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Abstract: For a recent integral of Bobillo and Carrillo 1987, which sub-
sumes the Daniell integral and the Dunford-Schwartz integration with respect
to finitely additive measures, convergence theorems are obrtained, using lo-
cal convergence in measure. Furthermore the relations between the Bobillo-
Carrillo integral, the abstract Riemann integral and the Bourbaki integral are

discussed.

For a semiring §) of sets from an arbirtrary set X and p:§ —
— [0,00) only finitely additive an analogue R;(p,R) to the space of
Lebesgue-p-integrable functions L!(g,R) and its Lebesgue integral has
been introduced in Loomis [9], Dunford-Schwartz [5] and [8] and for
which, following Loomis [9], we use the terms Riemann-u-integrable
and Riemann-u-integral. The question, whether corresponding analo-
goues to the Daniell extension process, but without or weaker conti-
nuity assumptions on the elementary integral, exist, has been treated
by Aumann [1], Loomis [9] and Gould [7]. Aumann’s results are ap-
plicable only after the construction of a suitable integral seminorm; in
Gould’s paper [7] Stone’s axiom is assumed, his results are therefore
subsumed by the abstract Riemann integral (see for example [8], p.57,
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268); Loomis [9] works without Stone’s axiom, but still his three exten-
sion processes are only of Riemann power, for example if one starts with
the Riemann integral on the continuous real-valued functions with com-
pact support Co(R,R) or with the step functions S(f2,R) corresponding
to the ring () generated by the intervals [a,b) C R one gets R;(u|},R)
and not L'(uz,R).

The situation is different with the integral I : B — R introduced
recently by Bobillo and Carrillo [3]. It works for arbitrary function vec-
tor lattices B and non-negative linear I : B — IR, and yields the usual
L' in the two special cases above. In this note we prove convergence
theorems for this integral, using an appropriate local ”convergence in
measure”. In the case of Lebesgue’s convergence theorem (§1 and 3),
our results subsume the corresponding result for R; (;l.,ﬁ) (85); regard-
ing the Monotone convergence theorem only a somewhat weaker version
is true in B (§2). If p : @ — [0, 00) is o-additive, then the convergence
used here is for sequences more general than pointwise convergence; if
additionally € is a §-ring, then B = R; = L' modulo nulfunctions (§5
and 6) and one gets the usual Lebesgue convegence theorem. As an
application we give in §5 a short proof of the recent result of Bobillo
and Carrillo [4] that always Ry C B modulo nulfunctions, in §6 we
formulate a converse for the Lebesgue case, and discuss the possible
relations between B, R;, L' and the Bourbaki extension.

Notations. R := {—oo}U reals R U {oo} = [—00,00]; we extend the
usual + in R to all of R xR by

(1) oo+ (—00) = (~00) + 0o := 0,00 + (—~00) = (~00) + 00 := o0,
00 + (—00) = (—o00) 4 00 1= —o0,

r—s:=r+(—8),r-s:=r+(-s8),r -3 =1+ (—8) for r,s €eR.
With r V s := max(r,s), A := min and r Nt := (r At) V(—t) one has
forr,s€eR,0<teR

(2) rNt—snNt] <2(|r—s|At), IrAt—sAt]<|r—s|,
|th—th|<|r—a|,

for further properties used below see also Aumann’s paper [1], p. 442
(*a —* ¢). In all of the following we assume, with arbitrary set X

(3) X # 0, B function vector lattice CRX,I:B —R linear, I > 0,
i.e. under the on X pointwise defined +, r', =,<, A, V, | | B is real
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linear space of functions f : X — R containing with f, g also f A g,
fVag, |fl,and 0 < I(f)if 0 < f € B, where |f|(z) := |f(z)| for z € X.

From Bobillo’s and Carillo’s paper [3] we need the following de-
finitions and results: Bt := {g € (—o00, 0o]*: to each z € X exist
hn € B with h, < g and h,(z) — g(z)},

(4) I'*(k) := sup{I(h) : h € B and h < k}, with sup@ := —o0, k € ﬁx,
with It(k)TI+(l) < I*(k*1) for k,l € R"; B~ : —B*, I(k) =
= —I*(=k), By = {p € B* : I*(p +g) = I'*(p) + I*(g) for all

T(k) == inf{I*(p) : k < ¢ € By}, with inf@ := oo,k ¢ R ;
I(k) := —I(—k),= sup{I (=) : ¢ € By, —p < k}.

(6) T(k+1) < T(k)+I(1) for k,l e R™,

(7) I*(k) < I(k) <T(k) < I~(k) foranykeR",

(5)

I*,I,T are monotone (increasing) on R™.

The elements of B := {k € R* I(k) = I(k) € R}, = B, in [3],
are called I-summable; B is a lattice, containing with f, g also lfl, rf
with r €R, and any h : X — R with h(z) = f(z) + g(z) only for those
z, for which f(z) € R and g(z) € R (a slight extension of Theorem
5.2 of [3]), then I(rf) = vI(f), I(h) = I(f) + I(g), where [ := I =1
on B; B is closed under +, +, 4. B is dense in B with respect to
||k||r := I(|k|). BeyyU B(_y C B, where B") := {g € B*:

: I+(g) < oo}, By:=By N B(+), B(_) = —B4). IIF is the maximal
extension of I|B in the sense of Aumann [1] p.443 with respect to the
integral(semi)norm I.

1. Dominated convergence

To get convergence theorems also in the finitely additive case, a.e.
or everywhere convergence is not sufficient; as in Dunford-Schwartz’s
work [5] (p. 101 — 104) one has to use a kind of convergence in measure,

but localized (see §§4,5):
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For any T : [0,00]% — [0,00], arbitrary nets (k;)ics with k; € R” for
i € J = directed set, arbitrary k E]ﬁx we need
Definition 1. k; — k(T') means for each fixed h € B with 0 < h one
has T'(|k; — k| A k) — 0 (where e.g. 0o — 0o = 0 by (1)).
Lemma 1. If ki, k € R, (k:) net with I(Jk; — k|) — 0, then T(k;) —
— I(k), I(k;) — I(k), k; — k(I).
Proof. With (5) there are z; € By with k; — k < |ks — k| <
and I+(z,) — 0. Then k; < k42, I(k;) < I(k + z;) < I(k) + I(z.)
by (6), lim I(k) < I(k). Similarly k — k; < z;, k < ki+z, I(k) <
< IT(k; )+ I(z), I(k) < hmI(k ), or I(k;) — I(k), also if I(k) = Foo.
Since I(|(—ki) — (—k)|) = I(|ki — k|) — 0 and I(-1) = —I(l), the
I-statement follows. {
Lemma 2. If k;,k eR”, ¢ € B, (k:) net with k; — k(T) and ¢ < k;
for i € J, then lim I(k;) > I(k). If k; < ¢, everything else unchanged,
then li_mf(k,-) < I(k).
Proof. First withp =0: I [e€B,, 0<-I<k;:=kVO0, I:
=k;A(—1)>0,by (2) one hask; =k — k+(7), Lok A (=)=
= —I(I), 0 < (<=1) = l; < -1 < some hy € B by definition of BY, so
I(J(=1) = 4]) — 0. By Lemma 1 one has I(k;) > I(l;) — I(-1) or
LmI(k;) > I(-1) = —I(l), since [ was arbitrary > —k4, imI(k;) >
> sup{—I*(1)} = —T(—k) = I(ks) > L(k).

In the general case, one can assume I(k) > —oo and —p =g €
€ B(4)- Then0 < [; :=k;+g — k+g(I), since |(r+t)—(s+1)| < |r—3s]
for r,s,t € R. So by the above lim I(l;) > I(k + g). Now for g € B,
k E]I_{X with I(k) > —oo one has

(8) I(k + g) = I(k) + I'*(g):

> follows from (6) since I = I = I'* on B; and + = + on the  right in
(8). If I € By with -l < k+g, then —(I+g) < k or I(k) = —I(—k) >
> It (l+g) = —IT(l)—I*(g); this implies I~ (1) = ~It(1) < I(k)+
+I*(g) or I(k + g) < I(k)+ I*(g). (8) applied to lim I(L;) > I(k + g)
yields lim I(k;) > I(k) since I1(g) €R.

The second statement of Lemma 2 follows from this since B
53 —p < —ki— k(I).O
Lemma 3. If ki, k E]EX, w€B, ki k(I)and k; —k > ¢ foric J,
then lim I(k;) > I(k) and im I(k;) > I(k); if instead k; — k < @, then
im I(k;) < I(k) and Gm I(k;) < I(k).
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Proof. If I(k) > —oo there is g € B4y with —g < k; one can assume
—¢ € B(y), then k; > k+p > —(g+ (—¢)) € B. Lemma 2 yields
lim I(k;) > I(k). Since k; —k — 0(I), Lemma 2 gives LmI(k; — k) > 0;
so to € > 0 there are 1, € J and z; € B4y with k; — k > —z; and
I(z:) = I™(z) <e,i >, for such i then I(k) < T(k:+ z) < I(k:)+
+I(2z;) < I(k:)+¢ by (6). The im-statements follow as in Lemma 2. &

Lemma 3 applied to [; := |k; — k|, I := 0 (and Lemma 1) yield
Theorem 1. If with k;, k € IEX, ¢ € B one has |k; — k| < ¢ for
i € J = directed set and k; — k(I), then I(|k; — k|) — 0, I(k;) — I(k)
I(k;) - I(k). O
Corollary 1. If ki, k € R, k| < p € B, k; — k(I), then I(k:) —
— (kN g), I(ks) — I(k N ).
Proof. ;N =k;,so k; » kN <p(T) by (2), ki —kNyp| < 2p. O
Corollary 2. If with the assumptions of Theorem 1 additionally k; €
€ B, then k € B, I(k;) — I(k). (Lebesgue’s convergence theorem for
B).
Corollary 3. If f; € B, k EIEX, fi = k(I), then k € B if and only if
I(|k|) < oo. Special case: fie B,k EIE—{X, I(|fi—k) > 0=k e B.
(B is I-closed).
Proof. "If": I(|k|) < oo is equivalent with |k| < some ¢ € B, so
|finp—k| <20, fing — kNy = k(I), f; Ny € B =lattice, Corollary
2. ¢

One has corresponding convergence theorems for B+ (and B4, =
Corollary 7 in §3):
Corollary 4.\ If in Lemma 2 additionally k; < k [resp. k < k], then

I(k;) — I(k) [resp. I(k;) — T(k)]. So if k € R”, ¢; € BY, € B with
¢ < gi <k and g; — k(I), then It(g;) — It (k) = I(k).

Proof. I(k;) < I(k), so El(k,—) < I(k),< limI(k;) by Lemma 2. Since
I =T on BY(—p < g € Bt withp ¢ B, implies 0 < g+ p, 0 <
S It(g+p) = It(g) + I (p), I(g) < I*(g)), if k; = g; € BT one gets
I+(g:) — L(k), but I*(g;) < I*(k) < I(k). &

In the above statements usually all assumptions are essential (see
however §3): Domination by ¢ € B(t) is in Theorem 1 /Corollary 2 not
enough: k; = 0, k = 1T of Example 2 below; similarly for Lemma 2
(ki = 1T, k = 0), Lemma 3, ”[ ]” of Corollary 4.

In Corollary 1 one cannot substitute k for kN (k; =0, k = 1T),
so Corollary 2 is false if only |k;| < ¢; in Corollary 3 the existence of

J
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a g € B(Y) with |k| < g cannot replace I(|k|) < oo, in Corollary 4
"g; < k” is essential: g; = 0, k = —1T'; the "if” in Corollary 3 also
becomes false for ”(f;) is || ||1-Cauchy, i.e. I(|f; — f;|) — 0” instead
of "I(|k]) < co”, contrary to the R;-spaces (§5) the B is in this sense
not closed (k = 17T'). In Corollary 4, ¢ € B cannot be weakened as in
Corollary 7 to ¢ € B(-), there exist counterexamples Bq, I, (see §5)
with g even o-additive.

2. Monotone convergence

For k,I,p € R we define k < I(T) by (k—1) := (k—1)Vv0 = 0(T)
and p = 0(I) by pn, := p — 0(I); by definition, k < I(I) & 0 < I — k(I).
Lemma 4. Ifk,l ¢ R with k < I(T) and I(k) < oo [resp. I(1) > —o0],
then I(k) < I(1) [resp. L(k) < I(1)].
Proof. If I(I) < oo to £ > 0 there is g € B4y with I < g and It(g) <
< I()+eresp. < —1/e, with (1) one has 0 < (k—g)+ < (k—1)4 — 0(I);
thereis p € B(;) withk <por (k—g)+ <(p—g)+ € B, so Theorem 1
yields I((k — g)+) = 0. Now k < g+(k — g)+, so I(k) < I(g9)+
+I((k —g)4+) = I(g) = I'*(g) < I(I) + € resp. —1/e. This applied to
(=1) < (=k)(I) yields I(k) < I(1). ¢
Lemma 5. If k;, k Eﬁx, (k:) increasing net (i.e. ki < k; ifi < j)
with k; — k(I), then k; < k(I) for i € J; if additionally I(k) > —oo,
then I(k;) < I(k), i € J; if furthermore I(k;,) > —oo for some iy then
I(k;) — I(k).
Proof. Ifi < 7,0 < (ki — k)4 < (kj — k)4 < |kj — k|, — 0(1), or
(k; — k)4+ = 0(I); Lemma 4 yields the second statement. In the last
there is go with B 3 —go < ki < kj if 49 < 7, I(k) < lim I(k;) by
Lemma 2, so I(k;) — I(k). ¢

Skipping a dualization of Lemma 5, we note, using Lemmas 3 -
5, the
Corollary 5. If k;, k € ]ﬁx, (k;) increasing net with k; — k(I),
I(Jk|) < o0, I(k;iy) > —oo for some iy and all I(k;) < oo, then —oc0 <
< I(k) = lim I(k;) <lim I(k;) = I(k) < oo.
Corollary 6. If fi € B, k Eﬁx, (f;) increasing net with f; — k(I),
I(|k]) < oo, then k € B, I(|fi — k|) — 0, I(fi) — I(k). (Monotone

convergence theorem for B).
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Proof. Corollary 3 gives k € B; f; <k(I) or 0 < k — fi(I) by Lemma
4; so (|t| —t)4 = 2(—t), implies |k — f;| < k — ;(T), Lemma 4/5 then
Tk~ £i) < I(k — £) = I(k) ~ I(£) 0. ¢ i
Again k,,, k € {0, +1T} with T of Example 2 show that eg I < oo
resp. I > —oo are essential in the above, also I(|k|) < oo cannot be
weakened to I(k) < oo in Corollary 6, even if additionally sup I(] fal) <
< o0; so the usual Monotone convergence theorem is false for B with
— (I) (it becomes true for a suitable extension of B which will be
treated elsewhere; see also §3). The "increasing” also cannot be omit-

ted (kn, = 1[n,n+1) — 0 (pz), §5).

3. Generalized dominated convergence

Lemma 6. If g € B with gA |h| € By for allh € B, then g € B,.
This is due to Bobillo and Carrillo [4], p. 261, Remark 2b. Here

g € B* can be weakened to: g € r* such that to each z € X with
g(z) # 0 there is h € B with h(z) # 0. For g € B the assumptions
gA|B|CBy,gABC B,,gA|B|C B are equivalent; without g € B+
however g A B C B does not imply g € B even if I*(g) < oo (see (11);
g = 1T of Ex. 2).

Theorem 2. If fi € B, g E_B"”, fi = g(I), theng € B ; if additonally
Lm I(f;+) < oo, then g € B.

Proof. With hg, h € B with hy < g and (2) one gets p; := (f; Vv ho)A

Ah — (gVho)Ah = gAR(I), p; € B, |p;| < |ho V |h|, Corollary 2 yields
gAh € B, I(p;) — I(gAh). Since BYABCBY and BtNnB-=
= B(4) by Guerrero-Carrillo ([4], p. 261, Rem. 2a), Lemma 6 shows
9 € By. Furthermore p; < f; 4 + |ho|, so I(gA h) =lim I(p;) <
<HmI(f;4+)+ I(Jhe|) =: co < oo independent of h € B, so I't(g) < oo,
Corollary 7. If g; € By, g and ¢ € BT with I't(q) < 00, —¢ < gi<g,
gi — g(I), then g € B, and It(g:;) > I'*(g). Special case: g; > @ € B.
Proof. If I*(g) = co, g € B,; else g; € B, then g € By by Theorem
2. The assumptions imply 0 < g;+¢ < g+ q and g; + ¢ — g+q(I) (see
before (8)), Corollary 4 yields I'(g;)+I*(q) = I*(g;+q) — It(g+q) =
= I*(g)+T¥() 0 )

Corollary 8. If f; € B, g € B, f; —» 9(I), go € BT with |f;| < go
for i € J and I'*(gy) < oo, then g € BN B, and I(|fi — g]) = 0,
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I(f:) — I(g)-

Proof. (See Addendum and Lemma 7' too). Ifk < g € Bt,pe By,
—p<k,then0<g+p, 0<It(g+p)=I"(g)+I"(p), I (~p)=
= —I*(p) < I*(g), or

(9) keR™, k <ge BF imply I(k) < I*(g) = L(g)-

Now fit+ < |fil < g0, s0 I(fit) < I*(go) and therefore g € B by
Theorem 2. Then k; := |fi — gl < go + |g]| < g0+ g+ 2ho € Bt with
ho € B, hy < g, I*(g0 + g +2|h[) = I'*(go) + I*(g) + 2I(|h{) since
g € B.(= BN Bt), < oo; one can apply Lemma 7', I*(k;) — 0; but
k; € B, and IX =TI on B by (12). ¢

Similar examples as above show that limI(f;) < oo does not suffice
in Theorem 2, f; + < go or I"(go) = oo do not imply I(f;) — I'(g)
in Corollary 8; g € BT is essential in Theorem 2 and Corollary 7 /8, an
analogue to Corollary 3 with I*(|k|)} < oo is false; replacing g; — g(I)
by — (I") or by I'*(g:) — I'*(g) does not imply g € B in Corollary 7
(g: = 0, g = go of Example 2), also I*(g) < oo is essential.
Lemma 7. Ifk; € R, go € B with k; < go forieJ and Fk;i—
— 0(I*), then Lim I't(k;) < 0; if additionally k; > 0 for i € J, then
I+(k,-) — 0.
Proof. For k Eﬁx, h € B one has
(10) It(k) = I*(kAR)+IT(k—k A h):

by definition of I* one has ”>” with =" if IT(k) = —oo; if p € B,
p <k thenpAhp—pAh € BwithpAh < kAR, p—pAh <
<k—kAh I(p)=I(pAR)+I(p—pAh) < It (kAR)+I*(k—kAh);
p being arbitrary, ”<” follows. Choosing h € B with h < go one gets
k; —k; AR < go — h, (10) yields I*(k;) < It (ki AR) + I (go — k) with
I*(go — k) = I (go) — I(h) < € for suitable h, all z. Definition 1 yields
Lemma 7.

Addendum. For the proof of Corollary 8 we define, for any k e]ﬁx,
with inf § = oo, sup @ = —o0

(11) I*X(k):=inf{I*(g): k< g€ B},
Ix(k):sup{I~(p):k>pe€ B~}
With the definition of I, I, By, B_ and (7) one gets

(12) It <I<min(Ix,I¥) < max(Ix,[X) < T<I- onR”.
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Lemma 7'. If0 < k; € ]ﬁx, ki < go € B, k; — 0(I), then
I* (k) — 0.

Proof. To € > 0 there exist gie € Bt with k; < gie < go and
I (gie) < I*(k:) +e. Sok; < kiAh+(gie —gie AR)if0 < h € B;
there exist 2; € By with k; A h < z; and I+(z,') < eif 1 > i, then
I*(gi,e) —& < TT(ks) < I (2i + (giye — giye AB)) = It(2) + I (gs o —
—gi,e NB) =I1(z;) + It(gie) — It(gie ARB) by (10) and using

(13) ifge BY,hc B,theng—gAh € BY.

So gi,. — O(I") with directed set J x (0, 00), Lemma 7 shows I'*(g; .) —
0, I+(gi,e) — 0, thus IX(k,) — 0. <>

There are analogues to Lemma 7/7 for certain certain other com-
binations from I, I, IX, I, I, for example: Lemma 7' still holds if
only k; — 0 (I%), provided B satisfies Stone’s axiom and I(hA %) — 0,
I(h—hAn)—>0asn—o00,0<hecB.

4. Improper integrals

Under some additional assumptions, B is closed with respect to
improper integrals, just as in the case of Riemann- or Lebesgue-inte-

gration ([8], p. 259/261):
(14) = S (B) means: (3),0<he€ B=hA1l and h—hAl€ B,
(15) = Coo = Coo(B,I): (14),0 <h € B= I(hAn) — I(R)

as n — oo.

(14) implies h At and h— h At € Byif0<he B,0<tecR. Stone’s
condition "0 < h € B = h Al € B” implies (14).
Lemma 8. S (B),0<g¢€ By, 0<teR imply gAt and g-—

—g At € B(4); conversely, Coo(B,T), 0 < k € R* with kAn € B, for
n=1,2,... imply k € By with I*(kAn)— I'*(k) as n — oo.

Proof. To g exist 0 < h, € B with I(h,) — I'(g), so I(|g— hn|) — 0;
I(|gAt—haAt]) < T(lg— hn|) — 0, implying g At € B, by definition of
B* and with BAt C Bt the gAt are in Bt ,s0 g1t € B*NB = B(4y;
similarly g—gAt € Bry). Ifall kAn € By, k € BT by the remark after
Lemma 6;if0 < h € B,kAhand kAnAh € BT with0 < kAh—kARA
An < h—hAn, Corollary 4 shows It (kAn) > It (kAhAn) — It(kAR),
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s I't (k) for suitable h, so I't(k An) — IT(k). If It(k) = oo, k € By;
else (k An) A h € By, which is min-closed by [3], p.248, Corollary 7
shows k Ah € B;. So k € By by Lemma 6. {

The first part of Lemma 8 becomes false if only g € By.

Theorem 3. If Coo(B, I) = (15) holds and k ¢ R, then k € B if and
only ifkNn € B forn = 1,2,... and sup{I(|kNn|) : n € N} < oo;
then I(|[k —kNn|) - 0, I(kNn) — I(k) (with kNn = (kAn)V(—n)).
Theorem 3 becomes false with k N h instead of k N n, even if
0<k<1,0<heB=Bqg,I=1I,asin (17) below, I(k A h) = 0:
k = 1T of Example 2, §5; so ”"improper” here is meant only with respect
to unbounded functions, not with respect to "unbounded support”.
Theorem 3 also becomes false without C, by
Example 1. X =N, B = {(2,)nen : lim(z,,/n) exists € R}, I = this
lim, k = (n?); k ¢ B, though X is a I-nulset, I(1X) = 0; even kAl € B
if h € B.
Proof of Theorem 3. "If": Since ky An=(kNn)s, k= ky — k_,
|k —kNn|=|k|— |k|An, one can assume k > 0. To k,:=kAn—
—kA(n—1) € B and € > 0 there are g, € B4y with k, < g, and
It (gn) < I(k,)+€27", n € N. By recursive definition there is a unique
sequence (2,,) with z, € By,

knt1 < Znt1 = gnt1 A(2(2n — 2n A 3)) A1 and
I(Zn) < I(gn)7 n E]N’ 21 = gi1:

Zn+1 € B(4) by Lemma 8 and the A-closedness of B(,y; if knt1(z) > 0,
there k > n, 1 =k, < z,, zp41 = 1 > kpyy. If wy, = B2 i
Wy € BT by [3], p. 246. One has w,, An = (2;'::"2:]-)/\71,: If z,(z) > 0
for some ¢ > m + 2n, z,_1(z) > 1 and thus z;(z) > 1/2if 1 < j < g,
implying ” = ”. Thus w,m An € B(4) for n €N by Lemma 8, again by
Lemma 8 the w, € B; with IT(w,) = nlLII;OI(wm An) <
< lim I(Em'*'z"zj) < EXI(g;) < ZXI(k;) + €. Since YLTk;j =k Amn,
27I(k;) < sup I(kAn) < oo, so It (w,) < 2 if m > m,. Then

0<k—-—kAn=23%3 ki <w,y implies T(|k—k/\n|) —0,keB. ¢

Corollary 9. If Co, = (15) holds, P C X, 1P € B, I(1P) = 0, then

coP € B with I(coP) = 0.

Proof. (oP)Nn=mn-1P € B, I(JooP Nn|) = 0, Theorem 3. {
Corollary 9 is false without Co : P = X in Example 1, even

1X € B.
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5. Riemann-integrals

We consider now B, I arising from finitely additive set functions
i, with arbitrary set X # 0:

(16) = p|Q means: ( is a semiring from X, p : © — [0, 00)
is additive on

(17) Bq := step functions S(Q2,R), I,(h) := [ hdp, h € Bq,

where 5(Q,R) contains all h = X}a,, 4,, withn €N, a,, €R, 4, € 0,
aA:=aon A,:=00n X — A, [hdp = a1p(41) + -+ + anp(4,) (see
(8], p. 17); with p|Q one has (3) for Bg and I,, Bg satisfies Stone’s
axiom and Ce. In this situation one can define u-local convergence,
k; — k(p), [8] p. 69, which localizes the convergence in p-measure of
Dunford-Schwartz ([5], p. 104). By the Lemma in [8], p. 70, A 2.72, for
nets one gets with Definition 1 and I (k) =inf{I,(h): k < h € Bg}

Lemma 9. If p|Q holds and ks, k € R, then k; — k(p) if and only if
By Lemma 9 and (7), k; — k() always implies k; — k(I,); the
converse is in general false: X = [0,1), 2 = {[a,0) : 0 < a < b < 1},
p = Lebesgue measure on (), Q = rationals C X; then k,:=0—
— 1Q(L,) by §6, (38), but not — (). This is different for "Riemann-u-
integrable” functions: The space L(g,R) = L(X, Q, 4,R) of u-integrable
functions of Dunford-Schwartz ([5], I11.2.17, p.112) has been generalized
to Ry(p,R) resp. R;i(g,R) in [8], p.70, 199; if X € £, then L(p,R) =
= Ri(p,R), but even for X = R, @ = {[a,b)} and p = Lebesgue-
measure gy, on {1 the L(pz,R) strictly C Ri(ur,R), there are f €
€ R;(p,R) which are not equivalent. ,
Lemma 10. For p|Q and f;, f € Ry(pu,R) the convergences f; —
— f(p) and f; = f(I,) are equivalent.
Proof. If f; —» 0(I,), 0 < h € B := Bq, € > 0, there are i, = i, ,
z; = z; p € By with g; := |f;| Ah < z; and I'*(z;) < €,1 > 14,. Now g; €
€ R;(u,R), the g; are bounded with Q2-bounded support, so by [8],
A 7.114, p.257 the g; are ”proper Riemann-u-integrable”, i.e.
€ R;(p,R) = I, -closure of B in R* in the sense of Aumann [1]. For
g € Rl(1,R) one has almost by definition Riemann-p-integral [ gdu =
= I}t (g) = I,(g),s0 I, (g:) = I} (g:) < I}t (2:) < €,% > i,; by Lemma 9,
fi = 0(p). &
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By Bobillo and Carrillo [4], R; (#,R) C Bq mod p-nulfunctions; a
slight generalization of this follows easily with the results of §1:
Corollary 10. If p|Q holds, then Ry(u,R) C Bg + {k € Ri(u,R) :
[ 1kldw = 0}. B
Proof. If 0 < f € R; := Ry(p,R), by [8]. A. 7.124 c, p. 259, there are
hn € B := Bg with 0 < hyp, < hpy1 < f, hn — f(p), Lu(ha) — [ fdu.
Then g := lim h, € B*, < f, and h, — g(u); Lemma 9, (7) and
Corollary 8 give g € B(4) C B, I(h,) — I(g) = [ fdu. Since (k,) is
Cauchy with respect to || - ||, := [|-|du, by definition ¢ € R;(u,R),
fgdp:limfhnduszdp.;ifOSk:zf—g,O:hn—hnak(p),
k € Ry(p,R), [|k|dp = 0. With f = f, — f_ and the linear and lattice
properties of Ry and B, [--dp and I = I, one gets (where f_ # 0,
f+ = 0, there the g, k for f, vanish too; one can arrange even g(z) # oo
for z € X): If f € Ri(p,R), then

(18) f=g+kg€ Ban Ri(u,R), k € Ri(u,R) with
Jlkldp =0, k = 0(n), [ fdu = I(g). ¢

R: C B mod p-nulfunctions of [4] is the only relation one has in
general between R; and Bg: There exists X, a semiring §) of sets from
X and an even o-additive p :  — {0,1} C R such that simultaneously
Rl(/"v]R)__ Ba 7& 93 Ba — (Ll(p'a]R) U RIQE"IR)) 7é 01 Ll(/-‘w]R) - (BQU
UR1(p,R)) # 0, (Ba N Li(p,R)) — Ry (p,R) # 0 and X = UQ. We give
only
Example 2. There is a semiring (), a o-additive p : 2 — {0,1},
aset T C X and a go € B with 1T = 0(u), so 1T € Ry (p,R),
but 1T ¢ Fn, though even 1T < go and I;"(go) =0: X :=Ny x1J,
Ny ={0,1,2,...}, J =[0,1) CR, 2 contains all M of the form {n} x E,
{n} x (J — E), F x {y} or (Ny — F) x {y} with 0 £ n € Ny, E
finite C J, 0 € F finite CINg, y € J; p : @ — {0,1} is defined by
p({n} x (J—E))=1,u(M)=0 for all other Me; T:=
= {0} x J, go = 1W with W = Uyecs4, with 4, = Ny x {y} if
y # all ynx, 4y, . = {0,k,k +1,...} X {yn s}, where the y, ; are
choosen as follows: forn € N, I, := (1 - 1,1 - #_1), Ynk € I, for
k=1,2,... with ypp # yn 1 if k # L Furthermore Bg C R;(1,R).
By definition h, := 0 — 1T(), but 1T ¢ B, B := Bg: Else I(1T) =
J1Tdp = 0 by Corollary 2, there is g € B, with 1T < g, It(g) <1/2,
by Lemma 1 of [2] and since B* N B = B(,) one can assume g = 1 M.
HJp:={yeJ:{0,n,n+1,---} x {y} C M, J =UPJ,, so one J,,
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is infinite; then I := 1({no} x (J — Jn,)) € BT with I*(I) = 0; smce
1({ng}xJ) < 1M+, onehas1 < IT(1M+1l) = IT(IM)+I1(l) < L+,
a contradiction. (I(17) = oo by Corollary 11.)

Finally B C R; by the following criteria, since one can easily
verify (c), for p(A) > 0 with (20), then —g € B+

If p|Q holds, the following conditions are equivalent for B := Bg,

I,:

(19) (a) B C Ry := Ry(p,R) (b) B4y C Ry
(c)if0<g<1AwithAcQ,gc B, then g € R;.

(20) = p[,0<g<14,4€Q, g€ By =,

= [9 € Ri(p,R) & 17(g) =T (g) & I (g) +IT(—g) = 0].

(19) follows from the closure properties of Ry ([8], A 7.124 (f) = (a), A
7.121, A 3.56) with Lemma 10 for p, + gn, B_ 3 —p, < f < g, € B,;
8], A 7.114 gives (20).

So generally R; ¢ Bg; we can however characterize the sets on
which R; C Bg. For this we need
Corollary 11. If u|Q holds and f € R;(p,R), then f € Bq if and only
if there is g € Bq with |f| < g; then [ fdu = I,(f).

Proof. Only "if”: g := |f| € Bq. For the "if”, one can assume f>0as
in the proof of Corollary 10; with h,, as there one has S hndp — [ fdu,
0< f—h,<g,ho = f(I,),s0o f € Bg and I,(f) = lim I,(h,) =
= [ fdp by Corollary 2. ¢

Definition 2 with p|Q : R(p) :=={M C X : f € Ry(»,R), f =0 on
X-M= fe -En}

R(p) is complete, i.e. if P C M € R(y), then P € R(p).
Theorem 4. If u|Q holds and M C X, then M € R(n) if and only if
1P € Bq for each strong p-nulset PC M.

Here P is called a strong p-nulset iff 1P € R;(p,R) and [1Pdu = 0,
or equivalently iff 1P — 0(I,) ([8], p. 69).

Proof of ”if”: By corollary X and as there we can assume 0 < f €
€ R;(p,R) with Jfdu =0, f = 0 outside M; with Theorem 3 it is
enough to show fAl € B, B = By, Coo(B, I, )holds since step functions
are bounded, so we assume f < 1. The P, :={z € X : f(z) > 1/n} are
strong p-nulsets C M, since 1P, < f = 0( ), so 1P, € B, I(1P,) =0
by Corollary 11, n ElN 0< f,, = fA2T* - fA2TRTI L 2"" w1 With
f = X{°fa; to € > 0 there are g, € By with 27"P,; < g, < 27",
I(gn) < €-27", using Lemma 8. So g := X%g, € Bt and l,, := Xlg; —




90 H. Ginzler

— g uniformly on X; this implies I, — g(u), with I(l,) < € for n € N.
Then g € B, with I'*t(g) <¢,g€ B, by Corollary 7. Obviously f < g,
Corollary 11 yields f € B. ¢

Corollary 12. If u|Q} holds, R(u) of Definition 2 is a ring containing
all M C X to which there is g € B with 1M < g, especially

Qc{PCM:1Mc R (g, R)NBt} c{P C M :1M € Ba} C R(n).

Proof. Theorem 4, Corollary 11 and the linearity of — (I,) give the
"ring” and M € R(u) if 1M < g € B, B = Bg. One even has

(21) Rl(p,,][_{) NBT C B(+) C B:

If g€ Ry N BT, then g > some h € B, so one can assume g > 0; the
proof of Corollary 10 yields g € B,,. ¢

One can also show that R(u) is closed with respect to certain
countable unions: If M = UM, with 1M, € Bg, 1M, — lM(T“),
1M € B, then M € R(u). Special case: M = U{A,, € R(p) if
A, € Qand 1UT A,,, » 1M (u) (directly: Theorem 4, Corollary 7, 11).
M = X gives R;(¢,R) C Bq if one of the following conditions is true:

(22) 1P € Bg if P strong p-nulset
(23) * there are A,, € @ with X = U®4,, and 1(UT4,,) — 1X(1,)
(24) there is a locally finite countable {)-partition of X

(25) there are 4,, €  with X = U{®A4,, and u is o-additive on {}

(26) I*(1X) < oo (equivalently: p is bounded on the ring generated
by 2, or 1X € Bg, or 1X € Ry(p,R))

(27) all {} € ), z € X (equivalently: [0,00]X C Bf),
then even R;(u,R) = Bq by (19), (20), (21).

Example for (24) or (25): X =R®, u = Lebesgue measure u},
(28) 0 = Q= {[I7]a;,b;) : @; < bj, aj, b; €R}.

By (25) an ”example 2” with X = countable union of 4,, €  does not
exist.

Finally, one can always force R; (p.,]ﬁ) C some B with f cedp =
=I;:={D=(A-M)UP: A€ N, M and P strong p-nulsets},
v(D) := p(A), B = Bg, I = I,; then R;(v,R) = Ri(u,R), integrals
and strong nulsets coincide ([8], p.199, A 6.148).
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Also always 0 < f € Ry(p,R) = f € (Ba)i of [3], p.235, though
J fdp < I(f) if I(f) = oo ([4], p.263, Proposition 1).

6. Lebesgue-, Daniell- and Bourbaki-integrals

In this section we additonally assume Daniell’s continuity condi-
tion, = o-stetig in Floret’s work [6], p.43:

(29) (3) and I(h,) - 0if 0 < hpy1 < h, € B, n €N, with hn(z) -0
for each z € X

then the space L' := LY(B,I) := L*(B,I,R) C R* of Daniell-I-
integrable functions with integral extension J : L' — R is well defined
(e.g. [6], p. 77; Daniell- "summable” in Pfeffer’s work [10] (p. 60);

= closure of B in R* with respect to a suitable integral-seminorm in
Aumann’s paper [1] (p. 448 — 450)). Here one has an analogue to the
statement of Corollary 10:
Theorem 5. In the Daniell situation (29), B C L'(B,I)NBNR* 4B,
with B,, == {f € B: I(|f| =0}, and I = J on L' N B.
Our proof is fundamentally similar to that of Corollary 10, but more
involved and somewhat lengthy, so we omit it here.

Corresponding to the remarks before Example 2, B C L! + B,, is
the only generally true relation of this type:
Example 3. There is a o-algebra Q and a o-additive px : @ — {0,1}
such that

(30) R, (”’ﬁ) = Ll(“’ﬁ) = Ll(thI#) = Ll(“Jﬁ)gEﬂ:

X uncountable, 2 = {M C X : M or X — M countable and ¥ zo}, p =
Dirac measure §,, in zo € X, even 7-continuous (see after (35)). There
are also algebras () for Wlnch with p = §,,,

(31) RiCL' =Ly := L' + {k eR” k- 1A=0pu—a.e.
for each 4 € Q}CBn

Example 4. There is an algebra K and a o-additive p : K — [0,1]
such that

—_— — —X —_ =
(32) Ri(p,R)=BxCBk+{f€R :f=0p—a.e.}CL'(u|K,R)=Baq,,
i.e. L! differs from B by more than just Ll-nulfunctions (see (38)):
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X =[0,1], 2 =ring K generated by all intervals C X (thus {t} € K,
t € X), p = Lebesgue measure pl|K, Q1 = {[a,b)} of (28); here
L' = L}(Bk,I,) = usual {Lebesgue integrable f : X - R}, if G:=
i=U® (Prm,Tm+3"™), P := {rp,, : m €N} := rationals C X, B := By,
then 1IP.¢ B,1G ¢ B4+ {f =0pu—a.e}: In f = 1G 4+ p € B with
p =0 a.e. one can assume 0 < f < 1 since B is a lattice ([3], p. 252),
thus f and 1 — f € [0,00)* C BY, f € B(yy, 1 = IT(f) +I'T(1 - f),
IT(f) < [fdz = [1Gdz < %; by definition of G to each z € X and
€ >0 thereisy € (G—{p #0})N(z—e,z+¢€), fly) = 1, thus
It(1—f) = 0, a contradiction. B = R;(u|K,R) = Ry (p|Q,R) C L! =
= Bq, by (27) and (38).

By simple disjoint union one can combine Examples 2 — 4 into one
X, 2, p. Example 4 shows that a converse of Theorem 5 is false; it also
shows that the extension process B — B is in general not monotone in
B — contrary to the Lebesgue, Daniell and Bourbaki extensions.

Furthermore the convergence — (I) used here is in general not
comparable with that of L!, i.e. pointwise (almost everywhere) conver-
gence, not even in-the situation u|Q with o-additive p.

Only under additional assumptions can one say more:

If I|B is monotone-net-continuous, = Bourbaki-integral (Pfeffer
[10], p. 44), = 7—stetig (Floret [6], p.336), then the  space L7 :=
:= L7(B,I) = L"(B,I,R) of Bourbaki-I-integrable functions (L# in
[10], "L in [6], p.338) and the corresponding integral extension I7:
: L™ — R are well defined with L}(B,I,R) c L™(B,I,R), J = I"|L*;
then It is additive on B, i.e. By = B* and T = upper Bourbaki
integral (Bobillo-Carrillo (3], p. 247), thus

(33) (3), I 7-continuous on B => B = Bourbaki extension
I"(B,I,R), I = I",

Daniell-L}(B,I) =: L' ¢ B= L™ = L' + L, = L' + B, by [6] (p.
340) or our Theorem 5, n := nulfunctions, with C generally strict by
Example 3.

If B = Cy(X,R) with arbitrary Hausdorff space X, then any
nonnegative linear I : B — R is T-continuous ([6], p.337), L7 is defined
and (33) holds. With Pfeffer ([10], p.37) one gets for B = Cj :=
:= Cp(X,R) and any nonnegative linear I : Cy — R, automatically
T-continuous

(34) X locally compact, all open G C X are o-compact =
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= L(Co,I) = L™(Co,I) = Cy;

example: X =R", I =Riemann/Lebesgue integral (see (38)).
In the situation p : Q — [0, co) with o-additive p on the semiring
2, B = Bq,

(35) I, = [--dp is T-continuous on Bg iff p is T-additive
on ) (see (17))

(there are such p, @ = algebra, but x not 7-continuous — the converse
holds for rings). As a sufficient criterium on has:

If |2 = (16) holds, p is o-additive on  and if for any index set S

(36) to 4,4, €0, s€ S, with 4, D A, exist countable Sy C S,
- nulset P with {J,c5 4s = PU,cg, 4s

is true, then for B = Bg, I = I, of (17) one has with B,,, L; of Theorem
4, (33)

(37) __ I|B is T-continuous, . .
LY(B,I)=LY(u,R)CB=L"(B,])=L*+B, C Li(p,R):

By (36) w is T-additive on 2, by (35) I T-continuous on B; with (33)
and Theorem 5 it is enough to show B, C L, n. This being a local
property, it suffices to show that g € L' if 0< g<14,g€ B*, 4 € Q,
since then I (g) = [ gdu by (33); g € L* follows if g is p- measurable
and the latter is an immediate consequence of (36) and the deﬁmtlon
of BY.

Example 5. There is a ring 2 and a 7-additive p: 0 — [0,00) with
(36) and

ng:B = L"%le

X := disjoint U;esS; with S; := § := [0,1), 0, po as in Example 3,
Q; := 1 of (28) in S; and p; := Lebesgue measure uz, 0 <i < 1, ) :=
ring generated by U;es€i, p = p;i on Q; (36) for ur|Q; holds by the
remarks following: if f :=1 on all 0; € S; with i > 0, else f := 0, then
f€Libut I(f) = o0

The condition (36) follows from an abstract Vitali covering con-
dition for x|(; the latter is true for example for X =R™, u = Lebesgue
measure p7, {) = intervals 2, of (28); since here additionally X =
U A, with 4., € Q, one has L! = L.

We collect the above results with (27) and R; = L; for é-rings
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([8], p- 265), L*(Co,I,,R) = L*(p|M,,R):
If Q, C X semiring C M,, := {Lebesgue-measurable sets C R™ with
finite L-measure}, @ € {Q,, X, M.}, p = p}, I = 1,, B = Bg or
Cy := Co(R™R) (see (17), (28)), X = R™ or more generally open
C IR™ with corresponding {1, - -, then the following L-spaces, and their
integrals, all coincide
(38) LY (plQ,R) = Ly(u|Q,R) = L'(B,I) = L"(Ba,,I) =

= LT(C(),I) = Cg = Bﬂ,. = BMn = Rl(}Lan,IR)

References

1] AUMANN, G.: Integralerweiterungen mittels Normen, Archiv d. Math. 3
L4
(1952), 441 — 450.

[2] BOBILLO, G., P. et CARRILLO, M. D.: Sur les fonctions mesurables par
rapport 3 un systéme de Loomis quelconque, Bull. Soc. Roy. Sci. Liége 54/3
(1985), 114 — 118.

[3] BOBILLO, G., P. et CARRILLO, M. D.: Summable and integrable functions
with respect to any Loomis system, Archiv d. Math. 49 (1987), 245 — 256.

[4] BOBILLO, G., P. e¢ CARRILLO, M. D.: On the summability of certain -
integrable functions, Archiv. d. Math. 52 (1989), 258 — 264.

[5] DUNFORD, N. and SCHWARTZ, J.T.: Linear Operators I, Interscience, New
York, 1957.

[6] FLORET, K.: MafB- und Integrationstheorie, Teubner, Stuttgart, 1981.

[7] GOUL ), G.G.: The Daniell-Bourbaki integral for finitely additive measures,
Poc. London Mathk. Soc. 16 (1966), 197 — 320.

[8] GUN"LER, H.: Integration, Bibliograph. Institut Mannheim, 1985.

[9] LOOMIS, L.H.: Linear functionals and content, Amer. J. Math. T6 (1954),
168 — 182.

[10] PFEFFER, W.F.: Integrals and measures, Dekker, New York, 1977.





