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Abstract: In real normed spaces, the notion of skewness was introduced by
Fitzpatrick and Reznick. The radial projection constant had been already
studied several years before and its relations with some projection constants
had been pointed out. Here we introduce and study a modified version of
skewness and we continue the study of the above notions. We compare all
these constants and we establish several relations, some of them depending

on properties of the underlying space.

1. Introduction

Let X be a normed space over the real field R. We denote by S
the unit sphere of X : S = {z € X; ||z]| = 1}. Also, we set for z,y in
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C.N.R., and by the national research group (“40%”) of Functional Analysis.
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X:
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Now define the multivalued map J : X — X* in the following
way. For £ € X denote by J(z) the nonempty set

J(z) ={f € X*; |Ifll = llzll; f(=)=ll=l*}
(X* denoting the topological dual of X). For any z we have:

lz|| 7(z,y) = sup{f(y); f e J(z)}.

The space X is smooth if and only if J(z) is a singleton for any z € X,
or equivalently, if and only if 7(z,y) = —7(z,—y) for any pair z,y;
in this case 7(z,.) is linear in its second argument. We say that z is
orthogonal to y, and we write z Ly, when ||z + ty|| > ||z]| for all ¢ € R.
Note that the following is true:

(1.1) zlys zl +y & —1(z,—y) <0< 7(z,y).

In particular, if X is smooth, then we have

(1.2) zly & 7(z,y) =0 f(y) =0 for f € J(z).

We shall write 1 M when z1m for all m € M. We denote by [M]
the linear span of M ([y] = linear span of y).

We shall write: X is (H), when the norm of X derives from an
inner product; in this case, 7(z,y) reduces to the inner product when
T,y € S. We recall that when dim(X) > 3, then X is (H) if and only
if orthogonality is symmetric (i.e., z Ly implies y Lz).

The space X is said to be wuniformly nonsquare (abbreviated:
(UNS)) when sup{min(}|z + y||, |l — y||); z,¥ € S} < 2. Recall that
(UNS) spaces are reflexive.

The notion of skewness for a normed space was introduced in [8]
to describe the “asymmetry” of the norm:

(13) s(X) = sup{s(z,y); z,y € S}

where
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(1.4) s(z,y) = 7(z,y) — 7(y, ).
Note that
(1.5) s(z,y) = —s(y,z) = s(—=z,—y) for any pair z,y.

For any space X, 0 < s(X) < 2. Moreover, the extreme values 0 and 2
characterize - respectively — (H) spaces and spaces which are not (UNS)
(see [8]).

We recall the definitions of some other constants that we shall
compare with s(X). The radial map T from X onto its unit ball, is the
radial projection onto the unit ball defined by

if  Jlzf| <1
T(z) = z 1
@={oh 5
The radial constant of X is the number

k(X) =Sup{w; z,y € X; z £y} €[L,2].

Recall (see e.g. [9]) that

1
1.6 E(X)=sup{—; z,y e S; zly,t cR
(1.6) (X) p{lltx+y|[ y y }
or also:
lyll 1
E(X) =su : 0; zly} =sup{—=; zly; z,y€ S
(X) p{”m_yH y # y} p{d(z,[y]) y; ¢,y € S}

where d(z, A) = inf{||z — al|; a € A}.
The extreme values of k(X) (1 and 2) characterize — respectively —
spaces where orthogonality is symmetric, and spaces which are not
(UNS) (see [9] and the references there). For the sake of complete-
ness, we recall that some results related to k(X)) were already given by
Gurarii in two not too known papers (see [13] and [14]).
Remark. Letz,y € S,z Ly, A # 0;then ||y+Az| > |A]-||z||. This shows
that in (1.6), to obtain inf ||y + Az|| it is enough to consider A € [-1,1].
The radial constant is connected with the projection constants
onto subspaces of X (see e.g. [2]). These and other similar relations
will be studied in some detail here.
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The present paper is organized in the following way. In Section 2
we indicate some general properties of the functional 7. In Section 3 we
define new constants of skewness and we compare them with s(X). In
Section 4 we compare the radial constant with the constants of skew-
ness. Section 5 deals with projection constants. Finally, in Section 6,
we give some estimates for these constants in uniformly convex and
uniformly smooth spaces.

Several results in sections 3,4 and 5 rely upon smoothness pro-
perties of X. Our modified measures of skewness are useful to obtain
relations with constants which are related to orthogonal pairs. Rela-
tions among the constants we indicated and projections will be obtained
by using what we shall call, according to [11], “polar” projections.

2. Some properties of the functional .

The following properties of 7 are well known. For z,y € X,u € R
and A > 0 we have:

(2.1)  7(z,pz + Ay) = pl|z|| + At(z,y) (this is true also for A = 0)
(2.2) T(Az,y) = 7(z,y)

(2.3) [7(z, )| < lyll.

We indicate a few more properties, which will be used later: though
very simple, probably they are not so well known.
Lemma 2.1. Let z,y € S. Then 7(z,y) = 1 implies 7(y,z) = 1.

Proof. Let z,y € S,1 = 7(z,y) = infi>o M—%’m Therefore for
allt >0:1< 5"—:& = 1, which implies ||z + ty|| = 1 4+ ¢. Thus,
for t > 0,|ly + tz|| = ¢|¥ + z|| = 1 + ¢, which implies 7(y,z) =
= lim,_,q+ ly+ezli-llyll _ 4 o

— N .

Lemma 2.2. A space X is smooth if and only if the following condition
holds:

(2.4) zly iof and only if 7(z,y) = 0.

If in addition orthogonality is symmetric, then smoothness is also equi-
valent to:
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(2.5) if z,y € S,then zly implies 7(z,y) = 7(y, T).

Proof. Of course, if X is smooth, then z 1y implies 7(z,y) = 0, and
moreover, 7(z,y) = T(y,z) = 0 if orthogonality is symmetric, so we
have to prove the converse statements (“if” parts).

(2.4) = X smooth: we prove the contrapositive. If X is not
smooth, then there is a pair z,y with z,y € S and —7(z,—y) = A <
< 7(z,y); then —7(z,—y+ Az) =0, so z Ly — Az. But we have 7(z,y —
—Az) > 0, so (2.4) does not hold.

(2.5) = X smooth (when orthogonality is symmetric): we prove
the contrapositive. If dim(X) > 3, then X must be (H) so we have noth-
ing to prove; thus we assume dim(X) = 2. Let us assume that X is not
smooth; therefore (see (2.4)) thereis a pair z, y € S,z Ly (so yLz) such
that f,(y) = A # 0 for some f, € J(z); we can also assume A < 0 (even-
tually, we change y into —y). Also, there exist f € J(z) and g € J(y)
such that f(y) = g(z) =0 (so f # g). Let f; = af+fg,thusa =1 and
B = A. Take z = Az — y so fz(z) = 0. Then also zLz, so we have: 1=
= |ly|| < |ly=Az|| £ |ly— Az +Az|| = 1. Therefore the value of the con-
vex function of ¢ : FI(t) = ||y + tz] is 1 for 0 <t < —A, and so (set a =
=1/t) ||lz+ay|| = afor a > —1/A. By taking Ag > —1/\ we obtain also,
fort € R: ||z + Aoyl = Aollyll < Aoy + 2 +tz|, so z + AgyLz and then
zlz + Aoy. Now we have: 7(z + Aoy, z) = lim; o+ ”$+’\°y':tz“_)‘° =
= lim; o+ (1+t)”z+('\°£(l+t))y”_)‘°; since Ao /(1 4+t) > —1/A for ¢ small
enough, we obtain 7(z + Agy,z) = lim; .o+ (1+t)()‘°/§1+t))—)‘° = 0.
But then, since % € S and -%_Lm, (2.5) would imply also
m(z, —zt);"y) = T(%,m) = 0, against f(___z-l:\toy) = /\LO > 0; this con-
tradiction proves that (2.5) cannot hold when X is not smooth, which
concludes the proof. <&

For a result similar to the second part of Lemma 2.2, see Lemma

2 in [15].

3. Types of skewness

We introduce the following new constant:

(3.1) s1(X) = sup{s(z,y); =,y € S; zLly}.
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We give first some indications about the range of s1(X).
Proposition 3.1. We always have 0 < 51(X) < s(X) < 2, and these
estimates are sharp.
Proof. The estimates s1(X) < s(X) < 2 are trivial. Now take a pair
o, Yo € S5 such that zo.lye and yo Lz (this is always possible: see [3]).
But of course for any pair z,y we have either 7(z,y) — 7(y,z) > 0 or
T(y,z) — 7(z,y) > 0, so s1(X) > max{s(zoyo),s(y0,z0)} > 0. If X
is (H) then clearly s;(X) = 0. If X = R? with the norm given by:
[(z,y)ll = max{|z|,|y|}, then it is easy to prove that s;(X) = 2. In
fact, it is enough to consider the following elements: z = (1,1) and
y = (~1,a), with 0 < a < 1, to prove that: z,y € S,zLly,7(z,y) =
= a,7(y,z) = —1 and s0 51 (X) > 1 + a; thus we have 5;(X) = 2. $
Now consider R? with the norm given by

_ [max{lel,lgl} i oy 20
I = {fleb v w26

The unit ball of X is a hexagon. Now take y = (1,0) and z = (a,1)
with 0 < a < 1. We have zly and ylz (in fact orthogonality is
symmetric in this space). Moreover, 7(y,z) = a and 7(z,y) = 0, so
51(X) > s(y,z) = a : this shows that s;(X) > 1. Moreover, symmetry
of orthogonality implies 7(y,z) > 0, so s(z,y) < 1 for any pair z,y on
S with z1y; thus s;(X) = 1 for this space.

Remark 3.2. Note that Lemma 2.1 says that we have s(z,y) < 2 for
every pair z,y € 5. This implies that s(X) must be smaller than 2
when the norm has some property implying the continuity of the map
J and the unit sphere has some kind of compactness. So, if X is smooth
and z,y € S, then 7(y,z) = s(y,z) < 1 for zly; thus s;(X) < 1 in
these spaces, under some assumptions of that type.

Lemma 3.3. If s;(X) = 0, then orthogonality is symmetric.

Proof. Assume s1(X) = 0. Let z,y € S and z Ly, thus 0 > 7(z,y) —
~7(y,z). Also, from zl — vy, 7(z,~y) — 7(—y,z) < 0. But also,
7(z,y) > 0 and 7(z,—y) > 0, and so 7(y,z) > 0,0 < 7(—y,z) =
= 7(y,—z). This implies y1z, which concludes the proof. ¢
Proposition 3.4. Let dim(X) > 3; then 51(X) = 0 if and only if X
is (H). If dim(X) = 2, then s1(X) = 0 if and only if orthogonality is
symmetric and X 13 smooth.

Proof. “If” part: The first statement is trivial; the second one is a
consequence of Lemma 2.2.
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“Only if” part: For dim(X) > 3, the result follows from the above
lemma. If dim(X) = 2 and s;(X) = 0, then orthogonality is symmetric
(see Lemma 3.3); moreover for z,y in S,z Ly, we have s(z,y) < 0 and

s(y,z) <0, s0 7(z,y) — 7(y,z) = 0 and then smoothness of X follows
from Lemma 2.2.

We can also define the following constant.

(3.2) s2(X) =sup{s(y,z); z,y € S; zly} =

= —inf{s(z,y); z,y € S; zly}.

We have he following estimates.

Proposition 3.5. For any space X we have 0 < s2(X) <1 and these
estimates are sharp.
Proof. We obtain 0 < s,(X) by considering a biorthogonal pair z,y in
S. The inequality s3(X) < 1 follows from the definition since s(y, z) <
< 1(y,z) when zly. Moreover, we have s3(X) = 0 if X is (H) and
52(X) = 1 in the example of the hexagon (see after Proposition 3.1). $
Proposition 3.6. We have s1(X) = s2(X) (thus s1(X) < 1) in the
following cases:

(i) X 13 smooth;

(ii) orthogomnality is symmetric.
Proof. Let X be smooth, then s(z,y) = —s(—z,y) = s(y, —z). Since
zly is equivalent to —z Ly, we easily obtain from this s;(X) = s2(X).
When orthogonality is symmetric, equality follows immediately from
the definitions of s;(X) and s3(X). ¢
Remark 3.7. As we recalled in the introduction, the extreme values of
s(X), 0 and 2, characterize two important classes of spaces. Our Prop.
3.4 indicates the situations for which we have s;(X) = 0. It is possible
to have X smooth, thus s1(X) < 1 (see Propositions 3.5 and 3.6) and
X not (UNS); compare this result with Cor. 4.2.

We could raise the following questions:

Questions 3.8. For what spaces we have s1(X) = 1 ? Note that
the condition X (UNS) does not imply s1(X) < 1 or s2(X) < 1 (see
again the hexagon; see also Cor. 6.2). Moreover, X (UNS) implies
s1(X) < s(X) < 2. We do not know if X (UNS) implies s;(X) < 1.
Note that, for Propositions 3.4 and 3.6, when s;(X) = 0 then also
52(X) = 0. Is the converse true? Or for what spaces we have s3(X) =
=0 ? Also: is the inequality s3(X) < s1(X) always true?
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We do not know if 55(X) < 1 implies X (UNS), but we can prove
a partial result in this direction. :
Lemma 3.9. Let there ezist in S a pair z,y such that =zly and
|z £yll =2. Then so(X) =1.
Proof. Let be z,y as in the assumptions. Consider the convex func-
tionsof t eR : g(t) = ||z +y + t(z —y)|| and f(t) = ||z —y + t(z + y)||.
We have g(—1) = g(0) = g(1) = 2 = (1) = £(0) = f(—1), 50 g(t) > 3
and f(t) > 2 for all ¢ € R; moreover f(t) = g(t) =2 for -1 <t < 1.
Now take any a € (0,1) and set u = _ag_y-l—;(_z+y), v = —-——E We have
9(0)/2 =|jv|| =1 = |ju|| = f(a)/2. Let 0 <t < 1,50 35 < 1. We ob-
tain 2{jv+tu| = [la-+y-+i(a—y-+ala-+y))|| = [(1+ta)(a—ty)+(o—y)]| =
= (1+ta)llz+y+ (e —y)| = (1 +ta) -9(i352) = 2(1 + ta). There-
fore 7(v,u) = lim;_,o+ ————|'”+t"t”_||v|| = limy_o+ =1 = a. Also, ulv:
in fact, for all £ > 0 and small enough (¢ < a +¢ < 1) we have
2llu + tv]| = f(a +t) = 2 = 2||u||, which implies 7(u,v) = 0. Thus
52(X) > t(v,u) — 7(u,v) = a, and this implies the thesis. ¢

From the above lemma we obtain the following result.
Proposition 3.10. If dim(X) < oo and s3(X) < 1, then X is (UNS).
Proof. Assume X not (UNS). Then we have (see [2, Th. 6]) sup{]|z +
+y|| + ||z — y|l; =,y € S;zLly} = 4. Now, by using the compactness
of S and the fact that orthogonality is preserved when passing to the
limit, we see that there exists in S a pair z,y with z 1y and such that
lz + y|| + Hm —y|| = 4. An application of Lemma 3.9 implies the
thesis.

We indicate another simple fact concerning s;(X).
Lemma 3.11. Let X be smooth. Then

(3.3) s1(X) < sup{||z +y|; =,y € S; zLy} —1.

Proof. Let X be smooth, so z_Ly is equivalent to 7(z,y) = 0. More-
over, by using Prop. 3.6, for any t > 0 we have s;(X) = s;(X) =
= sup{r(y,z); z,y € S,zly} < sup{lEI=L. 5 4 ¢ 5 21y} By
setting ¢ = 1 we obtain the thesis. ¢

We conclude this section with the following lemma.
Lemma 3. 12. For any space X and any A € R we have
(8.4) As(X) +2 < sup{[lz + Myl + ly — Mall; 7,y € S,
(3.5) As1(X)+2 < sup{|lz + Ay|| + ||y — Az|; z,y € S,z Ly},
(3.6) Asa(X)+ 2 < sup{|lz + My|| + |ly — Az||; =,y € S; yLlz}.
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Proof. Since all these constants are non negative and z_Ly implies
zl —y, it is enough to reason for A > 0. For A = 0 there is nothing
to prove. Now fix A > 0; if z,y € S, then we have ||z + Ay|| + ||y —
=Az|| = (2,2 4+ Ay) + 7(y,y — Az) = 1+ Ar(z,y) + 1 + Ar(y, —z) >
> 2+ Mr7(z,y) — 7(y,z)). This implies (3.4). A similar reasoning,
applied to orthogonal pairs, implies (3.5) or (3.6). ¢

Remark 3.13. By the above lemma we reobtain easily that if X is
(UNS), then s51(X) < s(X) < 2.

4. Radial constant and skewness

We recalled in the introduction the definition of the radial con-
stant £(X) and its main properties. Now we shall indicate some rela-
tions between this constant and those dealing with skewness.
Proposition 4.1. For any space X we have:

(4.1) K(X) <1+ s1(X).

Proof. Let s; = 5;(X); let z,y € S,z Ly, thus 7(z,y) > 0 and then we
have 7(y,z) > 7(z,y) — s1 > —s;. But also —z Ly so T(y, —z) > —s1.
Let a = |ly + Az||, so @ > 7(y,y + Az). If A > 0, then a > 1 +
+A7T(y,2) > 1 — As1. Also, if A <0, then @ > 1+ (=\)r(y, —z) > 1 +
+(=A)(=s1) = 1+ As;. Therefore a > 1 — [A|sy; but also (from z Ly)
a > |A|. This implies o > max{|A|,1 — |Als; }. Since minyegr(max{|A|,
1—-|As1}) = 'l_-l_}Tl’ we obtain o > 1—_:3 Therefore, by (1.6), we have
E(X)= sup{m; T,y €85; vly; A€R} <14 s,s0 (4.1). ¢
Proposition 4.1 has the following consequences, which contain
Lemma 3.3:
Corollary 4.2. If s;(X) = 0, then orthogonality is symmetric. Also:
if s1(X) < 1, then X 1s (UNS).
Proof. From s;(X) = 0 we obtain k(X) = 1, so the first state-
ment. Concerning the second statement, the contrapositive follows im-
mediately: in fact, if X is not (UNS), then k(X) = 2, so (by (4.1))
51(X)>1. ¢
Recall that, for any space X, we have

(4.2) k(X) = k(X*)
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and .
(43) s(X) = s(X*).

Prop. 3.4 shows that in general s;(X) # s1(X*), and also (see Prop.
3.6) s2(X) # s2(X™). But this cannot happen in “good” spaces. In
fact we have the following result.

Proposition 4.3. If both X and X* are smooth, then

(44) Sl(X) = Sl(X )

Proof. If X is smooth but not reflexive, then it is not (UNS), so (by
Cor. 4.2) s1(X) > 1; therefore, by Prop. 3.6, s;(X) = 1. For the same
reasons, s1(X*) =1, so (4.4) is proved in this case.

Now assume X reflexive, so our assumptions imply that it is also
smooth and strictly convex. Under these assumptions J is a one-to-one
isometry between X and X*; moreover, zly if and only if J(y)LJ(z).
Therefore, by setting J(z) = f; and J(y) = fy, we obtain (£, § denot-
ing the point functionals in X**) s1(X) = sup{r(z,y) — 7(y,z); =,y €
€ S; zly} = sup{fe(y) — fy(z); =,y € S; zLly} = sup{f§(fe) —
_"%(fy); fa, fy € ‘S*§ fyLfe} = sup{7(fy, fe) — 7(fz, fy); furfy €
€ S* fylf:} = s1(X™*), which concludes the proof of Proposition
4.3. ¢ . ‘

The above proposition, together with Prop. 3.6, shows that in
those spaces s2(X) = s2(X™). We can still ask whether, in any space
X, we have s3(X) < s3(X*), or s2(X) > s2(X*). '

~ We prove a result which will be used in the next section.

Lemma 4.4. Let X be smooth; letz,y € S,z Ly. If we set —7(y,z) =
and ||z + By|| = a, then a <1+ s2(X).
Proof. Our assumptions imply 7(z,y) = 0; —s(z,y) = 7(y,z), thus
B = s(z,y). Also 7(y, #ﬁ) 0, ||5-'—"—1|] = 1, so T(M,y) =
= s(—z—%ﬁ—y,y). So we obtain: a = 7(z + fy,z + By) = 7(z + Py, z) +
+87(z + By,y) < 1+ Bs(ZEEL ) < 1+ |s(z,y)| - |s(2EEL,y)|. Since
oL by,y L £ 2 and o] = |lyll = | 222 = 1, we have max{|s(z, ),
|s(£‘—'ﬂ,y)|} < 51(X), so the thesis. ¢
Remark 4.5. In Prop. 4.1, in general we do not have equahty (consider
again the exagon); also, we do not known if Lemma 4.4 is true without
smoothness. For a related result see (5.17).

We want to recall that in [4], Desbiens introduced the following
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constant:

B(X) =sup{f €R; = + Byly; =z,y€S}.

In fact, as the same author noticed later in [5] (and as it is not difficult
to see by using (1.6)), B(X) = k(X) for any X. Some properties of
B(X) = k(X) were indicated in [4]; we shall indicate them in the last
section. '

5. Projections

Let M be a linear subspace of X. Recall that M is said to be
proziminal if for every z € X the set

Mm(z) = {zo € M; |lzo — z|| < |lm — z|| for every m € M} =
o = {zo € M; z — zo LM}
is non-empty. Given a proximinal subspace M of X, set
(5.1) I w |l = sup{liyll; v € Mar(z); ]| = 1}.
Also, set:
(5.2) MPB (X) = sup{||| IIn]||; M is a proximinal subspace of X}
and
(5.3) MPB(X) = sup{|||TInm|||; M is a proximinal hyperplane of X}.

If M = f~1(0) for some norm-one functional f € X*, then f assumes
its norm on S if and only if M i$ proximinal. Moreover, f(y) = 1 for
y € S is equivalent to y L M. Also, there is exactly one y € S with that
property if X is strictly convez.

A linear, continuous, idempotent operator P : X — M is called a
projection. In case there exists some projection from X onto M, we set

(54) MM, X)=inf{||P||; P isa projection onto M}.
Moreover, we set

(5.5) F(X) =sup{\(M,X); M is a hyperplane of X}.
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For any space X we have (see [2])

(5.6) k(X)= MPB(X)
and (see [10])
(5.7) F(X) < MPB(X).

Moreover, if dim(X) > 3, then (see [1]) F(X) = 1 if and only if X is
But we can also prove the following result:
Proposition 5.1. For any space X

(5.8) MPB(X) = MPB(X) = k(X).

Proof. Given € > 0, there exist z,y € X,y # 0, such that z1ly and
ﬂ_% > k(X) — e. Take a functional f; € J(z) such that f.(y) = 0;
let M be the kernel of f,. Note that M is a proximinal hyperplane and

that zL M, therefore —y € p(z — y). Thus MPB(X) > |||lIum||| =
> b > k(X)—e, which shows that (use (5.6)): MPB(X) > k(X) =
= MPB(X) > MPB(X), and then all these are equalities. ¢

Recall that given a hyperplane M = f~1(0), a projection P : X —

— M has a specified form, namely:

(5.9) P(z) = Py p(z) =z — f(z)y, where f(y) = 1.

If in (5.9) y is chosen so that ||y|]| = 1, then we say that Py is a
polar projection over M. In this case || — Py p|| = 1 (since y L M) and
z — f(z)y € Up(z). If in addition there is a unique y as above, then
we set

(5.10) Py = Py u, ie, Py(z)=z— f(z)y (f(y)=1).
In this case, if X is also reflexive, then Iy (z) = {z — f(z)y}, thus
NIar]|| = || P4l Polar projections have been used in [11], where it

was shown that in some classical Banach spaces they coincide with the
projections of minimal norm.

We can state the following result, which slightly improves Lemma
8 in [11].
Proposition 5.2. For any space X

(5.11) k(X)=sup{||Py,m|l; M is a proziminal hyperplane of X; y L M}.
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Moreover, if X 1is reflezive and strictly convez, then
(5.12) k(X) = sup{||Pyll; M is a hyperplane of X}.

Proof. By using Proposition 5.1 we have (see the discussion above):
k(X) = MPB(X) = sup{|||lx|||; M is a proximinal hyperplane of
X} = sup{||Py,m|l; M is a proximinal hyperplane of X;y LM}, so
(5.11). Moreover, if X is reflexive and strictly convex, then every hy-
perplane is proximinal, so we can write P, pr = P}, and then we obtain
(5.12). ¢

Now let X be smooth. If M = f~1(0),]|f|| = 1, and yL M, then
7(y,z) = f(z) for every z € X and we can write:

(5.13) NPyl = sup{llz — r(y, 2)yll; |l=]l = 1}.

Also, by smoothness we have |-z —7(y, —z)y|| = ||$—7'(y,m)y|| while
7(y, —.7:) —7(y,z) > 0 if 7(y,z) < 0; thus

| Py, |l = sup{llz — 7(y, z)yll; ||z|| = 1,7(y,z) > 0} =
= sup{|lz — 7(y, z)yl;; =)l =1,7(y,z) <0}.

Now we recall the following result from [11, Lemma 7):
Lemma 5.3. If M = f71(0) for some f € X*,||f|| =1, then

(5.14) |1 Py,pell = sup{|| P(z)||, z € S,z Ly}.
Proposition 5.4. Let X be smooth. Then we have
(5.15) k(X) <14 s3(X).

Proof. If X is smooth but not reflexive, so not (UNS), then we have
(see Corollary 4.2).s1(X) = 1, thus (5.15) is trivial. If X is smooth and
reflexive, then every hyperplane is proximinal; moreover, (5.14), (5.13)
and Lemma 4.4 together imply (y € S):

1Py, p]l = sup{|| P(z)l, = € S,z Ly} = sup{||lz — 7(y,z)yll,
z € S,zly} <14 s3(X).

An application of (5. 11) implies the thesis.
Remark 5.5. By using (5.7), (5.8) and (5 15), we also have (in any
smooth space X)

(5.17) - F(X) <14 84(X).

(5.16)
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A direct proof of (5.17) can be achieved in this way. If M = f71(0)
is proximinal (f € X™*; ||f|| = 1) and there exists y € S such that
f(y) = 1, then we have (see (5.16))

(5.18) MM, X) < ||Pym|l €1+ s3(X).

Moreover, it is not difficult to see that a constant k¥ € R exists such
that if My = f71(0), M2 = ¢~1(0) and ||f — gl < e (f,9 € X*; ||f]| =
= |lg]l = 1), then |A(M1,X) — AM(M2,X)| < ke. By combining this fact
with the Bishop-Phelps theorem, we see that, in a smooth space, (5.18)
is true for every M, so we obtain again (5.17).

6. Uniformly convex and uniformly smooth spaces

Recall that X is said to be uniformly convez when the function of
e €[0,2],8() = inf{l - =t 5y € 8; ||z — y|| > €} is positive for
all e > 0.

By using the function §-called the modulus of convezity of X -
we can give some rough estimates concerning some of the constants
considered in the paper.

Proposition 6.1. We always have

(6.1) 51(X) £2-26(1)
Moreover, if X 13 smooth, then |
(6.2) s1(X) <1 -26(1).

Proof. Let z,y € §; zLly, so ||z —y|| > 1. This implies ||z + y|| <
< 2 —26(1). By using (3.5) with A = 1, we obtain: s;(X)+2 <
<2-26(1)+2, so we have (6.1). If X is smooth, then we obtain (6.2)
in a similar way, by using (3.3). ¢

We have immediately the following
Corollary 6.2. The condition §(1) > 0 implies s1(X) < 2, and also
s51(X) < 1 if X is smooth.

Of course, if we assume X* to be uniformly convex, then Prop.
4.3 can be used again to obtain estimates for s1(X); note that in this
case X is smooth. But we can also indicate some direct estimates for
uniformly smooth spaces. Recall that the modulus of smoothness is
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defined, for A € R, in this way:

{Ilw +Aull 4l = Ayl
2

p(A) = sup 1; z,y € S}.
The space is uniformly smooth if lim,_q B(%l = (; this happens if and
only if X* is uniformly convex. Also, if we denote by p* and é* respec-

tively the moduli of smoothness and rotundity of X ¥, then we have (see
[6,pp.63 — 64]):

(6.3) 2p*(1) = sup{e — 26(e); 0< e <2}
and
(6.4) 2p(1) = sup{e — 26*(e); 0 < e < 2}.

We can also define (see [7,p.129])

z + Ayl + :z—/\yv
) — supg e 2+ iz =il _

L; z,y € S,z Ly}.

2
Proposition 6.3. For any space X
(6.5) s(X) < 2p(1); s1(X) < 2p1(1).

Proof. Formulas (6.5) are trivial (see (3.4) and (3.5)). Moreover,
s(X) = s(X*) < 2p*(1) = sup{e — 26(e); 0 <e <2}. &
Concerning the radial constant, (6.5) and (4.1) together imply

(6.6) E(X) <1+ 2p:(1).

By using the modulus of convexity, we have
Proposition 6.4. Let X be (UNS). Then

(6.7) E(X) +6(k(X)) < 2.
Also:

6(eo)
2

Proof. Our assumptions imply k(X) € [1,2). If k(X) = 1 there is
nothing to prove. Now let k(X) € (1,2); set, for ¢ € (0, E(X)—-1),ke =
= k(X) — e. By using (1.6), we can find z,y € S,zLly and ¢, € R,
so that ||t.z — y|| < kl_,; from |ke| — |kete] < ||key — ketez|| < 1 we

(6.8) E(X)<2- , where €9 = sup{e > 0; € + §(¢) < 2}.
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obtain 2(k. — 1) < 2k.|t| = ||2kctez|| < ||ketez 4 ketez — key||. Now
we observe that ||kctez| < ||key — ketez|| < 1 by construction, while
|ketex — (ketex — key)|| = ke; this implies, by definition of 8, |{ketez +
tketez — keyl| < 2(1 — 6(k.)), thus 2(ke — 1) < 2(1 — 6(ke)), and then
E(X) + 6(k(X)) < 2.

For the second part of the thesis, recall that the following para-
meter was used in [12]: .

z|| + [ty
l= +2yll

It was proved there that u(X) < 3—6(g0) (g0 defined above). Then it
was proved in [2] that, in any space:

u(x) = sup{ LIy e Ry,

(6.9) 2h(X) — 1 < u(X) < k(X) + 1.

This implies k(X) < #Q <2- 6(%1. O

Better (but more complicated) relations similar to (6.9) were given
in [5], where also the estimate (6.7) was proved, in the form k(X) < &o.
By using those results, the second part of Proposition 6.4 could be
slightly improved.
Remark 6.5. The function § is non decreasing and continuous for
¢ < 2; therefore we have g9 < 2 when X is (UNS) (and also the converse
is true). Moreover, for any space X (see e.g. [6, p.60]) 6(¢) <1—(1—
—“’4—2)%, 50 k(X) +6(k(X)) S k(X)+1—4/1- k(i()z; therefore, g9 > 2.
Thus, the estvimate given by (6.7), at most, can say that k(X) < « for
some a > 2. Concerning the estimate (6.8), note that we always have

2 — 6(;") > g Also, note that the second part of (6.9), together with
(4.1), implies p(X) < 2+ s1(X). Again, slightly better estimates can
be given by using the results of [5].
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