(supz;j — 6o < @i, < supz; + 6o)
jeJ jeJ

and so

sup T(z;,y) < T(zi,,),
jedJ

a contradiction.

2. The reverse implication is proven now. Suppose the partial
mapping T'(-,yo) is not infra-semicontinuous in zg.

(Jeo > 0)(V6 > 0)(Fz € [0,1])(] 2 —z0o |< & and
T(mayﬁ) S T(Eo,yo) e 50)-
Choose g¢ > 0 and let §, = 1/n; Vn € N*. From the previous formula

it follows that for each §,, there exists an z, satisfying the condition
| 2n — 2o |< 1/nand T(zn,v0) < T(z0,Y0)—€o. Obviously lim z, =
n—oo

= 9. From the monotonicity of T it is deduced that
(Vn e N*)(zpn < o)
and hence

limy oo Zn = sup =, = 2o
nelN*

and
(Vn e N*Y(T(2n,90) < T(20,%0) — €0)
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séle‘ T(l‘myo) S T(:BO)yO) — Ep < T(:BO) yO)-

Thus sup T'(z,,y0) # T( sup z,,9). ¢
nelN*

neN*
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