## LOCALIZING FAMILIES FOR REAL FUNCTION ALGEBRAS

## Maciej Grzesiak

Institute of Mathematics, Technical University, PL-60965 Poznań, ul. Piotrowo 3a, Poland.

Received August 1990

AMS Subject Classification: 46 J 10; 46 J 35

Keywords:  $C(X, \sigma)$ , real function algebra, localizing cover, basic subclass of algebras, antisymmetric algebra, (weakly) analytic algebra, antisymmetric measure, annihilating measure, (real part) representing measure.

Abstract: Let A be a real function algebra on  $(X, \sigma)$ . A cover  $\mathcal{R}$  of X by closed sets localizes A if from  $f \in C(X, \sigma)$  and  $f|_R \in A|_R$  for each  $R \in \mathcal{R}$ , it follows  $f \in A$ . Examples of such covers and some relations between them are given.

For a compact Hausdorff space X and a homeomorphism  $\sigma: X \to X$ ,  $\sigma \circ \sigma = \operatorname{id} C(X, \sigma)$  is a real space of all complex continuous functions on X fulfilling  $f(\sigma x) = \overline{f(x)}$  ([5]).

Let A be a real function algebra on  $(X, \sigma)$ , i.e. a subalgebra of  $C(X, \sigma)$  which is uniformly closed, separates points of X and contains real constants ([5]).

The well known Bishop theorem states that every uniform algebra A can be obtained by "gluing together" a family of antisymmetric algebras. In a sense, the class of antisymmetric algebras determines (forms a basis for) the class of uniform algebras. This idea of forming an algebra from more elementary "bricks" was precised by Arenson [1]. Following him we will define analogous notions for real function algebras.

Let A denote the class of all real function algebras (over all pairs

 $(X,\sigma)$ ). For  $A \in \mathcal{A}$ , say  $A \subseteq C(X,\sigma)$ , R a closed subset of X, let  $A|_R = \{ g \mid_R : g \in A \}$  and  $A|_R :=$  the uniform closure of  $A|_R$ . **Definition 1.** Let  $\mathcal{R}$  be a cover of X by closed sets,  $A \in \mathcal{A}$ ,  $A \subseteq C(X,\sigma)$ . We say that  $\mathcal{R}$  localizes A if the conditions:

 $f \in C(X, \sigma)$  and  $f|_R \in A|_R$  for each  $R \in \mathcal{R}$ , imply  $f \in A$ .

**Definition 2.** A subclass  $\mathcal{B} \subseteq \mathcal{A}$  is called *basic* if for every  $A \in \mathcal{A}$ , say  $A \subseteq C(X, \sigma)$ , there exists a cover  $\mathcal{R}$  of X such that

- (i)  $\mathcal{R}$  localizes A;
- (ii) for  $R \in \mathcal{R}, A|_{R} \in \mathcal{B}$ .

More picturesquely, every  $A \in \mathcal{A}$  can be obtained from algebras belonging to  $\mathcal{B}$  by "gluing" them together in a specified way.

The Bishop theorem states then that the family of all maximal antisymmetric sets localizes A. Following [1], we will denote this family  $\mathcal{R}_1$ .

We will remind the definitions for real function algebras.

**Definition 3.** [6] Let A be a real function algebra on  $(X, \sigma)$ . A nonempty subset R of X is called a set of antisymmetry if:

- (i)  $f \in A$  and  $f|_R$  is real implies  $f|_R$  is constant, and
- (ii)  $f \in A$  and  $f|_R$  is purely imaginary implies  $f|_R$  is constant.

**Definition 4.** [2] Let A be a real function algebra on  $(X, \sigma)$ . A nonempty subset R of X is called a set of r-antisymmetry if:

- (i)  $f \in A$  and  $f|_R$  is real implies  $f|_R$  is constant, and
- (ii) R is  $\sigma$ -invariant, i.e.  $\sigma(R) = R$ .

Note that if a set is  $\sigma$ -invariant then a function with nonzero imaginary part cannot be constant on it. It follows for example, that if  $A = C(X, \sigma)$  then the only sets which are both antisymmetric and r-antisymmetric are the singleton fixpoints. So in general the notions of antisymmetric and r-antisymmetric sets are different.

In [2], Cor. 2.5. it was proved that if  $A|_R$  is an algebra of real type (see [3]) then R is r-antisymmetric iff R is a set of antisymmetry for the complex algebra A + iA. From this fact and from [6], Lemma 2.12 and Th. 2.15 it follows that:

If  $A|_R$  is an algebra of real type and  $\sigma(R) = R$ , then R is antisymmetric iff R is r-antisymmetric.

In general, if R is antisymmetric set for A, then  $R \cup \sigma(R)$  is rantisymmetric. We will soon use this fact.

From the analogue of Bishop theorem for real function algebras (see [6], Cor. 3.4. and Th. 3.6.), the cover  $\mathcal{R}_1$  of X by maximal antisymmetric sets localizes A. The problem is, which other covers localize A, or, equivalently, which subclasses  $\mathcal{B} \subseteq A$  are basic.

It is not difficult to prove that the cover  $\mathcal{R}_1$  by maximal r-antisymmetric sets localizes A. To this end let us show first:

**Proposition 5.** Let A be a real function algebra on  $(X, \sigma)$  and let R be a maximal r-antisymmetric set for A. Then  $A|_R$  is closed in  $C(R, \sigma|_R)$ . **Proof.** Consider two cases. First, if A is of complex type then R is maximal antisymmetric for a complex algebra A', where A' means A with the multiplication extended to complex scalars. Second, if A is of real type then R is maximal antisymmetric for a complexification B = A + +iA. In both cases the restriction algebras  $A'|_R$  and  $B|_R$  are closed in C(R). Taking into account suitable inclusions it is easy to see that  $A|_R$  is closed in  $C(R, \sigma|_R)$ .  $\diamondsuit$ 

Now, Th. 3.3 from [6] (Machado theorem for real function algebras) states that for any  $f \in C(X, \sigma)$  its distance from A is realized on some closed antisymmetric subset Y of X. Hence this distance is realized also on a r-antisymmetric set  $Y \cup \sigma(Y)$  and repeating the proof of Cor. 3.4 in [6] we can show that the cover  $\mathcal{R}_1$  localizes A.

Let us consider other natural covers.

**Definition 6.** A closed set  $F \subset X$  is a peak set for real function algebra  $A \subset C(X, \sigma)$  if there exists  $f \in A$  with f = 1 on F and |f| < 1 off of F. A closed set  $E \subset X$  is a weak peak set (p - set) for A if E is an intersection of peak sets. If a function f equals 1 on a set (not necessarily closed) F and  $|f| \le 1$  off of F then we will say that f peaks on F.

Note that for any peak set,  $F = \sigma(F)$  and that the countable intersection of peak sets is a peak set.

**Definition 7.** A real function algebra A on  $(X, \sigma)$  is called an *analytic* (a weakly analytic) algebra if from the fact that  $f \in A$  and f is constant (f peaks) on an open subset of X it follows that f is constant on X.

It is clear that if A is analytic then it is weakly analytic.

We will call a closed set  $R \subseteq X$  (weakly) analytic if the uniform closure  $A|_R$  of the algebra  $A|_R$  is (weakly) analytic. This means that any subset of R which is also a peak set (in weakly analytic case), or a set of constancy (in analytic case) for some  $f \in A|_R$  is nowhere dense in R or coincides with R.

This definition is the same as for uniform algebras (see [1]). In the case of uniform algebras it is known that these types of algebras: antisymmetric, analytic and weakly analytic are all different. In [1] it is also proved that  $\mathcal{R}_2$  = the family of all weakly analytic sets, localizes A, while the family of all analytic sets does not.

**Lemma 8.** If a set  $F \subset X$  is weakly analytic, then it is antisymmetric. **Proof.** Let  $f \in A$  be such a function that  $f|_F$  is real. Suppose that  $f|_F$  is not constant. Then the set P(f) defined as the closure of the set of all polynomials of  $f|_F$  contains a function g (defined on F) such that  $||g|| = 1, g \neq 1$  and  $g^{-1}(1)$  contains a set which is open in F. This is impossible because F is weakly analytic.  $\diamondsuit$ 

An easy consequence of this lemma is

Theorem 9. If A is an analytic (weakly analytic) algebra, then it is also antisymmetric.

From the lemma above,  $\mathcal{R}_2 \subset \mathcal{R}_1$ . We are going to show that  $\mathcal{R}_2$  localizes A. First we define two smaller then  $\mathcal{R}_2$  families of sets.

Given a probability measure  $\nu$  on X we will consider A as a subspace in  $L^p(\nu), 1 \leq p < \infty$  and denote its closure as  $H^p(\nu)$ . Also we define  $H^{\infty}(\nu) = H^1(\nu) \cap L^{\infty}(\nu)$ .

**Definition 10.** A probability measure  $\nu$  is called an *antisymmetric* measure if every function in  $H^{\infty}(\nu)$  that is real valued a.e. is constant a.e.

Let  $\mathcal{R}_3$  denote the family of supports of antisymmetric measures. Lemma 11. The support of any antisymmetric measure is weakly analytic set.

**Proof.** Let F be the support of any antisymmetric measure  $\nu$ , let  $f \in (A|_F)$ , ||f|| = 1. Then  $f \in H^{\infty}(\nu)$ . If  $G \subseteq f^{-1}(1)$  is open in F, then  $\nu(G) > 0$  (because  $F = \text{supp } \nu$ ). It is easy to show that the sequence  $((1+f)/2)^n$  converges a.e. to the characteristic function  $\chi_H$  for some  $H \supseteq G$ . Since the measure is antisymmetric  $\chi_H$  must be constant.  $\diamondsuit$ 

It follows that  $\mathcal{R}_3 \subset \mathcal{R}_2$ .

Before defining the next cover we will remind some known facts. Let  $M(X, \sigma)$  be the set of all Radon self – conjugate measures on X, i.e.:

$$M(X, \sigma) = \{ \mu \in M(X) : \mu = \overline{\mu} \circ \sigma \},$$

where M(X) is the set of all Radon (= regular Borel) measures on X. We have:

Theorem 12. (Riesz type, [2]). The mapping L defined by

$$(L\mu)(f) = \int f d\mu \text{ for } \mu \in M(X, \sigma), f \in C(X, \sigma),$$

is a linear isometry from  $M(X, \sigma)$  onto  $C(X, \sigma)^*$ .

**Definition 13.** ([2]) Let E be a subspace of  $C(X, \sigma)$ . A measure  $\mu \in M(X, \sigma)$  is said to annihilate (be orthogonal to) the subspace E (in symbols  $\mu \perp E$ ) if the functional  $F_{\mu}$  represented by this measure fulfills the condition  $F_{\mu}(f) = 0$  for every  $f \in E$ . The annihilator of  $E, E^{\perp}$ , is defined as the set of all measures orthogonal to E.

**Definition 14.** A Radon self-conjugate measure  $\mu$  is an extreme annihilating measure for E if  $\mu$  is an extreme point of the unit ball of  $E^{\perp}, \mu \in \text{ext}B(E^{\perp})$ .

It is easy to prove ([2]) that if  $\mu$  is an extreme annihilating measure then supp  $\mu$  is an antisymmetric set.

Let  $\mathcal{R}_4$  be the family of all supports of extreme annihilating measures along with all singleton subsets of X. The family  $\mathcal{R}_4$  localizes A. (Let  $f \in C(X, \sigma)$  be such that  $f|_R$  belongs to  $(A|_R)^-$  for any  $R \in \mathcal{R}_4$ . From the Krein – Milman theorem, any  $\mu \in B(A^{\perp})$  annihilates f. Suppose that  $f \notin A$ . Then from the Hahn – Banach theorem there exists  $\mu \in B(A^{\perp}), \mu(f) = 1$ , a contradiction.)

We are going to show that  $\mathcal{R}_4 \subseteq \mathcal{R}_3$ . Let  $\mu \in \text{ext}B(A^{\perp})$ . It suffices to show that  $|\mu|$  is antisymmetric. Let  $f \in H^{\infty}(|\mu|)$  be a real valued function. If  $\varepsilon > 0$  is sufficiently small then  $h = (1/2) + \varepsilon f$  fulfills 0 < h < 1 and obviously  $h\mu \in A^{\perp}$ . We have

$$\mu = \|h\mu\| \frac{h\mu}{\|h\mu\|} + \|(1-h)\mu\| \frac{(1-h)\mu}{\|(1-h)\mu\|}.$$

But  $\mu \in \text{ext}B(A^{\perp})$ , hence  $h\mu = ||h\mu||\mu$ . It follows that  $h = ||h\mu||$  a.e., so f is constant.

Since  $\mathcal{R}_4 \subseteq \mathcal{R}_3 \subseteq \mathcal{R}_2 \subseteq \mathcal{R}_1$  and  $\mathcal{R}_4$  localizes A, hence each of  $\mathcal{R}_i$ , i = 1, 2, 3, 4 does so.

We are now going to investigate the problem whether the natural cover of X consisting of supports of real part representing measures localizes A.

**Lemma 15.** Let  $\mu$  be a probability measure. Then  $\mu$  is antisymmetric iff for every Borel set F such that  $\chi_F \in H^{\infty}(\mu)$ ,  $\mu(F) = 0$  or  $\mu(F) = 1$ .

**Proof.** The necessity is obvious. To prove sufficiency, let  $f \in H^{\infty}(\mu)$  be a real function,  $a = \operatorname{ess inf} f(x), b = \operatorname{ess sup} f(x)$ . We are going to show that a = b. Take  $(P_n)$ , a sequence of polynomials with real coefficients which is point convergent on [a,b] to the characteristic function of [a,(a+b)/2], and such that  $\max_{t\in[a,b]}|P_n(t)| \leq 1$ . Then  $P_n(f)$  is a sequence of functions from  $H^{\infty}(\mu), \|P_n(f)\| \leq 1$ ,  $\lim P_n(f) = 1$  on a set  $F := f^{-1}([a,(a+b)/2])$ . This sequence has a subsequence which is  $w^*$ -convergent to some  $g \in H^{\infty}(\mu)$ . But  $g \equiv 1$  on a set F and  $\|g\| \leq 1$ , so it is easy to see that  $((1+g)/2)^n$  converges a.e. to  $\chi_F$ . Hence  $\chi_F \in H^{\infty}(\mu)$  and from the assumption  $\mu(F) = 1$ . It follows (a+b)/2 = b, so a = b.  $\diamondsuit$ 

Recall (see [5]) that a probability measure  $\mu$  is called a real part representing measure for  $\phi \in \Phi_A$  ( $\Phi_A$  denotes the carrier space of an algebra A) if:

- for all  $f \in A$ ,  $\int \operatorname{Re} f d\mu = \operatorname{Re} \phi(f)$ , and
- for every Borel set  $E, \mu(E) = \mu(\sigma E)$ .

Remark 16. Note that the measure  $\mu$  is multiplicative on Re  $A \cap A$ , since for  $f \in \text{Re } a \cap A$ ,  $\int f \ d\mu = \int \text{Re } f \ d\mu = \text{Re } \phi(f) = \phi(f)$ . The last equality follows from the general fact that if an algebra B is of strictly real type,  $\mathcal{R}_4$ , then for every  $\phi \in \Phi_B$ ,  $\phi(f) \in \mathbb{R}$  for  $f \in B$  - see [3] for details. It is obvious that Re  $A \cap A$  is of  $R_4$  type.

**Lemma 17.** If  $\mu$  is a real part representing measure for a homomorphism  $\phi \in \Phi_A$  then it is antisymmetric.

**Proof.** Take any real function  $f \in H^{\infty}(\mu)$ . We have to show that f is constant. By Remark 16  $\mu$  is multiplicative on the  $L^1(\mu)$  – closure of Re  $A \cap A$ ; we will denote this closure  $H^1(\mu)^r$ . Now take a Borel set F such that  $\chi_F \in H^{\infty}(\mu)$ . Then  $\chi_F \in H^1(\mu)^r$ , so  $\mu(F)^2 = \mu(\chi_F)^2 = \mu(\chi_F^2) = \mu(\chi_f) = \mu(F)$ . Hence  $\mu(F) = 0$  or  $\mu(F) = 1$ . From the preceding lemma,  $\mu$  is antisymmetric.  $\diamondsuit$ 

Let  $\mathcal{S}'$  denote the cover of X by supports of real part representing measures. From the above lemma,  $\mathcal{S}' \subseteq \mathcal{R}_3$ . If  $\mathcal{R}_4$  had been a subfamily of  $\mathcal{S}'$ , we would have known that  $\mathcal{S}'$  localizes X. But  $\mathcal{S}'$  cannot contain  $\mathcal{R}_4$  because  $\mathcal{S}'$  consists of  $\sigma$ - invariant sets only. In order to have a localizing family we will add to  $\mathcal{S}'$  some other sets.

**Definition 18.** Let Y be any subset of X. If a set  $Y_{\sigma}$  fulfills  $Y_{\sigma} \cup \sigma(Y_{\sigma}) = Y$ , we will call  $Y_{\sigma}$  a  $\sigma$  - generating subset for Y. If moreover,  $Y_{\sigma}$  does not contain any  $Z_{\sigma}$  with  $Z_{\sigma} \cup \sigma(Z_{\sigma}) = Y$ , we will say that  $Y_{\sigma}$  is a minimal  $\sigma$  -generating subset for Y.

Of course Y is  $\sigma$ -generating for itself.

Let now  $S = \{Y_{\sigma} : Y \in S'\}$ . We will prove that the family S localizes A if A is large enough.

Recall that there are various methods of defining a Shilov boundary of a real function algebra A. We will use the following. If A is a real function algebra on  $(X, \sigma)$  then  $S \subseteq X$  is called a boundary if  $S = \sigma(S)$  and if Re f assumes its maximum on S for all  $f \in A$ . The Shilov boundary S(A) of A is defined as the smallest closed boundary of A.

It can be shown ([4]), Cor. 3.8) that the Shilov boundary of A coincides with the Shilov boundary of its complexification, S(A) = S(A + iA).

A complex function algebra B is said to be relatively maximal ([7]) if for any subalgebra B' of  $C(\Phi_B)$  containing B and such that S(B) = S(B') it follows B = B'. Following this definition we will call a real function algebra A relatively maximal if its complexification B = A + iA is relatively maximal.

Remark 19. Let us call a real function algebra A weakly relatively maximal if for any subalgebra A' of  $C(\Phi_A)$  containing A and such that S(A) = S(A') it follows A = A'. It is easy to see that if A is relatively maximal then it is weakly relatively maximal. (For the proof take any  $A' \supseteq A$ , A' a subalgebra of  $C(\Phi_A)$ , S(A) = S(A'). Then B' = A' + iA' is a complex function algebra,  $B' \supseteq B = A + iA$  and from [4] Cor.3.8 S(B') = S(A') = S(A) = S(B), so it follows B = B' hence A = A'.) It is not clear whether the converse holds true.

Corollary 2 in [7] states that if a complex function algebra B is relatively maximal and X = S(B) then the cover of X by supports of representing measures localizes A.

**Theorem 20.** If a real function algebra A is relatively maximal and X = S(A) then S localizes A.

**Proof.** Let B = A + iA. B is relatively maximal and S(A) = S(B) = X (by assumption and [4] Cor. 3.8). Hence by [7] Cor. 2 the family

 $\mathcal{U} = \{ \sup \mu : \mu \text{ is representing for } B \}$ 

localizes B. Let  $\mu_{\sigma}$  be a measure on X defined by  $\mu_{\sigma}(E) = \mu(\sigma E)$  for all Borel subset of X and  $m = (\mu + \mu_{\sigma})/2$ . m is a real part representing measure for A ([4], Cor. 3.4) and supp $\mu$  is a  $\sigma$ - generating subset for Y = supp m. It follows  $\mathcal{U} \subseteq \mathcal{S}$  so  $\mathcal{S}$  localizes B. Let  $f \in C(X, \sigma), f|_{\mathcal{S}} \in \mathcal{S}$ 

 $\in A|_{S}$  for  $S \in S$ . Then  $f + if \in C(X), (f + if)|_{S} \in (A + iA)|_{S}$ , so  $f + if \in B$ . Hence  $f \in A$ .  $\diamondsuit$ 

## References

- [1] ARENSON, E.L.: Uniform convergence algebras and regenerate coverings (in Russian), Matematičeski Sbornik 79 (121) (1969), 217 249.
- [2] GRZESIAK, M.: Real function algebras and their sets of antisymmetry, Glasnik Matematički 24 (44) (1989),297-304.
- [3] INGELSTAM, L.: Real Banach algebras, Aτk. Mat. 5/16 (1964), 239 270.
- [4] KULKARNI, S.H. and ARUNDHATHI, S.: Choquet boundary for real function algebras, Can. J. Math. 40 (1988), 1084 1104.
- [5] KULKARNI, S.H. and LIMAYE, B.V.: Gleason parts of real function algebras,
  Can. J. Math. 33 (1981), 181 200.
- [6] KULKARNI, S.H. and SRINIVASAN, N.: An analogue of Bishop's theorem for real function algebras, *Indian J. Pure Appl. Math.* 19 (1988), 154 166.
- [7] SMITH, R.C.: Antisymmetric measures for function algebras, *Math. Japonica* 32 (1987), 493 499.