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Abstract: Here we define the sectional genus g(F) of a reflexive sheaf F
over a projective variety V. Here we classify (char 0) all such pairs (V,F)
with dim(V)=3, V smooth, F not locally free but curvilinear, F ample and
spanned, and 2g(F)—2<c3 F; we have ﬁPa, all such F are described ex-
plicitely and the set of such F is parametrized by P3.

We work over an algebraically closed field K with char(K)= 0.
Fix a complete variety V; set n = dim(V); here we need only the case
n = 3. Recall that a coherent sheaf F on V is called reflexive if the
natural map from F to its double dual F** is an isomorphism; this is
the case for instance if F' is locally free, but it happens in several other
interesting cases: see [6] for the background, motivation (i.e. their link
with space curves) and the general theory of reflexive sheaves. We fix
a rank—n(n — 1) reflexive sheaf E on V. We say (as usual) that E
is ample if the tautological line bundle Op(E)(1) on P(E) is ample.
From now on we will assume that E is spanned by its global sections
and that the set S of points of V at which F is not locally free is finite
(if n = 3 the last condition is automatically statisfied ([6], 1.4)). Then
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(since char(K)= 0 and S is finite) a standard form of Bertini theorem
(same proof as for n = 3 ([6]), which in turn is essentially a standard
form of Bertini for spanned vector bundles on V'\S) gives that for a
general s € H(V, E), its zero-locus C := (8)¢ is a pure-dimensional
curve which is smooth outside S (and C must contain S, as shown in
[6], Th. 4.1); if V is smooth around S, C is locally Cohen-Macaulay;
since C is generically reduced by the finiteness of S, C is reduced; set
g := po(C). We will call g the sectional genus of E (see the introduction
of [1] for a discussionn of why (in the locally free case) among many
other competing ones, this is a very natural and useful definition). But
we do not claim or use that if F is ample the general such C is integral
of at least connected; in particular we will consider also the case ”g < 0”
(which often will be easily shown to lead to a contradiction). From now
on in this paper we assume V smooth. In particular Ko(V) & K°(V)
and the Chern classes are defined for all coherent sheaves on V. Set
L := c;(E); L is a line bundle; note also that C = (s)o represents
cn—1(E) (exactly as in the locally free case, to which, when § is finite,
it could be easily reduced). From now on we assume n = 3. The aim of
this paper is the proof of Theorem 0.1 below. To clarify its statement
we need the following "adjunction formula” ([6], th. 4.1) valid for any
section s with C := (8)y of dimension 1 and arithmetic genus g:

(1) 99 — 2 = (Kv + L)C + e3(E)

It is known (see [6], Prop. 2.6) that c3(E) > 0, c3(E) > 0 if and only if
S # 0, and that indeed c3(E) is a very good measure of the "number”
of singularities of E. A reflexive sheaf E on V is called curvilinear if
for each P € S there are formal parameters z,y, z of the completion A
of Oy,p such that the completion of the stalk of E at P is isomorphic
to Coker(j), where j : A — 3A4 is defined by: j(u) = (zu,yu, zy); by
[6], 4.1.1, if there is s € H(E) with as (s)o a smooth curve, then E is
curvilinear; by [3], Prop. 4, if E is curvilinear and spanned, a general
s € H°(E) has (s)o smooth.

Theorem 0.1. Let V be a smooth complete variety with dim(V) = 3,
and E an ample spanned rank — 2 reflezive sheaf on V with sectional
genus g; set ¢; = ci(E). Assume 29 — 2 < c3 and E not locally free.
Then there are ezactly 4 families of (V, E):

() V=P3 L=0(3),9g=0,cs =1 and E is described in the following

way. FixP € P3 and consider homogeneous coordinates z,...,zs, such
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that P = (1;0;0;0). Let E be the cokernel of the map j : Oy — 30v(1)
given by j(c) = (cx1,ce2,czs); then E is a solution; any solution with
these invariants differs from E by the action of an element of Aut(P );
any two solutions are isomorphic if and only if they have the same
singular set, P
(i) Vv = P3, = 04), cg =17, ¢ = 29 —2 = 8; furthermore
R*(E(-1)) 7é 0 and, for general E, a general m € H°(E( —1)) has
as (m)o the complete intersection of 2 quadrics.
(i) V =2 P L = O(4), ca = 6, c = 29 — 2 = 4; furthermore
h*(E(-1)) # 0 and, for general E, a general m € H°(E(-1)), has
as (m)y a rational normal curve.
(iv) V is a smooth quadric in P%, [ = O(3),c; =6,c3 =29g-2=2;
furthermore h®(E(—1)) # 0 and a general m € HD(E( 1)) has as (m)g
a plane conic.

In particular the space of solutions in case (1) is parametrized by
P?. We will give some more informations on the possible sheaves E's
in cases (i), (iii) and (iv) in §2, repsectively in (3) case 5) (8), case
5), and (7); here suffice to say that by the general recipe in [6], Th.
4.1, the datum (m), (plus a suitable divisor on (m),) is sufficient to
reconstruct E. ‘
At the end of the paper we discuss briefly the case E not "curvilinear”.

The proof of 0.1 depends heavily on [1] (which in turn depends on
[11], hence on Mori’s theory and its applications ([8], plus the classifi-
cations of Fano threefolds due to Iskovskih and Mori- Mukm), both [1]
and the present paper we inspired by [11].

The paper is dedicated to the memory of Giorgio Gamberni.

1. Fix a smooth, irreducible, complete variety V and a rank-2 ample
reflexive sheaf E on V; assume that E is spanned by its global sections.
Let § C V be the set of points of V at which E is not locally free.
We will always assume S # 0 (i.e. c3(E) > 0). Set L := = c1(E) and
¢; = ci(E). All these notations will be always assumed, even if not
explicitly stated. We write O and K instead of Oy and Kvy; for a
closed subscheme A of V, I will denote its ideal sheaf. For any sheaf
G on V, we write H*(A) and h*(A) instead of H*(V, A) and h*(V, A).
Fix a general s € H°(E); set C := (s)y. By the assumptions (since
char(K) = 0) C is a reduced pure dimensional curve which is smooth
outside S N C. Furthermore (e.g. [6], proof of Th. 4.1) § C C. The
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choice of s induces an exact sequence:
(2) ' 0-0—-E—>LQIc—0.

C will always denote (s)y with s € H°(E), s general enough; thus s
will give (2) and C will satisfy (2).

Remark 1.1. Let T be a closed subvariety of V and 7 : T' — T
a finite morphism. Then every quotient sheaf of ©*((E|T)) is ample.
Proof. By definition of ampleness and Grothendieck’s definition of P
we. are reduced to the known case in which FE is a line bundle.
Lemma 1.2. Fiz an integral curve T CV and let # : T' — T be its
normalization. Then deg(w*(E/T) > 2 and we have equality if and only
ifT= P, TNS =0 and E/T is the direct sum of two line bundles of
degree 1.

Proof. The ”if” part is obvious. Set F := #*(E|T). Since T' is
smooth, F is the direct sum of a rank-2 locally free sheaf F' and a
torsion sheaf F'', with F" = 0if TNS = (. By 1.1 and the fact that =
is finite, we get that F' is ample. By construction F' is spanned. Thus
if pa(T') > 0, deg(F) > deg(F') > 3. Assume p,(T') = 0. By [11],
3.2.1, deg(F') > 2 and deg(F') = 2 if and only if F' is the direct sum of
two line bundles of degree one. Note that if TN S # 0, we have F" # 0
(hence deg(F) > deg(F') > 2) because a coherent sheaf on a reduced
variety is locally free if its fibers have constant dimension. Thus we
may assume also TN S = @ i.e. E locally free near T. Then the proof
of [11], 3.2.1, gives that T is smooth. ¢

Remark 1.3. Under the assumption of 1.2 and with the notations (2),
assume dim(T N C) = 0; then LT (i.e. deg(w*(L))) is at least 1+
+card(C NT). Furthermore if T is smooth around SNT, LT >1+
+length(C N T). Proof. Look at (2) and note that § C C. Restrict
(2) to T and pull it back by 7*; the first map in the corresponding
sequence (2)’ is again injective because O has no torsion. There is
amap j : ™(Ig,y ® L ® Or) — Op whose image defines the ideal
sheaf of a non-negative divisor a, supp(a) must contain every point of
7~}(C N T). Since by (2)’ and 1.1 #*(L|T)(—a) is ample, we get the
first part of first inequality. The last inequality follows from the fact
that a = T'N C as schemes, 1.2 and (2)’. ¢

Remark 1.4. If T C V is a curve, then LT > 2; indeed if TN S =0,
this is [1], 1.1; if TN S # 0, then TN C # 0 and 1.4 follows from 1.3.
Remark 1.5. By 1.4 (V,L) is its own reduction in the sense of [8],
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0.11.

‘To prove the amplenesss of the last 3 families of sheaves in the
statement of 0.1, we need a lemma.
Lemma 1.6. Assume only that E is spanned. E is ample if and only
if for every integral curve T C V, E/T is ample; the last condition is
equivalent (if w : T' — T is the normalization) to the ampleness of the
locally free part of #*(E/T).
Proof. A similar crieterion is true for every spanned line bundle on
every variety. Since the restriction of the tautological line bundle of
P(E) to every fiber of P(E) — V is ample, we get the first part. To get
second one, note that we may check the ampleness of the tautological
line bundle of P(E|T') after the base-change by m (e.g. see [4], prop.
2.1). &

2. We use the notations introduced in §1; we will use heavily the proofs
in [1]; thus the reader need a copy of [1] nearby. We assume that E is
ample and spanned (unless otherwise stated).

First assume that K + L is semi-ample. Then there is an integer
m > 0 such that m(K + L) is spanned. Since (K + L)C < 0 for every
C as in (2) and we may find such a C through a general point of V
(e.g. count the dimensions and use the spannedness of E and that
c2(E) # 0) we get m(K + L) = O. Thus —K is ample by Kleiman
numerical critertion of ampleness. Thus V is a Fano 3-fold. Therefore
Pic(V) has no torsion; hence L = — K. ’ . :
First we assume b3(V) = 1, i.e. (for Fano 3-folds) Pic(V) & Z.
' Let r be the index of V. By 1.4 and [11], 2.3, we have r > 2. Such V
are classified, and we have to check all the possible V as was done in
(a) (case (1) in [1], §1) Now assume (V,L) = (P3, O(3)). By
1.2 for every line A with AN S = 0, we have E|A & 0,4(2) ® 04(1),
while for every line D with DN S # 0, (E|D)/Tors(E|D) = 20(1) and
Tors(E|D) has length 1. By the proof of 1.2 we have card(S) = 1; set
{P} := S. Fix a two-dimensional linear subspace M with M N S = 0.
By [10] either E|M = TP? or E|M = O(2) ® O(1). In the second case
we get co(E) = 2, i.e. C is a conic; thus by (2) h®(E(-2)) # 0; but
“every section of E(—2) must vanishes identically on every line trough
P, contradiction. Thus we may assume E|M = TP? for every plane M

with P ¢ M. Thus ¢,(E) = 3,1i.e. deg(C) = 3; since C has no trisecant
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line by (2) and 1.3, g < 0; by (1) we have g = 0 and ¢3 = 1. This implies
that E has a very mild singularity at P (it is called ”convenable” or
"suitable”: see [7]); suffice to say that this implies ”curvilinear” and
thus that we may take C' smooth without assuming a priori that E is
curvilinear). Thus C is a rational normal curve in P?. Since all the
possible configurations of such pairs (C, P) are projectively equivalent,
we get the uniqueness of E, up to the action of Aut(P?); the sheaf given
in 0.1 is a solution. For this sheaf we have h°(E) = 11, h*(E(-1)) = 2.
Thus we see that given 5 general points P; € V, thereis s € H°(E) with
{P,Py,...,Ps} C (s)o; since six points of P* in linear general position
are contained in a unique rational normal curves, we see that for E all
C can occur. Thus we see that E is uniquely determined by P*. In
 particular the set of solutions is parametrized by P3.
(8) Now we assume (V, L) = (P3, Oy(4)) (hence cs(E) = 29 — 2);
fix (2). By (1) we have 2g — 2 = ¢s > 0. By 1.3 C has no line D, D
no component of C, with length(D N C) > 4 (hence no quadrisecant in
the sense of [5]; in particular, since g > 1, C spans P*.
First assume C does not contain a line as irreducible component.
We will show that this case not only gives solutions (ii) and (iii) in the
statement of 0.1 but also gives in natural way a few (known) classes
of interesting (from our point of view) reflexive sheaves. By [5], Prop.
2.4, the fact that there is no quadrisecant line implies that [(d — 2)(d—
—3)%(d — 4)/12] = [g(d® — Td + 13 — g)/2]. Since g > 1, we get easily
(e.g. using some bounds for the arithmetic genus of (reducible) curves)
-that (d,g) has one of the following values: (5,2), (6,3), (6,4), (7.5),
(9,10), (9,21); the last case cannot occur since there C' has no plane
component of degre > 4, hence its genus cannot be so large. Note
that if h°(Ig(2)) # 0, we get infinitely many quadrisecant lines, except
maybe if (d,g) = (6,4) or (5,2). If h°(Ic(3)) # 0 and A°(I¢(2)) = 0,
by (2) we have h°(E(-1)) # 0 and h°(E(—2)) = 0; thus there is t€
€ H°(E(-1)) with dim((t)o) = 1. Set B := (t)o; B may be unreduced;
‘we get an exact sequence

(3) 0> O0(1)—-E—>1Ig(3)—0

Thus we see that E is not ample if B has a trisecant line not contained
in B. Note that if h°(I(3)) > 1, we have h°(Ip(2)) # 0, hence B
has a trisecant line (not contained in B!) if deg(B) > 5, except maybe
if B is union of (multiple) lines on a quadric cone (if deg(B) > 6
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this case will be checked in cases 3) and 4)). By [6], 2.2 and 4.1,
deg(B) = ca(E(—1)) = c2(E)—c1(E)+12 = c3(E)—3 = deg(C)—3, and
pa(B) is given (in term of (d,g)). Now we check separately each case.
We assume always C connected, leaving for part (42) the discussion of
what happens in the disconnnected case.

1): (d,9) = (5,2). By Riemann-Roch C is contained in a quadric. By
(2) h°(E(-2)) # 0 and h°(E(—3)) = 0. Thus there is m € H°(E) with
dim((m),) = 1. By [6], Cor. 2.2, we have

(4) 0— O2)>E—-Ip(2)—>0

We want to show that E|D is not ample. By [6], Th. 4.1, (4) cor-
responds to a choice (up to a constant) of h € H(h, Or(2)) ie. to
a degree 2 positive divisor a on T. Two possibilities: a is reduced or
not. Furthermore, up to the action of Aut(P3?), these are the only pos-
sibilities for (D,a) hence for E(—2). Thus we see that there are two
families of reflexive sheaves, such that for any two elements E and E’
of each family, there is g € Aut(P?) with E' = g*(E); furthermore,
since the unreduced divisor is the limit of a flat family of reduced ones,
we see that the second family is a limit of the first one. By (2) every
sheaf E with E(—2) given by (4) is spanned and its restriction E|T
to any curve T' # D is ample (see the proof of case 5) below). We
want to check that E|D is not ample. Assume the contrary. By (4)
‘E|D has a factor Op(2). To obtain a contradiction, it is sufficient (for
degree reason) to check that E|D has a torsion part Tors(E|D) with
length(TorsE|T)) > 2. Indeed this length is exactly 2 and the torsion
is isomorphic to a; however by semicontinuity to obtain the inequality
it is sufficient to check the case "a reduced” and show in that case that
there is some torsion at each of the points in the support of a. This is
obtained tensoring (4) by Op and make a local homological calculation.

2): (d,g) = (6,4). C must be a canonical curve, complete intersection
of a cubic and a quadric; thus we have again (4) with, now, deg(D) = 2.
Thus D has (many) secant lines (even if it is not reduced) and each of
them is an obstruction (by (4)) to the ampleness of E.

3): (d,g) = (9,10). By Riemann-Roch h°(Iz(3)) > 2; thus we have
(3) with h°(Ig(2)) # 0, deg(B) = 6. We claim that B has infinitely
many trisecant lines, and in particular a trisecant line not in B, hence
an obstruction to the ampleness of E. The claim is obvious except if
the quadric A containing B is a quadric cone and B is a union (may




32 E. Ballico -

be unreduced) of lines. But in this case, looking at the minimal desin-
gularization F; — A of A, we see that B is the intersection of A with
a cubic surface (hence all the lines of A are trisecant to B). If E is
"convenable” in the sense of [7] (sometime translated as "suitable”),
i.e. card(S) = c3), there is another proof for this case.

4): (d,g) = (7,8). Since h'(0c(2)) < 1, we would have h?(Iz(2)) # 0.
Look at the proof of case 3); if now B is a union of lines in a quadric
cone A, B contains the complete intersection of A with a cubic surface;
hence there is no such E.

5): (d,g) = (7,5). By Riemann-Roch we have h?(Ic(3)) > 3 thus there
is (3) with A°(Ip(2)) > 2; if there is E, B has no plane component of
degree > 3; since p,(B) =1 by (1) (i-e. [6], 2.2 and 4.1), we get that B
must be the complete intersection of 2 quadrics. Vieceversa, starting
with such B and m € H%(wp(2)) = H°(Op(2)), m vanishing only at
finitely many points, by [6], Th. 4.1, we get a reflexive sheaf E(—1)
with E given by (3). We get an irreducible family of such bundles and
the choice of B and (3) give that any such F is spanned. We check
that they are ample, at least for general B,m; we assume that B is
irreducible. Fix an integral curve T' # B. Fix a general quadric with
B C A, with T not in A. Note that T'N B (as scheme) is contained in
the scheme T N 4 which is a Cartier divisor on T with degree 2deg(T);
by (3) and 1.6, E|T is ample. We have to check the ampleness of E|B.
Given B, we get E, hence C with h%(Ic(3)) > 3; hence given E we
may find B’ instead of B giving the same E; since we know that E|B'
is ample, we know that E|B is ample, too.

6): (d,g) = (6,3). Exactly the same proof as in case (5) shows how
to get the family claimed by 0.1. To get the sheaf for simplicity start
from an irreducible B, i.e. from a rational normal curve. We note
" only that, for C smooth, a necessary and sufficient condition for the
spannedness of the corresponding F is that h%(Io(2) = 0; this is known
to be equivalent to the fact that C is not hyperelliptic.

(82) Now we assume that C is not connected; if C' contains no
line, the quotation of [5] works again and can reduce very much the
possible cases. But it is easier to consider all the case simultaneously.
If h®(V, Ic,v(2)) # 0 and d = 5, again we have (3) and conclude. Thus,
since g > 1, we may assume d > 5. Again we do not have quadrisecant
lines (hence the plane components have low degrees). The trick is to fix
‘one or more components which together have a 1-dimensional family
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of trisecant lines (one can take 3 disjoint lines or two disjoint conics or
an irreducible curve of degree d' and genus ¢' with (d',¢') # (3,0) and
(4,1), or ...). Then look at the intersection of the other components
with the surface union of these trisecant lines. This work (details left to
the reader) unless there are exactly two irreducible components both
with (degree, genus)=(3,0) or (4,1). But by (1) this implies ¢5 < 0,
contradiction.

(7) (case (2) in [1], §2). Assume that V is a smooth quadric
@ C P* and L = O(3) (hence cs(E) = 2g — 2 by (1)). By (2) E is not
ample if C has a trisecant line. Note that every trisecant line to C in P*
is contained in V. First assume that C is contained in a hyperplane.
By (2) this means h°(E(—2)) # 0; the morphism O(2) — E is an
obstruction to the ampleness of E (much easier that case 1) in (8)).
Thus we will assume that C spans P*.

Assume C connected. The smoothness of C, g > 1, and all page
533 in [2] give that either g = 2, deg(C) = 6, or g = 5, deg(C) = 8
(and C is the complete intersection of 3 quadrics in P* in the latter
case). In both cases C is projectively normal and R (Iov(2)) > 2,
h°(Ig,v(1)) = 0; thus by (2) we get h°(E(—1)) > 2 and h°(E(-2)) = 0;
fix t € H°(E(-1)) with dim((t)g) = 1. Set B := (t)o; by [6], 2.2,
deg(B) =deg(C) — 4. We get the following exact sequence:

(5) 0— O(1) - E — Ip(2) — 0.

By [6], Th. 4.1 (i.e. by (1)) if d = 6 we have p,(B) = 0, while if d = 8
we have p,(B) = 1. In both cases any sheaf F fitting in (5) is spanned.
Since h°(E(-1)) > 1, h°(Ig(1)) # 0; we get that if d = 8 there are
lines D C V with length(B N D) > 2; by (5) the line D prevents the
ampleness of E for d = 8. Now we assume d = 6, hence R (Ic,v(2)) =3
and h%(Ip(1)) = 2. Thus B is the intersection of V with a plane II. As
in (B), case 5), we get from (5) the ampleness of E. By [6], Th. 4.1, E
is uniquely determined when we fix B and a degree 2 positive divisor a-
on B with support §. A dimensional count shows that the orthogonal
group Aut(V') acts transitively on the pairs (B, a) with B smooth conic
and a reduced positive divisor of degree 2 on B, and on the pairs (B, a)
with B smooth conic and a double point on it. Thus we get exactly two
irreducible families of solutions (since [6], Th. 4.1, gives an equivalence
between (E,s) and (B,a)), the second one being a specialization of
the first one. Furthermore two sheaves in the same family differ by
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an element of the orthogonal group Aut(V). Since R°(E(-1)) > 1
a dimensional count shows also that for each F there is a subgroup
G CAut(V) with dim(G) = 1 and such that g*(E) = E for every
g € G. The two irreducible families are distinguished exactly by the
condition: "card(S§) = 2” or "card(S) = 1”. In the case "card(S) = 2”
(i.e. card(S) = cs3), we get a priori only convenable sheaves in the
sense of [7] (hence curvilinear sheaves, without making a priori this
assumption).
To handle the other cases and get further we need a lemma.

Lemma 2.1. With the usual notations, V is not covered by a flat
family of smooth rational curves {T'} with LT = 2.
Proof. Fix P € S. Assume by contradiction there is T' = P! with
P € T and fix a general C. If length(C N T) > 2, the contradiction
comes from 1.3. Assume length(C N T) = 1 (and in particular C has
embedding dimension at most 2 at PP). A local calculation shows that
the torsion part of I¢ ® Or has length 1. From the restriction of (2)
to T we get (T, E|T)-4, contradicting 1.2. ¢

By 2.1 we get at once all the cases in [1], §3 (i.e. the cases with
b2(V) > 2) and cases (3), (4), (5) (since the case left was done in the
"safe” §3), and (8) of [1], §2. Now we will check how 2.1 gives cases
(6) and (7) of [1], §2; in these cases V is respectively the intersection
of 2 quadrics in P® and a cubic hypersurface in P* and L = O(2);
by 12.1, since § # @, it is sufficient to check that every point of V is
contained in a line contained in V'; a general hyperplane section contains
a line (by the explicit theory of Del Pezzo surfaces); thus V contains a
two-dimensional family of lines; they cover all the points of V' by the
properness of the Hilbert scheme (here of the Grassmannians). :

Now look at case (10) of [1], §2; again we find h(C) a line; now
there is no contradiction to the spannedness of E, but, as in the remark
just after that case we get ¢ = 1 by the Riemann-Hurwitz formula,
contradicting (1). The proof of 0.1 is over.

Now we want to spend a few lines for the case ” E not curvilinear”.
The reduction (as in [1]) to the very few cases considered in §2 does
not use the curvilinear assumption. To handle the single cases, however
more care than I have is needed. At some point (in particular in (a))
we stressed that we never used the curvilinear assumption. Care for
case (9) of [1], §2; but this is not a big problem. Care with the search
for the quadrisecant line in (3); however [5] works for singular reducible
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curves with no line as component; essentially the reducible case looks
easy (as was the disconnected one) and reduces the problem to subcases
(1),...,(6). In (v) we used heavily the curvilinear assumption when we
used [1], p. 533; there it was used in an essential way the enumerative
formula for the number of trisecant lines to a curve in P*; this formula
is proved in [9] only for smooth curves. Summary: we do not claim,
even for (), to have checked all possible configurations, and we do
not claim that in the cases giving the families (ii), (iii), and (iv) of
the statements of 0.1 the non curvilinear sheaves arise only as limit of
curvilinear solutions. But there is a case in which both problems about
multisecant lines could be answered very easily, showing that no new
solution can arise; and this happens exactly if the singularities of E are
bad i.e. there is P € § such that even for general s € H°(E), (s),
has embedded dimension 3 at P; for instance this is the case if (8)o
is not locally a complete intersection at P and by (2) this condition
means that the fiber of E at P has dimension > 3. Assume that E
has such a bad point P; and consider cases (8) or (7); every line T in
V through P intersects C at P in a scheme length > 2; in (v) take as
T a line through P and another point of C (the only trouble arises if
C' is union of lines through P); in (8) to find the quadrisecant line it
should be sufficient to project from P and apply the genus formula for
plane curves and one of the available (even a very weak one) bound for
reducible space curves whose plane components have low degrees (but
we have not made all the numerical checkings). Exactly for the same
reasons it should be very easy to handle the case in which E is assumed
to be not curvilinear at two different points (or more).
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