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Abstract: The semi-subgroups of finite abelian groups are characterized and
comparisons are made between semi-homomorphisms of rings and near-rings.
This study leads to an alternative proof of a result by Zassenhaus in 1936, viz.
that the automorphism group of the smallest Dickson non-field is isomorphic

to the symmetric group of degree 3.

1. Introduction

Projectivity in classical projective geometry led to a study of semi-
automorphisms of rings (see [1] and [3]). In [2] and [8] it was proven that
every semi-automorphism of a division ring is either an automorphism
or an anti-automorphism, and similarly for a matrix ring over a division
ring.
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Huq [9] presented a general study of semi-homomorphisms of
rings, following the mentioned papers and, amongst others, Herstein’s
study of semi-homomorphisms of groups in [7]. In [4] the authors intro-
duced semi-subgroups of groups and provided counterexamples to some
of the assertions in [9]. The purpose of this paper is, on the one hand,
to continue the investigation of the structure of semi-subgroups.

In Section 2 we characterize the semi-subgroups of finite abelian
groups and the semi-subrings of Z,, the ring of integers modulo n,
which shows that the notions semi-subgroup and semi-subring are not
equivalent in Z,, unlike the case of subgroups and subrings of Z,.

In Section 3 we initiate a study of semi-homomorphisms of near-
rings, although th first part applies to groups in general. Herstein [7]
calls a mapping ¢ : G — H between groups (written additively) a
semi-homomorphism if

(1) p(a+b+a)=yp(a) +¢(b) +¢(a)
for all a,b € G. By taking b = —a, it follows that

(2) p(—a) = —p(a)

for every a € G; in particular we have 2p(0) = 0, where 0 denotes the
neutral elements of G and H. Herstein showed that if the centralizer
of o(G) in H is 0, then (2) can be generalized to

(3) ¢(na) = np(a)

for every integer n and every a € G. We prove that the condition that
the subset {¢(2a) — 2¢(a) : a € G} of H contains no elements of order
2, is also sufficient for (3). This result strengthens [4, Corollary 3.4] in
which G and H are assumed to be abelian.

We use Huq’s definition of a semi-homomorphism of rings as the

definition of a semi-homomorphism of near-rings, i.e. a  mapping
¢ : R — S between near-rings satisfying (1) and the condition
(4 p(aba) = p(a)p(B)p(a)

for all a,b € R. The left hand mapping convention is used for near-
rings, since we shall be dealing with right near-rings. For details about
near-rings we refer the reader to the books by Meldrum [11] or Pilz [12].
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The image T of a semi-homomorphism ¢ of groups (rings, near-
rings) is easily seen to be a semi-subgroup (semi-subring, semi-subnear-
ring) of the codomain of ¢, i.e.

(5) a+b+aeT (and aba € T)

for all a,b € T. Note that a semi-subnear-ring in general does not
concern a semi-near-ring (see e.g. Weinert [15]). |

As far as semi-homomorphisms of near-rings in particular are con-
cerned, we show that there are many similarities to the ring case when
the near-rings under consideration happen to be abelian (e.g. in the
case of near-fields), but that there are in general also some striking dif-
ferences. (Recall that abelian near-rings can still be very much “non-
ring-like”.) During the investigation of the problem whether every
semi-automorphism of a near-field is an automorphism, we obtained
a surprising result, viz. that every automorphism ¢ of (GF(3%),+)
satisfying (1) = 1 is an automorphism of (GF(3%),+,0), the smallest
Dickson near-field which is not a field. Hence every semi-automorphism
of (GF(3%),+,0) is an automorphism, and so the automorphism group
of (GF(3%),+,0) comprises 6 elements (and is isomorphic to S3, the
symmetric group of degree 3). This provides an alternative proof of a
special case of [16, Theorem 18]. ‘

Throughout the paper the symbol C denotes strict inclusion and
all near-rings are associative.

2. A characterization of the semi-subgroups of fini-
te abelian groups

Let (G,+) be a (not necessarily abelian of finite) group. Every
subgroup of G is obviously a semi-subgroup, but the converse need not
be true. The term non-subgroup will be used for a semi-subgroup which
is not a subgroup. Our purpose in this section is to give a characteri-
zation of the semi-subgroups of finite abelian groups.

We denote the semi-subgroup of G generated by a subset
{a1,a2,...,a,}, n 2 1, of G by (ai1,as,...,a,)s and we stick to the
usual notation (ay,ag,...,a,) for the subgroup of G generated by
{ai,aa,...,an}. The order of an element a of G will be denoted by
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o(a), and | X| will stand for the number of elements of a subset X of G.
The first two results describe the semi-subgroup of a group gen-
erated by a singleton.
Proposition 2.1. If o(a), a € G, is even or infinite, then (a)s is a
non-subgroup of G.
Proof. Firstly, let o(a) = 2k for some k£ > 0. We assert that |(a)s| =
= k; to be more precise, (a), comprises the following different elements:
a,3a,5a,...,(2(k — 1) + 1)a. For if (2: + 1)a = (2j + 1)a for some :
and j,0<4,7 <k—1,then 2(: —j)a=0. But 2(: —j) <2k -2 < k,
which contradicts the assumption that o(a) = 2k. It is easily verified
that these elements compose a semi-subgroup of G which is contained
in (a)s, and so our assertion is valid. Furthermore, 0 ¢ (a),, otherwise
the assumption that o(a) = 2k is contradicted again. Hence (a); is not
a subgroup of G. The case where o(a) is infinite, is dealt with similar-
ly. ¢
Proposition 2.2. If o(a), a € G, i3 odd, then (a)s; = (a).
Proof. Let o(a) = 2]+ 1 for some [ > 0. (If | = 0, then a = 0, and the
result is trivial.) Consider the subset T :={a,3a,>3a,...,
2(1 = 1) + Da, (21 + L)a, (2(1 + 1) + a,...,(2(2]) + 1)a} of (a)s.
Clearly T = {a,3a,5a,...,(2l — 1)a,0,2a, 4a,...,2la} = (a), and so
(a)s = a(a). ¢
Henceforth in this section G will be a finite abelian group.
Theorem 2.3. If |G| i3 odd, then G has no non-subgroups.
Proof. By Proposition 2.2 it clearly suffices to show that (a, b), = (a,b)
for all a,b € @G, since the order of every element of G is odd. Let
o(a) = 2k+1 and o(b) = 2{+1 for some k,! > 0. Since (2m+1)a+nb =
=(k+m+1)a+nb+ (k+ m+ 1)a and 2ma + nb = ma + nb + ma
for every m,n > 0, it follows from Proposition 2.2 that (a,b) C (a, b)s,
and so (a,b)s = (a,b). ¢
As a result of Theorem 2.3 and the Fundamental Theorem on
finite abelian groups, we study now the semi-subgroups of Z,:, ¢ > 1.
The greatest common divisor of m,n € Z will be denoted by ged(m,n).
Proposition 2.4. If0# a € Zyi, 1t > 1, then (a)s = {g,39,59,...,
(2i/g — 1)g}, where g = ged(a, 2.
Proof. Since a # 0 and o(a) divides 2¢, it follows that o(a) is even, and
so by Proposition 2.1 (a)s; = {a,3a,5a,...,(2(27! — 1) + 1)a}, where
o(a) = 27 for some j, 1 < j <i. But o(a) = 2¢/g, and so g = 277,
Therefore 2/=1 = 2¢/2g, which implies that the 2!/2¢g elements of (a),
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are all the odd multiples of g(mod 2), because a is an odd multiple of
g. Hence (a)s = {g,3¢,59,...,(2(2"/29 — 1)+ 1)g}. ©

Theorem 2.5. The semi-subgroups in Proposition 2.4 are precisely the
non-subgroups of Zyi, 1 > 1.

Proof. We show that, for a,b € Zyi, either (a,b)s = (a)s = (b)s or
(a,b)s = (g), where g:= min(ged(a, 2Y), ged(8,2')).  Firstly, if
ged(a, 2) = ged(b,2°), then either a = 0 =b, in which case (a,b), =

= (0) = (a)s = (b)s, or a % 0 and b # 0, in which case by Proposition
2.4 we have (a)s = (b)s = {g,39,59,.. .,(2'/g — 1)g}, and so (a,b), =
=(a), = (b)s. Secondly, let ged(a,2") < ged(b, 2{)=:h. Then h=2% for
some k > 1, since ¢ and h are powers of 2. It follows from Proposition
2.4 that (a), comprises all the odd multiples of g, and (b), comprises
all the odd multiples of A (mod 2°). Hence (a,b), contains (a), as well
as at least one even multiple of g. It can now be readily seen that
(a,b)s = (g), since z +y + z € (a,b), for all z € (a)s, y € (b)s. ¢

As in the case of subgroups, it is easy to see that if K is a semi-
subgroup of the direct sum of two (not necessarliy abelian of finite)
groups G and Gy, then m; K is semi-subgroup of G, 1 = 1,2, where 7;
denotes the i-th coordinate projection.

The foregoing results lead to a characterization of the semi-sub-
groups and non-subgroups of a finite abelian group:

Theorem 2.6. (a) If H : By, ® Zn, ® -+ ® Zpn,, 15 a finite abelian
group, with my an odd prime for k =1,2,...,n,n > 1, then H has no
non-subgroups.

B)IfG:=%,, ©®Z20; @ - DL, dH is a finite abelian group,
with ng o power of 2 for k=1,2,...,s, s> 1, and where H =0 or H
i3 as in (a), then:

() ¥Gj,,9=12,...,r,1 <r<s,isa non-subgroup of Zy;_,
where j, € {1,2,...,s}, Gt is a subgroup of Zy, for t € {1,2,...,8}\
\{j1,42,--+,Jr}, and K is a subgroup of H, then the direct sum of these
Gj,’s, Gi's and K 1s a non-subgroup of G.

(ii) If A is a semi-subgroup of G, then 7;A is a semi-subgroup of
Iy; for j =1,2,...,s, and 7,414 is a subgroup of H; furthermore, if
A is a non-subgroup of G, then m;A is a non-subgroup of Z,, for some
t,1<t<s.

We have seen that 0 € S, S a semi-subgroup of a finite abelian
group H, if and only if S is a subgroup of H. Also, every semi-subgroup
of Z,, is “cyclic” in the sense that it is generated by a single element
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of Z,. The picture might be much more different in general, even in
finitely generated abelian groups; e.g. {2k:k >0} and (2,5), =
={2,5,6,9,10} U {m : m > 12} are non-subgroups of Z.

Although every subgroup of Z,, n > 1, is a subring of Z, (and
vice versa), the same is not for semi-subgroups and semi-subrings, e.g.
it follows from Proposition 2.4 that {2,6} is a semi-subgroup of Zs,
but is not a semi-subring of Zs, since 2° = 0 ¢ {2,6}. However, Z,
may contain semi-subrings which are not subrings, and which we call
non-subrings. We make this scheme of affairs precise in the last part of
this section, in which we show that the results about the semi-subring
of Z, generated by an element a of Z,, denoted by (a),,, are surpris-
ingly different form those about the semi-subgroups as far as o(a) is
‘concerned, in the sense that if o(a) is even, then it does not necessarily
follow that (a)sr is a non-subring of Z,.
Lemma 2.7. If n is odd and n > 1, then Z,, has no non-subrings.
Proof. Let S be a semi-subring of Z,. Then (5, +) is a semi-subgroup
of (Z,,+), and so the result follows from Theorem 2.3.

For the rest of this section n will be even.
Proposition 2.8. If a is odd and a < n, then (a)sr = (a)s, @ non-
subring of 7.
Proof. First note that o(a) is even, because o(a) = n/g and g is odd,
where g := gcd(a, n). Hence by Proposition 2.1 (a), comprises the odd
multiples of a (mod n). Furthermore, (2: + 1)a(2j + 1)a(2: + 1)a is an
odd multiple of a for all 7 and j, because a is odd, and so (a)r = (a)s,
a non-subring of Z,, since it follows from Proposition 2.1 that (a); is a
non-subgroup of Z,. <
Proposition 2.9. Let b be even, b < n. If

(i) o(b) is odd, then (b)s, = (b)s, a subring (subgroup) of Z.,.

(i1) o(b) is even, then (b)sr is a subring (subgroup) of Z.,,

and (b)s C (b)sr.
Proof. (i) By Proposition 2.2.
(ii) Since (b)s C (b)sr, it follows from Proposition 2.1 that (b),, contains
the odd multiples of b(mod n). But b3 is a multiple of b and b is even,
and so it can be seen, as in the last part of the proof of Theorem 2.5,
that (b)s, contains all the even multiples of 5(mod n) as well. Hence
() C (Bor = (1) ¢

The foregoing results lead to
Theorem 2.10. The semi-subrings in Proposition 2.8 are precisely the
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non-subrings of Z,,.
Proof. Very much similar to that of Theorem 2.5. $

3. Semi-homomorphisms of near-rings

Recall form Section 2 that we deal with right near-rings, i.e. the
left distributive law is not required.

Proposition 2.4 provides a host of non-subnear-rings of near-rings,

‘i.e. semi-subnear-rings which are not subnear-rings, viz. for any non-
subgroup T of Z,i, ¢ > 1, as in Proposition 2.4, {f € M(Z,:): f(T) C
C T'} is a non-subnear-ring of the full near-ring M(Z,:) of mappings on
Zyi .

The following two results, which explore properties of semi-homo-
morphisms of restricted classes of near-rings, can be proved exactly as
in the ring case (see [4, Lemma 3.3] and [9, Proposition 8] respectively):
Lemma 3.1. 4 semi-homomorphism ¢ : R — S of abelian near-rings
18 a homomorphism of the underlying additive groups if and only if the
semi-subgroup {p(a+b) — ¢(b) —¢(a):a,be R} of (S,+) contains no
elements of order 2.

Lemma 3.2. Let p: F — F' be a semi- homomorphzsm of near-fields.
If (a) # 0 for some 0 # a € F, then p(a™!) = (¢(a))™!.

 Herstein [7] showed that if the centralizer of ¢(G) in H is 0, where
v : G — H is a semi-homomorphism of groups, then (3) holds. ‘The
authors [4] showed that if G and H are abelian and the semi-subgroup
{#(2a) — 2p(a) : a € G} of H contains no element of order 2, then (3)
also holds. However, G and H need not be abelian, as will be shown
shortly. We first need
Lemma 3.3. Let ¢ : R — S be a semi-homomorphism of near-rings.
Then p(a + b) — w(a) — ¢(b) = p(a) + ¢(b) — ¢(b+ a) for all a,b € R.
Proof. For a,b € R we have by (1) and (2):

pla+b)=pla+b+(—(b+a))+b+a)
= p(a) + p(b+ (—(b + a)) + b) + ¢(a)
= p(a) + ¢(b) + ¢(—(b + a)) + (D) + ¥(a)
= p(a) + ¢(b) — (b + a) + ¢ (b) + ¢(a),

from which the result follows. <
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Proposition 3.4. If p : R — S is semi-homomorphism of near-rings
such that the set {©(2a)—2p(a) : a € R} contains no elements of order
2, then p(na) = ny(a) for every integer n and every a € R.

Proof. Firstly, since 2¢(0) = 0, it follows that ¢(0) € {¢(2a)—2¢(a) :

: @ € R}, and so the result holds for n = 0. The case n = 1 is trivial.
Next, let a = b in Lemma 3.3. Then ¢(2a) — 2¢(a) = 2¢p(a) — ¢(2a),
and so 2(¢(2a) — 2¢(a)) = 0, and so the result holds for n = 2. Using
induction on n and assuming that n > 2, we get p(na) = ¢(a + (n—

~2)a+a) = p(a)+n(n —2)¢(a) + ¢(a) = ny(a), which establishes the
résult for every n > 0. Finally, by (2) and since (—n)a = n(—a), the
result also holds for n < 0. ¢

Note that the above two results hold merely in the presence of a
semi-homomorphism of groups, since the multiplicative structure of the
near-rings has not been invoked at all.

The multiplicative version of 2¢(0) = 0 is, of course, (p(1))? =1,
where 1 denotes the identities of the domain and codomain of ¢. Huq
[9] proved that if » : R — S is a semi-homomorphism of rings with
identities such that 1 € ¢(R) and S is a non-trivial ring without non-
zero divisors of zero, then (1) = 1 of —1. We shall show in Example
3.7 that this result does not extend to near-rings in general, not even if
 is also a homomorphism of the underlying additive groups. However,
we still have
Proposition 3.5. If o : R — S is a semi-homomorphism of near-
rings with identities such that p(R) 1s a near-field and 1 € p(R), then
(p(1))> =1 and p(1) =1 or —1.

Proof. That (¢(1))? = 1, follows as in [9, Proposition 6]. A non-trivial
near-ring-theoretic result states that if 72 = 1 in a near-field, then
r =1or —1 (see e.g. [12, Proposition 8.10]). ¢

The following example shows that it is possible that p(1) = —1
under the conditions of Proposition 3.5. The reason for exhibiting this
example must be seen against the background of the conjecture before
Example 3.10.

Example 3.6. Let (F,+,0) be the (infinite) Dickson near-field arising
from Q(z), the field of rational functions over the rationals, by defining
multiplication as follows:

_J0,if p(z)/q(z) =0
g(z)/h(z) o p(z)/q(z) = { (9(z i d))/;f(m +d)) - (p(z)/qz)), otherwise,
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where d := deg(p(z)) — deg(g(z)) and - is the familiar multiplication
in Q(z). (See [11, Example 8.29] for more details.) Then F is not
a division ring, since the left distributive law does not hold. Define
¢ : F — F by p(g9(z)/h(z)) = —g(z)/h(z). It can be verified that ¢
is a semi-homomorphism of near-fields (and an endomorphism of the
underlying additive group). Furthermore, ¢(1) = —

As in Heatherly and Olivier [5,6] we define a near integral domain
as a (right) zerosymmetric near-ring having no non-zero divisors of zero
and having at least one nonzero element which is not a right identity.
(Note that some near-ringers call these nontrivial near integral domains
“integral near-rings”). McQuarrie [10] originally devised the following
(infinite) near integral domain which was later used by Heatherly and
Olivier [6] to show that the additive group of a near integral domain
may not be nilpotent. It is not only a near integral domain, but it is
also a distributively generated (dg) near-ring with identity.

Let G3 be the free (additive) group on two generators z and y, and
define for every integer n the mapping I'y, : G2 — G2 by Iy (h(z,y)) =
= h(nz,ny), where h(z,y) is an arbitrary word in G5. Every Iy, is an
element of the full near-ring M(G2) of mappings on Gg; in fact, the
I'y’s are distributive elements of M(G3). Let R be the subnear-ring
of M(G,) generated by {I'y, : n € Z}, 1.e. (R,{I'y, : n € Z}) is a dg
near-ring. Then by [11, Lemma 9.11] (R, +) is generated as a group by
{T'»:n €Z}.

We use the above near integral domain in the following example,
in which we show that Huq’s result, which was mentioned just before
Proposition 3.5, does not extend to near-rings.

Example 3.7. Define p: R — R by

k k
‘P(Z Enyy 1—‘n.') = Z €n;L—ni,
i=1 =1

where €,;, = £1 and n; € Z for ¢+ = 1,2,...,k. We show that ¢ is
well-defined. First note that I'y(h(—z,—y)) = h(n(—z),n(-y)) =

= h((—n)z,(—n)y) = F_n(h(z,y)) for every n € Z and every word

h(z,y) in Go. Suppose now that Z En;'n; Z €m;'m;. Then
i=1 j=1

EnyLny + -+ en oy —emTm — - —€m I'my, =0,
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and so
(EnyTny + -+ en, Ty —€mTmy — -+ — €my Dy J(B(—2z, —y)) = 0.
Hence, by the above remark

(EnIP_nl +-e Enkr—nk - Emlr—ml -t 5m1r—mx )(h(x’ y)) = 0’

k l
ie. Y enTon, =3 emTom;.
i=1 j=1
It is now obvious that ¢ is an endomorphism of (R, +). Also, since

SD(FnFan) = (P(ann) = I nmn = TI_xI'-mly =
= ¢(Tn)p(Tm)e(Ty) for all n,m € Z, it follows easily that ¢ is a semi-
homomorphism of near-rings.

The identity of Ris I'y, and ¢(I';) =T'—;. Furthermore, I'_; #
# I, because T y(z+y)=—z+ (—y) #(—y) +(~z) = —(z+y) =
= —Ti(z +y). Hence ¢(T1) # —TI'1, and (T) # I';.

It is well known that if F' is a near-field, then either F & M,(Z,),
the near-field of constant functions on Z,, or F is zero-symmetric (see
e.g. [11, Proposition 8.1]). So if we exclude this “silly” near-field
M_.(Z;) (see Example 3.9), then the proof of [9, Proposition 9] serves
to a great extent as the proof of the following proposition.

Let Z(R) denote the center of a near-ring R.

Proposition 3.8. If o : F — F' is a semi-homomorphism of near-
fields, then (1) € Z((F)).

Proof. If ¢ is the zero map, then by the above remark ¢(1)=0¢
€ Z(p(F)), since F' is zero-symmetric. If o(F) # 0, then (1) # 0,
otherwise p(a) = ¢(lal) = ¢(1)p(a)p(l) = 0 for all @ € F. Since
¢(a) = ¢(1)p(a)p(1), the result follows from Lemma 3.3. ¢
Example 3.9. Let ¢ : M:(Z3) — M.(Z:) be the identity map. Then ¢
is an isomorphism of “near-fields” (in the sense of the remark preceding
Proposition 3.8), but ¢(1) € Z(M(Z;)), the empty set.

Hua [8] proved that every semi-automorphism of a division ring
R, i.e. an automorphism ¢ of (R, +) satisfying (1) = 1 and

(6) p(aba) = p(a)p(b)p(a)

for all a,b € R, is an automorphism of an anti-automorphism.
We have been unable to determine whether Hua’s result can be
“extended” to near-fields, i.e. whether every semi-automorphism of a
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near-field (where semi-automorphism is defined as above) is an auto-
morphism. Notice that the lack of one distributive law should pre-
vent a semi-automorphism from being an anti-automorphism, as is
shown in [13] for finite simple near-rings with associated idempotents
€1,€2,...,¢et, where t > 2. (The case t = 1 produces the near-fields.)

After examining numerous examples, including the exceptional
finite near-fields, i.e. the seven finite near-fields which are not Dickson
near-fields (see e.g. [14, Chapter 4], where the structure of theses seven
near-fields, which was originally determined by Zassenhaus [16], is made
clear), we arrived at the following:

Conjecture. Every semi-automorphism of a near-field is an automor-
phism.

The examination of this problem yields a surprising result, the
significance of which the authors do not understand fully at present
and which perhaps has independent interest. It is well known that
there are only two automorphisms of the Galois field (GF(3%),+,),
viz. the (identity-preserving) automorphisms of Zs[i] mapping ¢ onto
: and 2: respectively, where ¢ is a root of the irreducible polynomial
z? + 1 in Z3[z]. The term non-field is widely used in near-ring circles
for a near-field which is not a field. The smallest (Dickson) non-field is
given by (GF(3?),+,0), where o is defined by

Toy = {:c -y, if y is a square in the Galois field (GF(3%),+,-)

z3 -y, otherwise.

(See e.g. [12] for more details.) We show in the following example
that every automorphism ¢ of (GF(3?%),+) satisfying ¢(1) = 1 is an
automorphism of (GF(3%),+,0), and so every semi-automorphism of
(GF(3%),+,0) is an automorphism. Hence there are precisely 6 auto-
morphisms of (GF(3%),+,0) and the automorphism group of (GF(3?),
+, o) is isomorphic to S3. This provides an alternative proof of a special
case of [16, Theorem 18].

Example 3.10. Let (GF(3%),+,0) be the smallest Dickson non-field
as defined above, and let a + bi, a,b € Z3, be the elements of GF(3?),
with i2 = —1 = 2. If ¢ is an automorphism of (Z3[i], +) and (1) = 1,
then @(a+bi) = a+bp(i), and so () € {3,2:,1+14,142i,24+14,2+ 21}
Since k3 = k and 3k = k and 3k = 0 for every k € Z3, we have, for all
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" a+bi and ¢+ di, the following;

(7) o((a+bi)o(c+di)) = e((a+bi)-(c+ di))
= p(ac+ 2bd + (ad + be)i)
=ac+ 2bd + (ad + be)p(z)

“if ¢ + di is a square in (Z3[z], +,-), and

(8)  wl(@+b)o(ctd) =p((a+h) - (c+di))
= p(ac+ 2b) - (¢ + di))
= p(ac + bd + (ad + 2bc)z)
= ac + bd + (ad + 2bc)p(z)

if ¢ + di is not a square in (Z3[z],+,). Also,

(9) ¢p(a+bi) o p(c+ di) = (a + bp(i)) o (c + dip(1))

= ac + bd(p(i))? + (ad + be)p(3)
if ¢ + dip(7) is a square in (Z3[i],+,-), and
(10) (a+bi) o p(c+ di) = (a + bp(3))® - (¢ + dep(2))

= (a+b((9))?) - (c + de(2))
= ac 4 bd(p(3))* + adip(i) + be(p(3))?

if ¢ + dip(7) is not a square in (Z3[i], +, -).
It can be verified that ¢ + di is a square in (Z3[i], +,-) if and only if
cd = 0, and so we consider the following cases:

(I) ¢+ di is a square in (Z3[i], +,-)and d = 0:
We have ¢ + di = ¢, and so it follows from (7) and (9) that
w((a+b) o (c+di)) = p(a+ i) o p(c+ di).
(IT) ¢ + di is a square in (Zs[i], +,-)and d # 0:

In this case ¢ = 0, but ¢ + dy(i) may be or may not be a square in
(Zs[i],+, ). The conditions on ¢ imply that ¢(k) = k for every k € Z3,
and so p(z) € {0,1,2}. Therefore (i) = k+ i for some k,1 € Z;, [ # 0.
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If k = 0, then ¢+ dp(z) = dli, which is a square in (Z3[¢],+, ), and so
by (7) and (9) we have

w((a+ b)) o(c+ di)) = p(a+ bi) o p(c+ di),

because (¢(i))? = (1) = 21> = 2. Suppose now that k # 0. Then
c+dp(z) = d(k + 1) = dk + dli, which is not a square in (Z3[z], +,-). A
direct calculation shows that (k + l:)* = 2 in (Z3[d], +, -)if kI $ 0, and
so the desired equality now follows from (7) and (10).

(ITI) ¢+ di is not a square in (Z3[i], +, ), and @(z) = Iz for
some | € Z3, [ # 0:

Since ed # 0, it follows that ¢ + dp(i) is not a square in (Z3[z], +,-).
Furthermore, in this case (¢(7))? = 2 and (p(i))* = 1 in (Z3[], +,-),
and so by (8) and (10) we have

o((a + bi) o (c+di)) = p(a+ bi) o p(c+ di).

(IV) ¢+ di is not a square in (Z3[i], +,), and ¢(z) = k + Iz for
some k,l € Zs, with kl # 0:

Now ¢ + dp(i) = ¢+ dk + dli, which may be or may not be a square
in (Zs[t],+,+). Firstly, suppose it is a square, i.e. ¢+ dk = 0. Then
d+cp(i) = d+c(k+1i) = d+ck+cli, and d(p(i))? = d(k* - 124+ 2kl) =
= 2dkli, since k2 =12 =1. But c¢=2dk and d+ck=dk®>+ck=
= (c+ dk)k =0, and so d + cp(z) = d(p(:))?. Hence by (8) and (9) we

have

o((a+ i) o (c + di)) = ac + adg (i) + besp(i) + bd(i(i))?

= p(a+ bi) o p(c + di),
Secondly, suppose ¢+dy() is not a square in (Z3[i], +, ), i.e. c+dk # 0.
Then ¢ = dk, since ¢dk# 0 andc,d,k € Z;. Therefore 2cp(i) =

= 2ck + 2cli = d+ ck + 2¢li = d + c(k + 2Ii) = d + ¢(¢(2))®. Also,
(¢(i))* =2, and so by (8) and (10) we have

o((a+ bi)o(c+di)) = ac+ bd + adyp(i) + b(2cp(7))
= ac + bd + adp(i) + b(d + c(p(i))®)
= ac + 2bd + adip(i) + be(p(7))’
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= ac + bd(p(1))* + adip(i) + be(p(2))?
= ¢(a + bi) o p(c + di).

This proves the assertion that every automorphism ¢ of (GF(3%),+)
satisfying (1) = 1 is an automorphism of the smallest Dickson non-
field (GF(32%),+,0).

Unfortunately(?) the above result does not hold for the Dickson
non-field (GF(5?), +, o), where o is defined by

zoy = { z-y, if yis asquare in the Galois field (GF(5%), +, )

z° .y, otherwise,

as can be verified easily. However, as mentioned before, every semi-
automorphism of this near-field and of all others investigated by us, is
an automorphism.
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