COMPLEX INTERPOLATION AND l_n^1 PROPERTY

Emanuele Casini

Dipartimento di Matematica, Università, 40127 Bologna, Piazza di Porta S. Donato 5, Italia.

Received October 1990

AMS Subject Classification: 46 B 20

Keywords: Uniformly non- l_n^1 , B-convexity, complex interpolation method.

Abstract: We prove that, for a Banach space, the uniform non- l_n^1 property is preserved under Calderon's complex interpolation method.

Introduction

In this paper we prove that for a Banach space, the *uniform* $non-l_n^1$ property is preserved under the complex interpolation method introduced by Calderon [2].

Let X a complex Banach space and B(X) its unit ball, that is $B(X) = \{x \in X : ||x|| \leq 1\}$. We say that X is uniformly $non-l_n^1$ if there exists some $\delta > 0$ such that, for any vectors x_1, \ldots, x_n in B(X) there exists a choice of signs $\varepsilon_1, \ldots, \varepsilon_n(\varepsilon_i = 1 \text{ or } -1)$ such that $\|\sum_{i=1}^n \varepsilon_i x_i\| < n(1-\delta)$ (see [4]).

We say that X is B-convex if it is uniformly $non-l_n^1$ for some integer n ([1],[4]). For n=2, uniformly $non-l_n^1$ spaces are also called uniform non-square.

By (X_0, X_1) , we denote an interpolation pair of complex Banach spaces and by X_s , (0 < s < 1), the intermediate spaces obtained by Calderon's complex interpolation method. We will indicate, as usually,

by $\|\cdot\|_0, \|\cdot\|_1, \|\cdot\|_s$, the norms in X_0, X_1, X_s respectively. We will use, also, some notation of Calderon's paper, in particular we will indicate by F(X) the set of all functions $f: S \to X_0 + X_1$ (with $S = \{z \in C, 0 \le \text{Re } z \le 1\}$), continuous in S, analytic in int S, with $f(j+it) \in K_j$ for j = 0, 1 and with $f(j+it) \to 0$ as $|t| \to \infty$.

Main result

Theorem. If X_0 or X_1 is uniformly non- l_n^1 then X_s is uniformly non- l_n^1 for every $s \in (0,1)$.

Proof. Suppose that X_0 is uniformly non- l_n^1 and, by absurdity, that X_s is not uniformly non- l_n^1 . This means that for every $\sigma > 0$ there exist $x_1, \ldots, x_n \in B(X_s)$ such that $\left\|\frac{1}{n}\sum_i \varepsilon_i x_i\right\| \geq 1-\sigma$ for every choice of $\varepsilon_i = \pm 1$. For a fixed $\eta > 0$ there exist functions $f_i \in F(X)$ satisfying

$$f_i(s) = \frac{x_i}{1+\eta} = x_i';$$

b)
$$||f_i|| = \max_{j=0,1} (\sup_{t \in \mathbb{R}} ||f_i(j+it)||_j) \le 1(i=1,2,\ldots,n).$$

For every choice of $\varepsilon_i = \pm 1$ we define

$$E_{\varepsilon_1...\varepsilon_n} = \{t \in \mathbb{R} : \|\frac{1}{n} \sum_{i=1}^n \varepsilon_i f_i(it)\|_0 < 1 - \delta\}$$

(where δ is taken from the definition of uniformly non- l_n^1 of X_0). We will use the following inequality (see [2] p.117):

$$\lg(\|\frac{1}{n}\sum_{i}\varepsilon_{i}x_{i}'\|_{s}) \leq \int_{-\infty}^{+\infty} \lg\|\frac{1}{n}\sum_{i=1}^{n}\varepsilon_{i}f_{i}(it)\|_{0}\mu_{0}(s,t)dt + \int_{-\infty}^{+\infty} \lg\|\frac{1}{n}\sum_{i=1}^{n}\varepsilon_{i}f_{i}(1+it)\|_{1}\mu_{1}(s,t)dt$$

where $\mu_j(s,t)(j=0,1)$ is the Poisson kernel for the strip. In our case we obtain:

$$\lg \frac{1-\sigma}{1+\eta} \leq \int\limits_{E_{\epsilon_1...\epsilon_n}} \lg \|\frac{1}{n} \sum_{i=1}^n \varepsilon_i f_i(it)\|_0 \mu_0(s,t) dt +$$

$$+ \int_{E_{\varepsilon_{1}...\varepsilon_{n}}} \lg \lVert \frac{1}{n} \sum_{i=1}^{n} \varepsilon_{i} f_{i}(it) \rVert_{0} \mu_{0}(s,t) dt +$$

$$+ \int_{-\infty}^{+\infty} \lg \lVert \frac{1}{n} \sum_{i=1}^{n} \varepsilon_{i} f_{i}(1+it) \rVert_{1} \mu_{1}(s,t) dt.$$

But since for every $t \in \mathbb{R}$: $\|\frac{1}{n}\sum_{i=1}^{n} \varepsilon_{i}f_{i}(j+it)\|_{j} \leq 1$ (j=0,1), we obtain $\lg \frac{1-\sigma}{1+\eta} \leq (1-s)|E_{\varepsilon_{1}...\varepsilon_{n}}|\lg(1-\delta)$ (where we set $|A| = \frac{1}{1-s}\int_{A}\mu_{0}(s,t)dt$) that is $\frac{1-\sigma}{1+\eta} \geq (1-\delta)\exp\{(1-s)|E_{\varepsilon_{1}...\varepsilon_{n}}|\}$ and, being $\eta > 0$ arbitrary, we obtain $\sigma \leq 1 - (1-\delta)\exp\{(1-s)|E_{\varepsilon_{1}...\varepsilon_{n}}|\}$.

If we choose $\sigma = 1 - (1 - \delta) \exp(\frac{1-s}{2^{n+1}})$ we must have $|E_{\varepsilon_1...\varepsilon_n}| \le 1/2^{n+1}$. This implies that $|\bigcup E_{\varepsilon_1...\varepsilon_n}| \le 1/2$ that is $(\bigcup E_{\varepsilon_1...\varepsilon_n})^c \ne \emptyset$ (where the union is taken over all choices of signs). But this is a contradiction since X_0 is uniformly non- l_n^1 , so our theorem is proved. \diamondsuit Corollary 1. If X_0 or X_1 is B-convex, then X_s is B-convex for every $s \in (0,1)$.

We also obtain the following result already proved in [3]: Corollary 2. If X_0 or X_1 is uniformly non-square then X_s is uniformly non-square.

References

- [1] BECK, A.: A convexity condition in Banach spaces and the strong law of large numbers, *Proc. Amer. Math. Soc.*, 13 (1962), 329 334.
- [2] CALDERON, A.P.: Intermediate spaces and interpolation, the complex method, Studia Math. 24 (1964), 113 190.
- [3] CASINI, E. and VIGNATI, M.: The uniform non-squareness for the complex interpolation spaces, J. Math. Anal. Appl., 164 (1992), 518 523.
- [4] JAMES, R.C.: Uniformly non-square Banach spaces, Ann of Math. 80 (1964), 542 550.