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Abstract: The aim of this note is to extend the theory of parallel differen-
tiable immersions to the piecewise linear case. Parallelism for differentiable
immersions has been established by H.R. Farran and S.A. Robertson [4] and
was studied in several subsequent papers ([3], [8] and [9]). It has strong re-
lations to the geometry of the normal bundle ([9]) and to the theory of focal
points ([7]).

We mainly shall concentrate on the 1-dimensional case, because there
good motivations can be obtained for the study of higher-dimensional poly-
hedra. The main results obtained in [3] and [8] for the parallelism of dif-
ferentiable curves can be transferred to the piecewise linear situation. The
arguments are rather elementary and therefore proofs are only sketched in
these cases.

The behaviour of polyhedral 2-manifolds in E® and E* with respect to
exterior parallelism is representative for that of higher-dimensional polyhedra.
In addition to the 1-dimensional case two local obstructions to the existence of
parallel polyhedra to a given one occur. In this context some kind of normal
curvature will be developed for polyhedra.

1. Parallel polygons

The introduction of the notion of parallelity for polygons can be
motivated by the construction of parallel differentiable curves in the
plane (or hypersurfaces in E™). There the evolute plays an important
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role for the regularity of this construction. To see the analogy in the
piecewise linear case look at the different situations in Figure 1, where
parallel polygons to P are obtained according to our subsequent defini-
tion:

1) The polygon Q corresponds to the regular case where the parallel
curve is located between the original one and its focal set.

2) The polygon S corresponds to the singular case, where the parallel
curve meets the nearest focal point of the original one.

3) The polygon T corresponds to the singular case, where the evolute
is met.

4) The polygon R corresponds to the regular case, where the focal set
remains between the parallel curve and the original one.

All these cases are exhibited for a rectangle in Figure 2. The
regular cases Q and R will be considered as parallel polygons to P
while the other cases S and T will not have this property. Also we shall
exclude the degenerate situation where the original polygon has angles
0 or .

Figure 1 Figure 2
Parallel rectangles

For the development of the general theory let P be a polygon
in Euclidean n-space E™, given by its vertices. ~{p;|i € I} and its
connecting oriented line segments s; = p;piy+1 from p; to p;+1, where
I =12,%or {i € Zlm < i < n} for some pairm,n € Z. We shall restrict
our considerations to the generic situation where the angle between s;_4
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and s; at p; lies between 0 and 7 for all 7 € I. At every vertex p; of P
there is a hyperplane of local symmetry through p; which divides the
angle between the oriented line segments from p; to p;_; and p;; into
equal parts. This hyperplane is called the symmetric normal of P at
Pi, denoted by N;. The intersection between N; and N;y, is called the
focal (n — 2)-plane F; of P at s; (if it exists) (see Figures 3a,b).

Figure 3a Figure 3b
Focal set and evolute Degenerated focal set
in the planar case in the spatial case

The focal planes of P can be used to construct a kind of evolute
for P. The following will show this in the planar case (see Figure 3a)
and can be generalized easily to higher dimensions: If F;_, and F; exist,
then take the connecting line segment between F;_; and F; on N; if they
are located on the same side of P, and take its closed complement in the
other case. If F; exists and F;_; does not exists then take the closed
halfline on N; which begins at F. and does not meet P. The similar
procedure is applied, if F;_; exists and F; does not. The resulting
composition of line segments and half lines gives the evolute of P.

Definition 1. Two polygons P= {p;|i € I} and Q= {gi € I} of the
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same combinatorial type are called parallel, if for every i € I p;pit1 is
parallel to g;g;+; and the symmetric normal of P at p; coincides with
that of Q at g;. ‘
Remark 1. Parallelism of polygons is an equivalence relation. Fur-
thermore parallel polygons have coinciding focal planes and evolutes.
Definition 2. A self-parallelism of a polygon P= {p;|i € I} is a per-
mutation o of the index set such that P oo := {p,(;)|i € I} has the
same line segments as P and is parallel to P.

Remark 2. The self-parallelisms of a polygon form a group under
composition of maps, the self-parallel group G(P) of P. Furthermore
it can be seen like in the differentiable case that this group must be
cyclic, because P is 1-dimensional.

Remark 3. If P and Q are parallel, then the lines which correspond
under this parallelism have constant distance from each other, not de-
pending on i € I. This implies that G(P) acts transitively and isomet-
rically on the point set which is obtained by the intersection of the lines
of P, corresponding to a given one under the operation of G(P), with
their common normal hyperplane. This set may be called the parallel
frame of P in our case (see [4] for the differentiable version).

B, _ B2
A \?-/

Figure 4

2. Polygons in the plane

The study of parallelism for polygons in the plane is rather simple
because the choice of the unit normals to the line segments of the poly-
gon is unique up to sign. First it should be observed that in this case
there are only three possibilities for the location of the corresponding
vertices and neighboring line segments (see Figure 4). Also, looking
at the orientations, we see that the cases A and B cannot occur si-
multaneously for the same polygon. In the case A the focal points on
the common symmetric normal lie outside of the segment from p; to g;
while in the cases B they must be in the interior of that segment.
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Now we shall mainly concentrate
on self-parallelisms of a closed
polygon P = {p;li € Z}. Ac-
cording to Remarks 2 and 3 a
parallel frame of P admits a tran-
sitive isometric operation of the
self-parallel group G(P) which
-can be assumed to be fixed point
free, if multiple coverings are ex-
cluded. This implies G(P) = Z,
in the non-trivial case, and thus
k must be even and the only non-
trivial self-parallelism is given by
o(i) =1+ k/2. Figure 5

Self-parallel octogon
in the plane

An explicit example for this situation is given by Figure 5. The
relation to plane curves of constant width [1] is given by the fact that
every closed tangent polygon to such a curve serves as an example for
a self-parallel polygon, if the set of osculating points always contains
both of the intersections of the corresponding binormal with the curve.
Similarly examples of self-parallel polygons with self-intersections can
be obtained from rosettes of constant width [2], for which explicit con-
structions have been given in [10]. Since case A of Figure 4 easily can
be excluded for closed self-parallel curves, we have
Theorem 1. Let P be a closed polygon in the plane admitting a
nontrivial self-parallelism. Then G(P) = Zy and for every i € Z; the
sides 3; and 8; 4/, have a common focal point given by the intersection
of the line segments from p; to p;, /2 and from p;. ;1 to p;yy J241- Q@
Corollary 1. Let P be a closed convez polygon admitting a nontrivi-
al self-parallelism. Then the evolute of P is contained in the convez
domain bounded by P. ¢
Remark 4. This corresponds to main results in [3] or [8]. Also by a
lengthy argument a little more general version of Corollary 1 can be
proved avoiding the assumption of convexity. Furthermore it can be
shown that in the non-closed case non-trivial self-parallelisms are not
possible.

Remark 5. Using methods established by P.C. Hammer and A. Sob-
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czyk ([5], [6]) it can be seen that every closed convex polygon with a
nontrivial self-parallelism admits an inscribed curve of constant width.

3. Normal holonomy of a polygon in space

The aim of this section is to establish some kind of parallel transfer
in the normal bundle of a polygon in 3-space and to exhibit its relation
to parallelism for polygons. Most constructions and results extend to
higher dimensions.

Let P = {p;|i € I} be a generic polygon in Euclidean 3-space with
sides 8;. Let A; be the reflection at the symmetric normal plane of P
at p;. A normal vector field along the subarc P'={piliec J}ofPisa
choice of normal vectors &; to s; for every i € J such that the segment
s; belongs to P.

Definition 3. A normal vector field {¢;}ics along the subarc P' of P
is called parallel, if &1 = Aip1(&) forall 5,i +1 € J. The parallel
transfer of the normal vector &;, at s;, to s;, is given by the value of
the parallel vector field along P' = {p;lio < i <4; + 1} at s;, which is
uniquely determined by its initial value §;, at s;,.

Remark 6. In the closed case P= {p;|i € Z,} the parallel transfer of
normal vectors along one period of P is a proper linear isometry of the

normal space of P at s; onto itself, given by H A;y,. Henceit isa

rotation around an angle a(P) which does not depend on i € Z;. This
angle is called the normal rotation angle of P.

Remark 7. Smoothing the vertices of P by small circles tangent to the
corresponding adjacent sides of P, we get a C'-curve having the same
differential geometric normal holonomy as P.

Example 1. a) Every closed

polygon contained in a plane 8

in ‘3-space has normal rota- 2
tion angle 0. The same is
true for closed tangent poly-
gons to a sphere and in par-
ticular for closed edge poly-
gons on Platonic solids.

N

Figure 6
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b) For a given 8 € (0, 7) a closed quadrangle with normal rotation angle
B is demonstrated in Figure 6. There the planes spanned by p;, ps, ps
and by p,, ps, ps are assumed to be perpendicular to each other.

c) The center polygon in Figure 7 is a closed hexagon with normal
rotation angle r. We conjecture that there is no quadrangle or pentagon
with this property.

Figure 7
Mobius strip bounded by a self-parallel 12-gon with a center hexagon.

Proposition 1. Two generic polygons P = {pili € I} and Q= {p;|i €
€ I} are parallel if and only if the segments p;q; and Pi+19i+1 have
equal normal parts &; with respect to s; for everyic I and if {¢&]ie I }
i3 a parallel normal vector field to P.

Proof. If P and Q are parallel then their sides with equal subscript are
parallel and the local symmetry with respect to the common symmet-
ric normal implies parallelism of the normal vector field given above.
Conversely, the assumed equality of the normal parts implies that the
corresponding sides are parallel. Since they constitute a parallel normal
vector field to P it is easily seen that the symmetric normal planes of
P and Q coincide at corresponding vertices. {

As in (8] this shows that non-vanishing normal rotation angle con-
stitutes an obstruction to the existence of parallel polygons. :
Corollary 2. A closed generic polygon admits a (non-identical) parallel
polygon if and only if it has vanishing normal rotation angle.

The sufficiency of the second condition is obtained as a special
case from the following

construction: Let a be the normal rotation angle of P = {pili € %;}.
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Assume a is a rational multiple of 27; a = 2xl/m with (I, m) relatively
prime, m = 1 for @ = 0. Let £; > 0 be such the ¢;-tube around p; V pi+1
does not meet the focal line of P at s;, and take € > 0 as the minimum
of these €;, i € 7. Choose some unit normal §; to s; and extend
it by parallel transfer of normal vectors to the m-fold covering of P.
By the assumption on the normal holonomy of P this gives a parallel
normal vector field {£;|i € Zgm} along the m-fold covering of P. The
line li 1y, i =1,...,k, v =0,...,m — 1, is obtained from p;vp;, by
parallel displacement about € k. Let gj := l;—1 Alj J € Zim, which
is non-empty by our construction. Then Q= {gj|j € Zim} defines a
closed polygon which is parallel to the m-fold covering of P and has
self-parallel group Z,, (see Figures 8,9). ¢

Corollary 3. For every natural number m there ezists a generic poly-
gon with self-parallel group Z,.

This follows directly from the given examples together with the
construction described above. ¢

Figure 8
Self-parallel 16-gon with self-parallel group Z4 and its
interpretation as an edge polygon on a PL-torus.

Remark 8. a) If the normal rotation angle of P is an irrational multiple
of 2r, then in a similar way an infinite polygon can be constructed
having self-parallel group Z and being everywhere dense on a tubular
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surface around P.

b) Considering higher dimensions than three, it can be observed that
only in the odd case obstructions to the existence of parallel polygons
may occur. In even dimensions there always exists a parallel polygon
to a given closed one because the corresponding normal holonomy map
has at least one fixed direction.

Theorem 2. Let P be a self-parallel polygon with k vertices and self-
parallel group 7Z,,, satisfying m > 3. Then k is an integer multiple of m
and there is a polygon C with k/m vertices, the center of P, from which
P can be reconstructed by the construction given above.

Proof. According to Remark 3 the set of line segments of P which
correspond to a given one are located in a regular way on a circular
cylinder. Intersecting the axes of these cylinders appropriately we shall
get a polygon C with k/m vertices. As in [8] it can be seen that the
focal lines of P remain outside of the convex hull of every m related
parallel segments of P. This leads to the conclusion that P is parallel
to the m-fold covering of C. ¢
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Figure 9
Self-parallel 30-gon with self-parallel group Zg and its interpretation
as an edge polygon on a PL-torus.

Remark 9. The same result can be shown in the case m — 2, if no
focal line meets the strip between the associated parallel lines of P.
Then P bounds a piecewise linear immersion of the M&bius strip (see
Figure 7). The case where this condition is not valid is also possible
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(see Figure 3).

Using arguments from the preceding proof and elementary geom-
etry we also get
Theorem 3. Let P be a self-parallel polygon with self-parallel group Zy
and center polygon Q. Then length (P) = k- length(Q)

4. Obstructions to exterior parallelism in higher
dimensions

A theory of exterior parallelism for piecewise linear submanifolds
of dimension greater than one in E™ can be developed only for special
types. There are two local obstructions which will be sketched by the
following considerations:

Let P = {V,£,S} be a polyhedral 2-manifold in E3 (possibly with
self-intersections) where V, € and S denote the sets of vertices, edges
and sides respectively. The existence of a polyhedral 2-manifold Q of
the same combinatorial type such that the corresponding sides of P and
Q are parallel and have constant distance from each other implies that
for all vertices of P (and Q) the following is satisfied:

Definition 4. A vertex p € V of the polyhedral 2-manifold P in E3is
called pa-admissible, if for all edges | € £ ending at p the planes, which
intersect the angle between the corresponding adjacent sides of P into
equal parts, have a common line. This line is uniquely determined and
called the symmetric normal of P at p.

~ For polyhedral 2-manifolds, having pa-admissible vertices only,
parallelism can be defined in the same way as in Definition 1. Exam-
ples for polyhedra possessing non-pa-admissible edges can be obtained
easily. Clearly, if only three edges end at some vertex, then this vertex
is pa-admissible. Sufficient and necessary for the pa-admissibility of a
vertex is that every four comsecutive unit normals (suitably oriented
and labelled) of the sides of P meeting at this vertex lie in a common
plane. Examples for polyhedra having pa-admissible vertices only are
given by the boundaries of the Platonic solids or the polyhedral tori ob-
tained by suitable connections of the vertices of a self-parallel polygon
(see Figures 8 and 9).

Using symmetric normals, focal points can be introduced as pre-
viously. These can be used to develop criteria for the construction of
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parallel polyhedra along fields of unit normals as above. Thus the focal
points of a suitably constructed polyhedral torus show some similarity
to the corresponding situation for the standard torus.

If we consider polyhedral 2-manifolds P in E*, we get an additional
obstruction to the existence of parallel polyhedra. This corresponds to
the fact that in the case of differentiable 2-manifolds in E* sometimes
parallel sections of the normal bundle do not exist, i.e., the normal
connection is not flat. The visualization in the piecewise linear case is
prepared by the following

Definition 5. Let P = {V, £, S} be a polyhedral 2-manifold in E*. For
a given p € Vlet k be the number of sides of P meeting at p, and choose
a cyclic labelling of these sides {s;]i € 7}, such that two consecutive
sides have a common edge at p. Let A; denote the linear map given
by the reflection at the 3-plane which divides the angle between s; and
8i+1 into equal parts. Then the normal curvature of P at p is given by

k
(p) = II 4:.

Remark 10. The normal curvature is a linear orientation preserving
isometry of the normal plane of 51, i.e. it is given by a rotation about
an angle a, the normal curvature angle of P at p. This angle is uniquely
determined up te sign. The definition of a parallel normal vector field
along some part of P can be given in the obvious way, but for the
existence of such a field on the simplex star around p, the vanishing
of the normal curvature angle at p is necessary and sufficient. Clearly
this represents another local obstruction to the existence of parallel
polyhedra.

'That the normal curvature angle can attain many values can be
seen from

Example 2. Take a quadrangle in 3-space with normal rotation angle
B € (0,7) (see Figure 6 and Example 1). Consider the line [ in 4-
space which is orthogonal this 3-space and passes through the center
of gravity of the quadrangle. Look at a point p on I as a vertex of a
polyhedral 2-manifold P having the simplex star around p bounded by
the given rectangle. If p lies in the 3-space of the quadrangle, then the
normal curvature angle of P at p vanishes. But if p tends to infinity,
then the normal curvature angle tends to +43.
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