ON UNITAL EXTENSIONS OF NEAR-RINGS AND THEIR RADI-CALS

Stefan Veldsman

Department of Mathematics, University of Port Elizabeth, PO Box 1600, Port Elizabeth 6000, South Africa.

Received November 1990

AMS Subject Classification: 16 Y 30, 16 N 80

Keywords: near-ring, unital extension, radical.

Abstract: Not every near-ring can be embedded as an ideal in a near-ring with an identity. A necessary and sufficient condition on a near-ring N for such an extension \overline{N} to exist is known. The construction of \overline{N} is not canonical in the sense that the quotient \overline{N}/N is not fixed for a given N. We modify this extension to one (resembling the Dorroh extension of rings) for which the quotient is always fixed. For radicals with hereditary semisimple classes, the radical of N and the radical of this extension coincide if and only if the ring of integers has zero radical.

1. Introduction

Not every near-ring has a unital extension. Betsch [1] gave an example of such a near-ring on a non-commutative group and asks whether such near-rings on commutative groups exist. We provides such examples in section 1 below. Subsequently Betsch gives a necessary and sufficient condition on a near-ring N to have a unital extension \overline{N} . He also gives an explicit description of this near-ring \overline{N} . In section 1 we provide an alternative construction of the near-ring \overline{N} . This construction, which generalizes the well-known Dorroh extension of a ring, has

the advantage that it makes it easy to compare the radicals of N and its unital extension (section 2).

1. Unital extensions of near-rings

All near-rings considered are 0-symmetric and right distributive near-rings.

Example 1.1. There exists near-rings with commutative underlying groups which are never left ideals nor right ideals in a near-ring with an identity:

Let G be any group which contains an element $e \neq 0$ with order not 2. Let N be the near-ring on G with multiplication defined by:

$$nm = \left\{ egin{array}{ll} n & ext{if } m
eq 0 \ 0 & ext{if } m = 0. \end{array}
ight.$$

Let \overline{N} be a near-ring with an identity 1 such that $N \subseteq \overline{N}$. If N is a right ideal in \overline{N} , then $e(e+1) \in N$. Thus e(e+1) = (e(e+1))(-e) = e(e-e) = 0. If N is a left ideal in \overline{N} , then $e(e+1) - e = e(e+1) - e1 \in N$. Thus e(e+1) - e = (e(e+1) - e)(-e) = e(e-e) - e = -e and whence e(e+1) = 0. Hence, if N is either a left or a right ideal of \overline{N} , then e(e+1) = 0. Consequently, since $e+e \neq 0$, we have 0 = 0e = (e(e+1))e = e(e+e) = e. But this contradicts the choice of $e \neq 0$. \diamondsuit

In [1], Betsch has given a necessary and sufficient condition on a near-ring to have a unital extension. This condition on a near-ring N is:

- (BC) There exists a faithful N-group Γ (hence N is considered as a subnear-ring of $M_0(\Gamma)$) such that:
 - (i) The mapping $x \longrightarrow -1 + x + 1$ of $M_0(\Gamma)$ into itself induces an automorphism of N (1 is the identity map on Γ).
 - (ii) For all $n, m \in N$ and $a \in \mathbb{Z}$ (\mathbb{Z} the integers), $n(m+a1) \in N$ (the cyclic subgroup of $M_0(\Gamma)$ generated by 1 is considered as an \mathbb{Z} -module).

The near-ring \overline{N} is a subnear-ring of $M_0(\Gamma)$ and is given by $\overline{N} = \{n + a1 | n \in N, a \in \mathbb{Z}\}$. This near-ring \overline{N} is not canonical in the sense that for a near-ring N satisfying the condition (BC), \overline{N}/N need not be fixed. It can be verified that \overline{N}/N is always either one of the rings \mathbb{Z}

(integers) or \mathbb{Z}_a (integers mod a) for some $a \geq 1$. When comparing the radicals of N and \overline{N} , it is useful to know the radical of \overline{N}/N . Since this quotient is not fixed, it is not always straightforward to compare the respective radicals. In order to fix the quotient, we propose a slightly modified construction, denoted by D(N), such that for any near-ring N satisfying the condition (BC), $D(N)/N \cong \mathbb{Z}$. Furthermore, if N is a ring, the faithful N-group Γ can be chosen such that D(N) is the usual unital extension of N (i.e. the Dorroh extension of N, cf [3]). Although this may not be the most ecconomical embedding, this construction enables us to give an easy criterion for comparing the radicals of N and D(N) (Theorem 2.1 below).

Theorem 1.2. Let N be near-ring which satisfies the condition (BC). Then there exists a unital extension D(N) of N such that $D(N)/N \cong \mathbb{Z}(\mathbb{Z} \text{ is the ring of integers.})$

Proof. Let Γ be the faithful N-group provided by our assumption BC on N (hence $N \hookrightarrow M_0(\Gamma)$). On the cartesian product $N \times \mathbb{Z}$ define addition and multiplication by:

$$(n,a) + (m,b) = (n+a1+m-a1,a+b)$$
$$(n,a)(m,b) = ((n+a1)(m+b1) - (ab)1,ab)$$

At the outset, we must verify that these operations are well defined. Since $n \longrightarrow -1+n+1$ is an automorphism of N (1 is the identity map on Γ), it follows that $a1+m-a1 \in N$ for all $a \in \mathbb{Z}, m \in N$. Furthermore, (n+a1)(m+b1)-(ab)1=n(m+b1)+a1(m+b1)-(ab)1. The first term is in N from the second part of the condition (BC); hence we only concern ourselves with the last two terms.

Suppose a > 0 (a similar argument takes care of the case a < 0). Then

$$a1(m+b1) - (ab)1 = (m+b1) + \ldots + (m+b1) - (ab)1 = m + (b1 + m-b1) + (2b1 + m - 2b1) + \ldots + ((ab)1 + m - (ab)1) + (ab)1 - (ab)1$$
 which is in N .

It can be verified that + defines a group structure on $N \times \mathbb{Z}$ with additive identity (0,0) and the additive inverse of (n,a) given by (-a1-n+a1,-a). Furthermore, the multiplication is associative and distributive over the addition, hence we have a near-ring which we denote by D(N). Clearly $N \cong \{(n,0)|n \in N\} \triangleleft D(N), D(N)/N \cong \mathbb{Z}$ and (0,1) is the multiplicative identity of D(N). \diamondsuit

If R is a ring, then R satisfies condition (BC) with $\Gamma = D(R)^+$, where D(R) here denotes the usual Dorroh extension of the ring R. In this case, the addition in the above construction simplifies to (n,a) + (m,b) = (n+a1+m-a1,a+b) = (n+m,a+b) and the multiplication becomes (n,a)(m,b) = ((n+a1)(n+b1)-ab1,ab)+(nm+bn+am,ab). Hence the above construction coincides with Dorroh extension of the ring R for this choice of Γ .

A sufficient "internal" condition on a near-ring N which implies the condition (BC) is given by:

Proposition 1.3. Let N be a near-ring which contains a left ideal L with $(L:N)_N = 0$ such that:

- 1. For any $N \in N$, $a \in \mathbb{Z}$, there exists an $p \in N$ such that $-ak + nk + ak pk \in L$ for all $k \in N$.
- 2. For any $n, m \in N, a \in \mathbb{Z}$, there exists an $p \in N$ such that $n(mk + ak) pk \in L$ for all $k \in N$.

Then N satisfies condition (BC).

Proof. Since L is a left ideal of N with $(L:N)_N = 0$, $\Gamma := N/L$ is a faithfull N-group via n(x+L) = nx + L. Embed N in $M_0(\Gamma)$ by $\varphi: N \longrightarrow M_0(\Gamma)$ defined by $\varphi(n) = \varphi_n: \Gamma \longrightarrow \Gamma, \varphi_n(x+L) = nx + L$. Let $f: M_0(\Gamma) \longrightarrow M_0(\Gamma)$ be the function defined by f(x) = -1 + x + 1. By condition 1 above, f induces an automorphism of $N \cong \varphi(N)$. Moreover, condition 2 above yields the requirement (ii) of (BC). \diamondsuit

The converse of the above proposition is not true: Consider any non-zero ring R with $R^2 = 0$.

2. The radical of the unital extension D(R).

Radical classes will be in the sense of Kurosh and Amitsur, cf [4] or Wiegandt [5]. The semisimple class of a radical \mathcal{R} is the class $S\mathcal{R} = \{N | \mathcal{R}(N) = 0\}$. $S\mathcal{R}$ is hereditary if $I \triangleleft N \in S\mathcal{R}$ implies $I \in S\mathcal{R}$. As is well known, $S\mathcal{R}$ is hereditary if and only if $\mathcal{R}(I) \subseteq \mathcal{R}(N)$ for all near-rings N and $I \triangleleft N$. The variety of 0-symmetric near-rings contains many examples of radicals with hereditary semisimple classes, for example, J_2, J_3 and \mathcal{G} (the Brown-McCoy radical class). Many more examples can be found in [4]. Some useful properties of a radical class \mathcal{R} required here are:

(1) $\mathcal{R}(N/I) = 0$ implies $\mathcal{R}(N) \subseteq I$ for $I \triangleleft N$;

- (2) $\mathcal{R}(\mathcal{R}(N)) = \mathcal{R}(N)$ for all N;
- (3) $\mathcal{R}(N/\mathcal{R}(N)) = 0$ for all N.

Our final result generalizes the corresponding result from the variety of rings (cf De la Rosa and Heyman [2]), albeit with some restrictions. This is necessitated by the fact that, contrary to the case for rings, not every semisimple class of near-rings is necessarily hereditary and not every near-ring has a unital extension.

Theorem 2.1. Let \mathcal{R} be a radical class with a hereditary semisimple class. Then $\mathcal{R}(N) = \mathcal{R}(D(N))$ for all near-rings N which satisfy the condition (BC) if and only if $\mathcal{R}(\mathbb{Z}) = 0$.

Proof. If $\mathcal{R}(\mathbb{Z}) = 0$ and D(N) exists for the near-ring N, then $\mathcal{R}(D(N)/N) = \mathcal{R}(\mathbb{Z}) = 0$; hence $\mathcal{R}(D(N)) \subseteq \mathcal{R}(N)$. But $S\mathcal{R}$ hereditary implies $\mathcal{R}(N) \subseteq \mathcal{R}(D(N))$ which yields $\mathcal{R}(D(N)) = \mathcal{R}(N)$. Conversely, suppose $\mathcal{R}(D(N)) = \mathcal{R}(N)$ for all near-rings N which satisfy the condition (BC). In particular, since \mathbb{Z} is a ring, so is $A := \mathcal{R}(\mathbb{Z})$ and $\mathcal{R}(D(A)) = \mathcal{R}(A) = \mathcal{R}(\mathcal{R}(\mathbb{Z})) = \mathcal{R}(\mathbb{Z}) = A$. Since $\mathbb{Z} \cong D(A)/A = D(A)/\mathcal{R}(D(A))$, we have $\mathcal{R}(\mathbb{Z}) = \mathcal{R}(D(A)/\mathcal{R}(D(A))) = 0$. \diamondsuit

References

- [1] BETSCH, G.: Embedding of a near-ring into a near-ring with identity, Near-rings and Near-fields (editor G. Betsch), Elsevier Science Publishers, North-Holland (1987), 37 40.
- [2] DE LA ROSA. B. and HEYMAN, G.A.P.: A note on radicals and the Dorroh extension, Archiv. Math. 42 (1984), 516.
- [3] DORROH, J.L.: Concerning adjunctions to algebras, Amer. Math. Soc. Bull. 38 (1932), 85 – 88.
- [4] VELDSMAN, S.: An overnilpotent radical theory for near-rings, J. Algebra 144 (1991), 248 - 265.
- [5] WIEGANDT, R.: Near-rings and radical theory, Near-rings and Near-fields, Proc. San Benedetto del Tronto Conf., September 1981, 49 – 58.