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Abstract.We prove: If f is a real-valued continuously differentiable function
with period 27 and fozw f(z)dz = 0, then

6 2r
— max f(z)? < / f(z)?dz,
0

mo<z<L2T

and, if z1,...,2n(n > 2) are complex numbers with Z::l z = 0, then

n

12n

e B e LD DS
- - k=1

where zp 11 = z1. The constants 6/7 and 12n/(n? — 1) are best possible.

1. Introduction

In 1916 a remarkable result of W. Wirtinger, which compares the
integral of a square of a function with that of the square of its first
derivative, was published in W.Blaschke’s book “Kreis und Kugel” |2,
p. 105
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Theorem A. Let f be a real-valued function with period 2m and
2T f()dz = 0. If f' € L?, then

2m 2m
(1.1) f(z)?dz < i f'(z)*dz

0
with equality holding if and only if
f(z) = Acos(z) + Bsin(z) (A,B €R).

The following discrete analogue of Wirtinger’s inequality was proved
for the first time in 1950 by I.J. Schoenberg [11].

Theorem B. If z;,...,2,(n > 2) are complez numbers with 3y _, zx =
=0, then . .

L g T
(1.2) 4 sin® =~ kz_:l |22 < § |21 — 2k,

where zpy1 = 21. Equality holds in (1.2) if and only if zp = Acos 2—#— +
+Bsin—22—k, (k=1,...,n; A,B €C).
Theorem A and Theorem B have evoked the attention of many mathe-
maticians and in the past years different proofs, intriguing extensions
and refinements as well as many related results were discovered [1 — 13];
see in particular [1], [8, pp. 141 — 154] and the references therein.

The aim of this paper is to present variants of inequalities (1.1)
and (1.2). More precisely we shall answer the questions: What is the
best possible constant « such that

2m
2 12
aog?gwf(x) < i fi(z)*dz

holds for all real-valued functions f € C?! fulfilling the conditions of
Theorem A; and what is the best possible constant 3, such that

n
2 2
< —
B 355, 11" < Dl = 2
- - k=1

is valid for all complex numbers z1,..., 2, satisfying the assumptions
of Theorem B? Furthermore in both inequalities we determine all cases
of equality.
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2. The continuous case

In this section we establish a counterpart of Wirtinger’s inequality
(1.1).
Theorem 1. If f is a real-valued continuously differentiable function
with period 27 and fO% f(z)dz =0, then

6 2w
(2.1) — max f(z)?< f'(z)*de.

m0<<ze<2m 0

Equality holds in (2.1) if and only if

f(z) =c[3(3=L

where ¢ 18 a real constant.

— ¥ —1] (0<z<2n)

Proof. We may assume

2 2
Oéralgaé)gwf(m) flzo)* >0, 0<zo<2m

Then we have the following integral identity:

(2.2) /z:"“"[f'(w) ~ 3 o 7r)]2dz =

f(zo) =2
_ To+2m f’(.’ll) 2 B 6 o427 , B B
- /zo [f(ﬂvo)] d 72 f(zo) /zo fi(z) (z — 20 — m)dz+
9 zo+2w 1 To+27 , 6
), Emmemde= o [T e 2

where the third integral of (2.2) has been calculated by integration by
parts and by using the assumptions f(zo)= f(zo +27) and
fzz0°+2” f(z)dz = 0.

Hence we obtain

2T N2 RARe 6 2
= > — )
A fi(z)*dz /;,,-0 fi(z)*dz > — Oénzz;)%,rf(m)
We discuss the cases of equality. Let f(z) =c¢ [3(%)2 —-1] (0 <
<z < 2m;c € R). Simple calculations reveal that f? attains its maxi-
mum at 0 which implies




86 H. Alzer

24:02 6 2
T __;;Oégggwf(m).

2w
BOLE

If equality holds in (2.1) then we obtain from the identity above:

() = 3f7(r‘;f°)(m —zg—1) (20 < < 30 +27)
which leads to
() = 3’;(:20)(95 —zo—mP+c (¢ €R).
Setting z = zp we get ¢/ = — f(z¢); thus we have

() = %f(xo)[:—z(:z: —wo—nP =1 (30 <z < o +27)

or
3 f(zo)[3(F=2ET)2 1], 0<z <o

f(z) =

FF(o)B(2=%=") — 1], @ <z < 2m
Since f is differentiable at zo € [0,27) we conclude zo = 0; this yields

r— T

f@) =3/ BETP -1 (0<a<om). o

™

3. The discrete case

Now we provide a variant of Schoenberg’s inequality (1.2), respec-
tively a discrete analogue of (2.1).
Theorem 2. If 2z,...,z, (n > 2) are complez numbers with
Yorey 2k =0, then

12n . . w 0
w1 2 e S 2 e — sl
- = k=1

(3.1)

where zny1 = z1. Equality holds in (3.1) if and only if

{c[1+6(_kTL)M], 1<k<r-—1,
Zp =

n?—1

6[1+M@:ﬂ], r<k<n,

n2—1
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where r € {1,...,n} and c is a complez constant.

Proof. Let maxi<k<n |2k| = |zr| > 0. Using the assumptions zn41 =
= z; and )_;_, z& = 0 we obtain after several elementary (but tedious)
calculations the following identity:

(3.2) Z_:

k=1

2.
k=r

zpg1 —2zr 12(k+n—r)—6(n—1)2

nz, n(n? — 1)

zkt1 — 2k 12(k—r) —6(n — 1)2
n(n? —1)

ZE41 — 2k 2 36

n r—1
= + 2k +n—2r 4+ 1)%+
= nz, [n(n? — 1)]? {;( )

+ " (2k‘—n—2r+1)2} %}2—— { Z(zk'H_

k=r

—zk)(2k+n—2r+ 1)+ l i(zk+1 —zk)(2k —n —2r + 1)} =

12
= n2|z 2 & Z |21 — —1)

~ n(n?

which implies

: 12n
Z |zpe1 — zk)? > max |zx|?.

—11<k<n
It remains to discuss the cases of equality. Let r € {1,...,n},c €

€ C and let

o[t U=nHnn] k<,

Zp =

o[t 420nfn=n] k<

Then we have
max |zx| = |zr| = [¢]

1<k<n
which leads to

12n
2
E |2k41 — 2k]* = |C| —1.2, |2 *.
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Now we assume that equality holds in (3.1). Then we conclude from
(3.2):

12(k+n—r)—6(n—1)
(3 3) Zk+1 — %k — n(nZ-1) , 1<k<r-—1,
. nz, 12(’6;‘(72;_61(;1-—1), r S 3 S .

Let 1 <k < r; because of 2,41 = z; we obtéin from (3.3):

n k-1
6(k—r)k+n—r
2=z =Y (41— 2) + D (241 — 2;) = ( n)2(_1 )zr;
j=r =1

and if r < k < n, then (3.3) yields

k—1
6(k—rik—n—r
Zk_z'r:Z(zj-i-l —Zj): ( n)z(_l )zr-
J=r

This completes the proof of Theorem 2. ¢
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