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Abstract: A well known theorem of R. Nevanlinna [5] states that there are
at most two distinct meromorphic functions sharing three distinct values CM
(counting multiplicities). This does not hold, if one only demands sharing two
values CM and one IM (ignoring multiplicities). But in this case we are able
to show that there are at most three distinct functions. This result is sharp
in the sense that its conclusion does not hold, if one only demands sharing
one value CM and two IM. Besides, we will present some other extensions of
Nevanlinna’s theorem dealing with the case that there are only few zeros and
poles of the functions, or that there exists a nonempty set, which is ?shared”
by the functions. ‘ ’

1. Introduction

Given n > 2 meromorphic functions f,..., f, on C. We say that
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fi,..., fn share a value c € CU {oo} if all the sets C;={z€C:
: fi(2) = ¢}, j =1,...,n are equal. In the following it will be helpful to
make a distinction between sharing a value CM (counting multiplicities)
and IM (ignoring multiplicities). In the first case we have a k-fold c-
point of f; exactly at the same points of the complex plane where f;
takes a k-fold c-point for 4,5 = 1,...,n. Particularly, if ¢ is a value
not taken by fi,..., fn, this value is CM-shared. In the second case we
allow the multiplicities of the c-points to be different.

We assume that the reader is familiar with the notations and
standard results of Nevanlinna theory (see e.g. [3], [4]).

In this paper, S(r, f) denotes a quantity which is o(T'(r, f)) as
r — 00, possibly outside a set of finite Lebesgue measure. A frequently
used lemma is the following: If two nonconstant meromorphic functions
f and g share three values IM, then S(r, f) = S(r,g). (One can easily
prove this using the second fundamental theorem, see e.g. [4], p. 72.)

Beside the standard notations we will use the following: N(r, f)
denotes the counting function of the poles, where each pole will be
counted only once without regard to multiplicity. No(r,¢, f,g,h) is the
counting function of the only once counted common c-points of f,g and
h, again without regard to multiplicity. Ni(, f) counts the multiple
poles of f, that is, Ni(r,f) := N(r,f) — N(r, f). € is the set of all
E C [0,00) of finite Lebesgue measure.

2. Results

The following is a well known result of R. Nevanlinna ([5], p. 125).
Theorem 1. If three nonconstant meromorphic functions f,g,h share
three distinct values CM, then at least two of them are equal.

It is well-known, too, that the functions in general need not be
Moébius transformations of each other. Theorem 1 is sharp in the sense
that it is not correct for sharing two values CM and one value IM. To
see this, consider an entire function # and define

F= A S .
= Pti—epr T Pr1—eP) VT Fii_e?P "

Since e* # 0, oo for all complex z it is obvious that there are no zeros
of the three functions, which means, they share the 0-points CM, and
they share the poles CM, since the denominator is exactly the same for
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all of them. A short calculation gives:

f=1 & (f —1)(ef +1)% = 0;
g=1 & (f —-1)(f +1) =0;
h=1 & (ef —1)%(f +1) = 0.

This means f, g, h share 1 IM (not CM). (It is easily seen that none of
the three functions is a Mdbius transformation of another.)

Another direction to get results of the above kind without the
assumption of sharing three values gives the following theorem (whose
proof uses some ideas due to G. Brosch [1]).

Theorem 2. If there are three distinct meromorphic nonconstant func-
tions f,g and h with

(2'1) -ﬁ(r, f); F(”‘, 1/f) = S("', f);
(22) N(r,9), N(r,1/g) = 5(r,9);
(2.3) N(r,k), N(r,1/h) = S(r,R);

then there ezists a set E € £ such that

No(‘r,l,_f,g,h)
TR S /4

o= limeup

An immediate consequence is the following result.
Corollary 3. If there are three nonconstant meromorphic functions
fy9 and h that share 1-points IM and for which (2.1), (2.2), (2.3) hold,
then at least two of them are equal.

The inequality in Theorem 2 is sharp. This means that there are
three functions for which (2.1), (2.2), (2.3) and 7 = 1/4 hold. Put for
example

| f(z) = €*; g(z) = e7%; h(z) = e?=.
After an easy calculation one obtains

I(r,f) =r/m+ O(1) = T(r,g); T(r,h) = 2r/m 4+ O(1);
f=1&ef=1g=1;h=1& e* = +1.

Since there do not exist zeros or poles of the three functions, it follows
by the second fundamental theorem of R. Nevanlinna that 7 equals 1/4.

With the Corollary 3 we are able to prove the following
Theorem 4. If there are four nonconstant meromorphic functions
f,9,h and k that share three distinct values of C U {00}, two of them
CM and one IM, then at least two of them are equal.
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Theorem 4 is sharp in the same sense mentioned after Theorem 1.
To see this, let @ be an entire function and define

f=2*—1;9g= e_‘"(2e°‘ —1); h=e"2%(2e* —1); k= (2* — 1)2.

Similarly to the above reasoning it is seen that this four functions have
no poles, i.e., they share co CM, and that they share 0 IM (not CM).
An easy computatlon gives:

f=1 4:>2(e‘5‘—1) = 0;
g=1 & (e*=1) =0
h=1 & (e*—1)* =0
k=1 o 4e%(e* —1) =0.

This shows that the functions share 1-points IM (not CM).

For further details about the construction of such functions see

[6]. Other conditions on the functions were given by F. Gross and C.F.
Osgood [2].
Definition 5. (Preimage sharing) Let M be a finite, nonempty set
in C U {oo}. Two meromorphic functions f,g share the set M if it
follows from f(z) € M that g(z) € M and vice versa, with regard to
multiplicity. '

With this definition they gave
Theorem 6. If there are two nonconstant entire functions f,g of finite
order, which share 0 CM and the set {—1,41}, one of the following
equalities holds: f = +g or fg = £1.

It was shown independently by G. Brosch ([1], p. 48) and K.
Tohge ([7], p-251) that this result remains true for functions of infinite
order. They proved that this even holds if f and g are meromorphic
functions which share oo CM. We strengthen their result as follows.
Theorem 7. If there are two nonconstant meromorphic functions f,g
sharing oo IM, 0 CM and the set {—1,+1}, one of the following equal-
ities holds: f = g or fg = +£1.

For further results concerning unicity problems of meromorphic
functions see [6)].

8. Proofs

Proof of Theorem 2. Given three distinct nonconstant meromorphic
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functions f, g,k with (2.1) — (2.3), we have to show that < 1/4. Let
us define auxiliary functions

o = (fr —2757) - (5~ 23%);

g g-1
n 1 1
az = (& —2.5) — (4 -2 A);

. (% ~23%7) - (fr —275);

=f'/f; B2 =4g'/g; Bs = h'/h.
It follows from the lemma of the logarithmic derivative (see e.g. [4], p.
65) that .

m(r,ay) = S(r, f)+ S(r, 9);
(3.1) m(r,ay) = S(r,g) + S(r, h);

m(r,az) = S(r,h) + S(r, f). |
Because of (2.1) — (2.3) and the lemma of the logarithmic derivative it
follows that

(3.2) T(r,B1) = S(r, f); T(r,B2) = S(r,9); T(r,P3) = S(r,h).

Since f,g,h are nonconstant we have 3; # 0 for i = 1,2,3.
Let zo be a zero of f' but not of f. With N(r,1/f) = S(r, f) and (3.2)

we get
N(r,1/f" g(r ,1/f') = N(r,1/f) + 5(r, f)

(ry1/B1) + S(r, f)
T(r,B1)+ S(r f) S(r, f)-

This and a similar argument leads to

(3.3) N(r,1/f')=5(r,f); N(r,1/g') = S(r,9); N(r,1/h') = S(r, h).

Noting that 3; vanishes in multiple 1-points of f and using a similar
argument for 1-points of g and h, we get

(3.4) Ni(r, 75) = S(r, £); Ni(r, 525) = S(r,9); Na(r, 515) = S(r, ).

This shows that ”most” of the 1-points of the functions are simple ones.
By expanding the a; into their Laurent series it is easily shown

<
<

that

(3.5) a; (a2 and aj respectively) vanishes at simple common
1-points of f,g (g, h and h, f respectively).

If a; # 0, then (3.2) - (3.5), together with the first fundamental theo-
rem and the assumptions (2.1) and (2.2), give
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No(r,1,f,9,h) < N(r,1/e1)+ S(r, f) + S(r,9)
< T(r,a1)+5(r,f)+5(r,g)
=m(r,a1) + N(r,01) + S(r, f) + S(r, 9)
< NLI‘,l/(f - 1)) —'No(‘l‘,l,f,g,h) +N(r1f)+
+£(1‘,1/f’)_+ N(ril/(g - 1)) - NO(T711f7g7 h)+
+N(r,g)+N(r,1/g’)+5(r,f)+5(r,g)
<T(r,f)+T(r,g)+S(r, f)+5(r,9)—2No(r,1, f, 9, h).

Thus we have proved (with a similar argument for a;,a; # 0)

3No(r,1,f,9,h) < (L + o(1))(T(r, f) + T(r, g)) for @1 # 0;
(3.6)  3No(n1,f,9,h) < (1+0(1))(T(r,g) + T(r,h)) for o # 0;
3No(r,1,f,9,h) < (1 + o(1))(T(r,h) + T(r, f)) for a3 £ 0.

Now we distinguish the following four cases.
Case 1. a1,ay,a3 # 0; '
Case 2. ay =0; az,as Z 0;
Case 3. ai,az =0; az Z 0;
Case {. a1,as,a3 = 0. ‘
. We proceed to obtain 7 < 1/4 in each one of them.
Case 1. In this case (3.6) leads to

9No(‘r, 1, f1.q, h) < (2 + 0(1))(T(1‘, .f) + T(r’g) + T(Tv h))

Hence we get 7 < 2/9. This shows 7 <1/4.
Case 2. An easy calculation shows that a; = 0 is equivalent to f = Log
with a Mobius transformation L. Because of (2.1) and (2.2) we get
f=gor f=1/g. Since f = g gives a contradiction, we assume that
f=1/g. This means T(r,g) = T(r, )+ S(r f).  No(r,1, f,g,h) =
=8(r, f) + S(r,9) + S(r,h) means T = 0, which gives (2.4). Now let
No(r,1, f,9,h) # S(r, f) + S(r,9) + S(r,h). This, together with (3.6)
for a3 # 0 and N(r,1/(f — 1)) > No(r,1, f,g,h), yields
No(r,1,f,9,h)

1f)+T(r,9)+T(r,h)

J— : N (r,l,f,g,h)
= lmsup s G TSt )

r—oo,rZE

No(r1,f,9,h)
,f)+3No(1‘,1,‘f,g,h)-f-s(r,f)-f-s(r,h)
< No(r11!flglh)

- lim sup 4No(r1,f,9,h)+S(r,f)+S(r,h)
r—oo,r¢E

=1/4.

7 = limsup
r—oo,r¢F T(r

< limsup T

r—o0,T€¢E
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This gives r < 1/4.
Cases 8/4. a;,as = 0 yields
g=horg=1/h
and
g=forg=1/f,
which is a contradiction to our assumption that the three functions are
pairwise distinct.

Proof of Corollary 3. Assume there are three such functions f, g, h.
The second fundamental theorem in the N-version gives

T(r,f) < N(r,1/f)+ N(r,1/(f — 1)) + N(r, f) + S(r, )

= N(T‘,l/(_f - 1)) + S(”',f)

< T(r, f) + S(r, f).
This means N(r,1/(f — 1)) = T(r,f) + S(r,f). In the same way
N(r,1/(g—1)) = T(r,9)+S(r,g) and N(r, 1/(h—1)) = T(r,h)+S(r, k)
hold. Because of sharing 1-points, we conclude 7 = 1/3. Therefore The-
orem 2 gives a contradiction. {
Proof of Theorem 4. General assumption: There are four noncon-
stant, distinct functions f, g, h, k sharing 0, oo CM and 1 IM. Since the
functions share three values the equations S(r, f) = S(r,g) = S(r,h) =
= S(r,k) =: S(r) hold. It is convenient to define

W(T, 0) = W('ﬁ 1/f); N(ﬁ 1) = _N(r7 1/(f - 1))
Here it is of no interest whether these counting functions are defined
with f or g, because the functions f arid g share the zeros and 1-points.
Without loss of generality we can suppose that
(8.7) _N_(r, 0), W(Ta 1) # S(r).

This is valid because of Corollary 3.
We define the entire functions «, 3,7 by

(3.8) Flg=e f/h=eb; flk=em.
Since there are 1-points, we get
(3.9) o,8,v,a — B, o — v Z constant.

Further we define the meromorphic functions 4, B,C by
(3.10) H=s4==8£=C
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Since there are zeros, we get

(3.11) A,B,C,A/B,A/C,B/C # constant.
We get the following representations for the function g:
(312) g= ‘f:ela,
(3.13) | 9= griis=e’;
(3.14) 9= griistae’ .
We equate (3.12) with (3.13) and (3.12) with (3.14) and get
o e*(B—A)+(A—AB
(3.15) go—h = <X BZ';(B 2).
a— e*(C—A)+(A—AC
(3.16) ex—7 = L(C-A)HA-40)

A short computation gives the following equivalent representations:

(315) e = LLAENBoAB),
—a _ €'(A—C)+(C—AC
(3.16) Yo — (A1 -40)

From (3.15) and (3.15°) we conclude that e* and e? share the 1-points.
So we have three functions which have neither poles nor zeros, shar-
ing 1-points, and they are nonconstant and distinct because of (3.9).
Corollary 3 shows that this can not be true. So two of the exponential
functions have to be equal and this means with (3.7) that two of the
functions f, g, h,k have to be equal. This yields the expected contra-
diction and completes the proof. ¢

Proof of Theorem 7. Since f,g share oo IM, 0 CM and the set
{—1,1}, the functions F := f?, g := g2 share 0,1 CM and oo IM. Now

it is easily seen that
(3.17) S(r,F) = 5(r,G) = S(r, f) = 5(r, ) =+ S(r).

Case 1. N(r,f) # S(r).

At any pole of f, F and G have a multiple pole. Deﬁne-NzF’G('r) as the
counting function of the common multiple poles of F and G counted
only once. Thus we get

(3.18) NIPC(r) # 8(r).

Now we consider the following auxiliary function
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FI GI ! FI GI
=(T_F——T)—(ﬁ—‘cﬁ)"' F(F— 1)+G(G -0

Because of sharing 0,1 CM and oo IM we conculde from (3 17) and the

lemma of the logarithmic derivative

(3.19) T(r,B) = S(r).

The second representation of # shows that it vanishes at common mul-

tiple poles, so we get from (3.18) and (3.19) for 3 # 0
N;*%(r) < N(r,1/B) < T(r,B) + S(r) = §(r).

This is a contradiction and therefore we conclude 8 = 0. An easy
calculation shows that this is equivalent to F' = G. This yields f = +g.
Case 2. N(r,f) = S(r).

Since oo is shared by the two functions we have N(r,g) = S(r).-
Subcase 2.a. N(r,1/f) # S(r).

At any zero of f, F and G have a multiple zero. So in this case there
are many multiple zeros of F' and G. An analogous consideration as in
Case 1, here with the auxiliary function

F G
T=F1 T -1

yields 4 = 0, which is in this case equivalent to f = +g.
Subcase 2.b. N(r,1/f) = S(r).

Hence
(3.20) N(r,F), N(r,1/F), N(r,G), ¥(r,1/G) = 5(r)

is valid. From (3.20) we get F = G or FG = 1.

Otherwise assume that F' # G and FG # 1. Now define the function
H :=1/G. 1t is clear that F,G, H share 1-points and with (3.20) we
get

(3.21) N(r,H), N(r,1/H) = 5(r).

Since F,G, H share 1-points and because of (3.20) and (3.21) Corol-
lary 3 shows that two of the functions have to be equal. This gives a
contradiction to the above assumption that F # G and FG # 1 or to
the assumption that f,g are nonconstant. So we have shown F = G or
FG =1 and this leads to f = +g or fg = +1 and therefore our proof
is complete. {

Remark. K. Tohge has strengthened Theorem 6 in the followmg way:
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If f,g share 0, co CM and the set M = {c € C : ¢* = 1} for a given
integer n > 2, then f = dig or fg = dy with complez constants dy,d;
such that d? =1 and df =1 holds.

Tn a similar way as in the proof of Theorem 7 with F := f*and G := g
instead of F := f? and G := g2 one can easily prove that Tohge’s result
still remains true for sharing the poles IM instead of CM. It seems that
this can not be obtained by Tohge’s method.
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