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1. Introduction

In describing the structure of certain types of algebraic systems,
also such “radicals” which are not Kurosh—-Amitsur radicals, may play
an important role, for instance this is the case in the theory of near—
rings, groups and lattice-ordered groups. Thus it seems to be useful to
revisit the connection and interrelationship among the various notions
of (not necessarily Kurosh-Amitsur) radicals.

The purpose of this paper is to analyse the concept of a radical
of an arbitrary universal class A of not necessarily associative rings or
Q—groups, in particular near-rings. For the sake of simplicity we shall
refer to the objects of A as rings. Let us recall that a universal class
A of rings is one which is closed under taking ideals and homomorphic
images. At this point we may mention that our investigation could be
carried out on an even higher level of abstraction by taking arbitrary
universal algebras for rings and congruence relations for ideals — this
basis was selected by Hoehnke for his work in [3].

Our analysis is carried out progressively along the sequence:

preradical — quasi-radical — radical

A Kurosh-Amitsur radical r of Ais afunction A — A4, A — rA<4
which satisfies the following conditions:
(A) for every homomorphism f: A — fA, (A€ A), frA CrfA,;
(B) r(A/rA) =0 forall A € A4;
(C) foral Aec A: (IaAandrl =1)=ICr4;
(D) forallAec A: rrA =rA.
A function r : A — rA a4 A which satisfies (A) is called a preradical
(of A). A preradical r which satisfles (B) is called a quasi-radical (also
a Hoehnke radical due to [3]). A preradical r which satisfies (C) resp.
(D) is said to be complete resp. idempotent. Connections between
preradicals and (hereditary) quasi-radicals were first investigated by
Michler in [8]. (Cf. also [9].) We follow a different line of approach.
The basic technique in our analysis is that of definition through
intersection of ideals with the focus on basic properties of the sets of
ideals to be intersected. For this purpose we employ the notion of an
isolator (cf. our Def. 1, and [1]), and we impose various conditions
on isolators, these conditions (stable, transferring, 0-extending) being
generalizations of well-known properties of the set of semiprime ideals
in an arbitrary associative ring (cf. definitions 2-4). We attempt to
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emphasize isolators as “concrete preradical definers” on the one hand,
and “tangible mediators” between quasi-radicals and their semisimple
classes, on the other. Qur analyses culminate in three sequences of
one-to—one correspondences (cf. corollaries 1-3) of the form:

re— A e—S

where r, A and S represent specific types of quasi-radicals, maximal
stable isolators and subdirectly closed classes respectively.

As an application (section 5) we recover the three well-known nil-
based radicals within our framework by giving new characterizations of
these radicals in terms of natural cardinality conditicns.

2. Quasi—radicals

We start off our analysis of the concept of a radical by defining
our basic instrument.
Definition 1. An isolator A is a function which assigns to every ring
A (in A) a set A(A) of proper ideals of A satisfying the condition:
() if f: A — fA is any homomorphism, then for every K € A(fA)

there exists an I € A(A) such that fI C K.

It easily follows that the following sets of proper ideals in an arbitrary
associative ring A define isolators:

n(A) : the prime ideals;

II(A) : the prime maximal ideals;

p(A) @ the maximal ideals;

o(A) : the semiprime ideals;

k(A) : the quasi-semiprime ideals, (cf. [2]).
Proposition 1. If A is an isolator then the assignment A — rA =
=N(I € A(A)) is a preradical.
Proof. Let f : A — fA be any homomorphism. Then frd = f(N(I €
e A(4)) C N(fI : I € A(A)). Using (a) we get frA C N(K €
€ A(f(A))) =rfA. O

The preradical defined by the assignment A — rA = N(I € A(A))
will be referred to as the-preradical genérated by A. As to a converse
to Prop. 1 we note that every preradical is trivially generated by an
isolator: Let r be a preradical and define the function A by A(A4) :=
:={P<aA:rAC P} ThenrA=n(P € A(A)) forall A. Let f: A —
— fA be any homomorphism, and i € A(fA). Then frA CrfA C K
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and we have that (a) is satisfied with I = rA. Hence A is an isolator
which generates r.

Our first condition on isolators is the one in:
Definition 2. An isolator A may be called stable if it satisfies the
condition: '
(B) if f: A — fAis any homomorphism, then for every I € A(A) with

ker f C I there exists a K € A(fA) such that K C fI.

There exist isolators which are not stable. We construct such an iso-
lator: Let n be a positive integer > 2. Then the assignment 7@ : A —
— 7iA := {a € A : na = 0} is a preradical. Define the function A by
A(A) := {mA:m > n and n|m}. Then A is an isolator, and it gener-
ates m. However, A is not stable. For let us consider f : A — A/mA,
and I =mA =ker f. Now if K € A(fA) and K C fI, we must have
that K = 5(A/fA) = nA for some s > n with n|s. This implies that
{a+7A:a € 35mA} =TA, ie. BA = 3nA, which is in general not true.
Thus we have that A is not stable.

We note here (cf. [1]) that a function A assigning to every ring A
a set A(A) of proper ideals of A, and satisfying:

(x) for all A and every homomorphism f : A — fA, the assignment
P — fP defines a bijection {P € A(A) : ker f C P} — A(fA),
satisfies (o) and (8), and hence it defines a stable isolator. In particular,
if P is any abstract property of rings and the function A is defined by

A(A):={P<aA:A/P has property P}

then A satisfies condition (x), because by the isomorphism A/P =
= fA/fP there is a bijection between {P € A(A) : ker f C P} and
A(fA). (It is easy to construct a stable isolator which does not satisfy
(x)-) It now easily follows that the isolators listed above are stable.
Moreover, every preradical gives rise to a stable isolator. This is:
Proposition 2. If r is a preradical then the assignment A — A(A) =
={I<A:r(A/I) =0} is a stable isolator.
Proof. Let f be a homomorphism, and fK € A(fA). Then r(A/K) =
= r(fA/fK) = 0 shows that K € A(A), and (o) is satisfied. The
validity of (8) follows in a similar way. ¢

Quasi-radicals and stable isolators stand in a very special rela-
tionship with one another. This is:
Theorem 1. Let r be a preradical. Then r is a quasi-radical if and
only if r is generated by a stable isolator.




A concrete analysis of the radical concept 7

Proof. Suppose that r is a quasi-radical. Then r(R/rR) =0 for all R:
This shows that for an arbitrary ring A, N(I <A : r(4/I) = 0) C rA.
On the other hand, if I <« A such that r(A/I) = 0 then the natural
homomorphism A — A/I induces that rA — r(A/I) = 0, so that
rA C I. Thus we have that rA =N(I <A : r(A/I) = 0), and it remains
to show that the function A defined by A(4) = {I<A:r(A/I)=0}is
a stable isolator. This follows by Prop. 2.

Conversely, suppose that r is generated by a stable isolator A. Let
A be an arbitrary ring and consider f : A — A/rA. Now r(A/rA) =
=rfA:=0(K € A(fA)). Using (8) and (o) we get r(4/rA) CN(fI:
I € A(A),rA C I) = N(fI : I € A(4) = nI/n({I €
€A(A):TeA(A)=0. ¢

The preradical r in Prop. 2 and the quasi-radical implied there in

view of Th. 1, say s, are comparable
Proposﬂ:mn 3. rA C sA for all rings A.
Proof. Let I « A such that r(A/I) = 0 and f the natural homo-
morphism A — A/I. Then frA C r(A/I) = 0, and this together
with frA = (rA + I)/I shows that rA C I. Thus we have that
rACNI<A:r(A/I)=0)=3sA. {

Referring back to our list of well-known stable isolators we recall
the fact that N(I € 7(4)) = N(I € o(A)). This implies that a given
quasi-radical may be generated by different stable isolators. In terms
of the partial order on 1solators defined by “A < A’ & A(4) C A'(4)
for all A” we have: :
Proposition 4. If r s a quasi-radical then the function A defined by
A(A) = {I<A:r(A/I) =0} is a stable isolator such that A satisfies
condition (x) and the quasi-radical generated by A is r. Moreover, if A
is any stable isolator generating the same quasi-radical v, then A < A.
Proof. The first claim was already verified in the proof of Th. 1. Let
us therefore consider any stable isolator generating r. Let A be an
arbitrary ring, and I € A(A). Applying (8) to A — A/I we find that
K :=0¢€ A(A/I). Since r(A/I) C X/I for all X/I € A(A/I) we have
that r(A/I) =0,i.e. I € A(A). Hence A <A. ¢

The unique maximal stable isolator A corresponding to the quasi-
radical r will be referred to as the mazimal generating isolator for r, and
denoted by A[r], or just by A where no ambiguity can occur. For any
given quasi-radical r, A[r] has another unique feature, as is exhibited

in the following characterization.
Proposition 5. Let A be a stable isolator. Then A = A[r] for some
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quasi-radical r if and only if A satisfies the condition:

() VA(T C A(4)) = NI €T) € A(4))

Proof. Suppose A = A for a quasi-radical r. Let A be an arbitrary
ring and I' € A(A); and consider K := N(I € T"). Using (B) for A we
get

r(A/K) = N(M/K € A(A/K)) =
=N(M/K:KCMeA(A)CnI/KeT)=0.

Thus we have that N(I € T') = K € A(4) = A(4).

Conversely, let A be a stable isolator satisfying (¢), and r the
quasi-radical generated by A. Then A < A. Let P € A(A). Then
r(A/P)=0. This implies (since A generates r) that N(I/P € A(A/P))=
= 0, and this in its turn implies that N(I : I/P € A(A/P)) = P.
By (a), for each I,/P € A(A/P) there is an M, € A(A) such that
M,/P C I,/P. Set T := {M,}. Then we have N(M, € T') C
cn(I:I/Pe A(A/P)) = P. By (), for each M, € T there is
an L,/P € A(A/P) such that L,/P C M,/P. Hence P =
=N :I/P € A(A/P)) CNL, C N(M €T). Thus we have shown
that P = N(M € I'); and condition (¢) yields P € A(A4). Hence A < A;
and the equality A = Alr| follows. ¢

A quasi-radical is, as mentioned in the introduction, just a
Hoehnke radical. It is known from [3] that there is a one-to-one cor-
respondence between quasi-radicals and subdirectly closed classes: if
r is a quasi-radical then the class S, := {4 € A : r4 = 0}, (which
is usually called the semusimple class of the quasi-radical r), is closed
under taking subdirect sums; and if S is a subclass of A being closed
under subdirect sums, then the assignment r : A — rA defined by
rA=N(I<A: A/I €8) is a quasi-radical with semisimple class S. In
view of this and Th. 1 and Prop. 4 we have:

Corollary 1. There exist one—to—one correspondences r «— A +—— S
between quasi-radicals v, mazimal stable 1solators A, and subdirectly
closed classes S.

An example: f: A — fA = NP € n(A4)) = N(S € o(4))

is a quasi-radical. (f is the well-known prime radical for associative

rings.) Using Prop. 5 together with well-known properties of prime and
semiprime ideals, we see that m # A[f] while o = A[A].



A concrete analysis of the radical concept 9

3. Complete quasi-radicals

In this section we carry our analysis one step further: we consider
those preradicals satisfying conditions (B) and (C) stated in the intro-
duction, i.e. the complete quasi-radicals. For this purpose we shall
need a further condition on isolators:

Definition 3. An isolator A may be called transferring if it satisfies
the condition:

(v) if P € A(A) and I < A with PN T # I then there exists a K <1,

K # I, such that PNI C K and K € A(]).

Of the five examples of isolators listed in section 2, the first four are
transferring. In fact, in the case of any A € {m, 11, p, 0}, well-known
properties of the ideals concerned show that (P € A(A), I<4, PNI # I)
implies that P NI € A(I), and (v) is satisfied with K’ = PN I, The
isolator &, however, is not transferring, e.g. if A is a ring with identity
and having a nilpotent ideal N # 0, the N(P € &(4)) = 0, so that
PN N # N for at least one P € £(A), though x(N) = 0. (Cf. [2].)

A basic relationship between transferring isolators and complete
quasi-radicals is exhibited in:

Theorem 2. The following three conditions on a quasi-radical r are

equivalent:

(1) r is complete;

(2) the mazimal generating isolator A= A [r] of r is transferring;

(3) the semisimple class S, of r is regular, i.c. 0#£IaA€S,)=
= (3 K aI such that 0 # I/K € S;).

Proof. (1) = (2): Assume that A is not transferring. Then there is a

P ¢ A(A) and an I <« A with PN I # I such that AI/(PNI))=0.

The latter implies that r(I/(I N P)) = I/(I N P), and hence we get

r((I + P)/P) = (I + P)/P. From the completeness of r it follows that

(I + P)/P C r(A/P) =0, giving the contradiction I & P. Hence A is

transferring.

(2) = (3): Let A be a ring with r4 = 0, and 0 # I 14 A. From
rA = 0 and the maximality of A it follows that 0 € A(A). Since A
is transferring, there exists a K «I, K # I such that K € A(I), ie.
r(I/K) =0.

(3) < (1): has been proved in Prop. 2.2 of [7]. ¢

In the structure theory of O-symmetric near-rings the most im-
portant quasi-radical assignments are J, : A J,(A),v=0,1,2. It
is known that Jo < J1 < J2, that Jp and J1 are complete but not




10 B. de la Rosa, J. s. van Niekerk, R. Wiegandt

idempotent, (cf. [4]), and J2 is a Kurosh—Amitsur radical. For any
ring A, Jo(A) = J1(A) = J2(A) is the usual Jacobson radical. For
details we refer to [6]. By Th. 2 we have:

Corollary 2. There exist one—to—one correspondences r «—— A «— S
between the complete quasi-radicals r, the mazimal stable transferring
1solators A, and the regular subdirectly closed classes S.

Remark: Applying our Th. 2 and Th. 1.2 of [7] to the property “the
quasi-radical r is complete”, and translating into the language of isola-
tors, we get: If A is an isolator satisfying condition () and generating
the quasi-radical r, then A is transferring if and only if the maximal
stable isolator Afr] is transferring.

4. Idempotent complete quasi—radicals

We now proceed to isolating the (Kurosh—-Amitsur) radicals from
among the preradicals. First we shall briefly look at idempotent pre-
radicals.

Proposition 6. Let A be an isolator generating the preradical r. r
is idempotent if and only if A(rA) = 0 for all A € A. (The proof is
straightforward.)

Proposition 7. Let r be a quasi-radical and A the corresponding
mazimal stable isolator. The following conditions are equivalent:

(1) r is idempotent,

(2) A(rA) =0 for all A € A,

(3) r(rA/M) # 0 for all A € A and all proper ideals M of rA.
Proof. (1) = (2): this follows from Prop. 6.

(2) = (3): If r(rA/M) = 0 for a proper ideal M of A, then
M € A(rA), contradicting (2).

(3) = (1) If r is not idempotent, then rrA # rA for some A €
€ A. Since r is a quasi-radical, for M = rrA we have r(A/M) = 0,
contradicting (3). ¢

Another criterion for the idempotence of a quasi-radical has been
given in Prop. 2.4 of [7].

The quasi-radical r determined by « is (as has already been indi-
cated) not complete. It is, however, idempotent because: for any ring
Aand I<A, rI D INTA (cf. 2], Lemma 4.6), and, setting [ :=rA, we
haverADrrA DrANrA =rA.
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For O0-symmetric near-rings the isolator 7 defines an idempotent
quasi-radical, called the prime radical. As it has been shown in [5], this
prime radical is not a Kurosh-Amitsur radical, so it is not complete,
and 7 is not transferring.

The independence of being complete and being idempotent has
been exhibited also in examples 1 and 2 of [7].

We shall need one more condition on isolators:

Definition 4. An isolator A may be called 0-eztending if it satisfies
the condition:

(6) if T€A(A) and 0€ A(I) then 0€ A(A).

The best—known example of a 0-extending isolator is the isolator o
isolating the semiprime ideals in an arbitrary associative ring. As one
easily sees 7 is not O—extending, though it generates the same preradical
as 0. Also the isolator p is not O—extending.

For the purposes of our next result we shall need a further con-
struction. We consider an arbitrary fixed preradical r and define a
function

UV:A— VU(A):={PaA: (@A and TQ:Q)=>Q§P},

and then a function r' : A — A := N(P € V¥(A)). It is easy to see
that ¥ is an isolator, and hence r' is a preradical. Moreover, if A is
a transferring isolator generating r, then A < V. In this notation we
have:

Theorem 3. The following three conditions on a complete quasi—
radical v are equivalent:

(1) 7 is wdempotent (and hence a Kurosh-Amaitsur radical);

(2) for all A, rrA 4 A; and A = A[r] is O-eztending;

(3) for all A, rrA< A and rA =r'A.

Proof. (1) = (2): Since rrA = rA, rrA < A. Let I € A(A) and
0 € A(I), and assume that 0 ¢ A(A4), i.e. rA # 0. By the completeness
of r it follows that (rA + I)/I C r(A/I) = 0. Hence 0 # rA C I,
contradicting rI = 0. It follows that A is 0—extending.

(2) = (3): Assuming (2) we prove that rA = r'A. From
r((A/rrA)/(rA/rrA)) = r(A/rA) = 0 we see that rd/rrA €
€ A(A/rrA)), and it is clear that 0 € A(rA/rrA). Hence (2) implies
that 0 € A(rA/rrA). This gives the inclusion rA C rrA, and we have
that rrA = rA. This equality shows that rA C T for all T € ¥(A),
so that rA C r'A. On the other hand, if P € A(A) and Q < A with
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rQ = Q, it follows by the completeness of r that QQ CrA CP, so that
P € Y(A). Hence r'A C rA; and now r4 = r' 4 follows.

(3) = (1): Let Q 9 A such that rQ = Q. Since r is complete,
Q@ C rA. Since now Q a4, it follows (again by the completeness of r)
that @ C rrA. Hence it follows that rrA € ¥(A). We now have that
r'A CrrA CrA =r'A, showing that rrA = rA. O

Our final observation in this section comes in view of Th. 3 and
known facts about the semisimple classes of Kurosh—-Amitsur radicals
(cf. [10]). This is:
Corollary 3. There ezist one~to-one correspondences r «—— A «—— S
between Kurosh-Amitsur radicals r, those mazimal stable transferring
0-eztending isolators A for which rara A< A for all A, and those subdi-
rectly closed, reqular, extensionally closed classes S for which rsrs A< A
for all A, where vy and rg represent the quasi-radicals associated with
A and S respectively.

5. An application — the nil radicals

In this final section — by way of an application — we use the

isolator approach to construct a single formula function which yields the
three classical nil radicals — the prime radical 8, the locally nilpotent
radical £ and the nil radical M. We confine our attention here to
associative rings. We shall need the following:
Lemma. A proper ideal S of a ring A is a semiprime ideal iof and only
if every nonzero ideal of A/S has a potent countably generated subring.
Proof. Suppose S is a semiprime ideal of a ring A and let 0 #X/S 4
4A/S. If every countably generated subring of X/S is nilpotent, then
X/S itself is a nilpotent ring. (Suppose X/S is not nilpotent. Then
for every natural number n we may select a sequence rip, rop, ... ,Tnn
in X/S such that 71,79, ...70, # 0. Thus we would have selected a
countable subset of X /S which generates a countable non-nilpotent (i.e.
potent) subring of X/5).** But then X™ C § for some positive integer
m, and this would imply that X C §.

Conversely, suppose that every nonzero ideal of A/S has a potent
countably generated subring. Let X « A such that X2 C S. If X Z S,

**Professor Otto Kegel has on inquiry pointed out this subproof to the first
author in a personal communication in 1981. We are indebted to professor Kegel.
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then (X + 5)/S must have a potent countably generated subring T/S.
But this is impossible since (T//5)? C ((X + §)/5)?2 =0. ¢
We are now in a position to prove the main result of this section.
This is:
Theorem 4. Let A; (1 <4 < 3) be the function defined by
Ai(A) ={P1A,P# A: (P CX<A)= X/P has a potent 8;—-subring}
where the 6; are defined as follows:

01 :  “countably generated”;
62 ;' “finitely generated”;
03 1 “singly generated”.

Then the A; are stable transferring isolators, and they generate respec-
tively the radicals: :

rn=p0: the prime radical;

ro =L : the locally nilpotent radical;

rs =N :  the nil radical.

Proof. Fix any ¢ € {1,2,3}. The stableness of A; is an easy con-
sequence of the remarks following condition (x). To show that A;
is tranferring we verify the stronger condition (P € A;(4), Q < 4,
PNQ#Q)= PNQ e Q) Let 0 # X/(PNQ)1Q/(PNQ).
Then Q/(P N Q) = (Q + P)/P gives us the existence of a nonzero
ideal Y/P = X/(PN Q) in (Q + P)/P. Let Y*/P be the ideal gener-
ated in A/P by Y/P. Then Y*/P has a potent §;—subring, and hence
(Y*/P)® = (v* + P)/P # 0. Hence, since P € A;(A), (Y*/P)?® has
a potent §;—subring. Since by the Andrunakievich lemma (¥*/P)? C
CY/P=X/(PNQ), it follows that PN Q € A(Q).

Having established that A; is stable and transferring we now prove
that the complete quasi-radical r; generated by A; is a radical. We
apply Th. 3. Let once again A be an arbitrary ring. From the lemma
we infer that every P € A;(A) is a semiprime ideal of A. This ensures
that r;r;A 9 A. Suppose that r'A C r; A. Then there exists a T' € V(A)
such that r; A € T. This shows that A;(r;A) 0, i.e., there is a proper
ideal U of r;A such that every nonzero ideal of riA/U has a potent
0;-subring. It follows by the lemma that U is a semiprime ideal of
riA, and we know that r; 4 := N(P € A;(A)) is a semiprime ideal of A.
Hence U is a semiprime ideal of A. Let 0 # X/U<A/U. If r;ANX #£ U
then there is a potent §;—subring in (r;A N X)/U and hence in X/U.
IfriANX =U then (X + r;A)/r; A= X/U. Now X +r;A # r; A and
since r;((X +r;A)/r;A) = 0 there exists a T = r; A € (X +riAd)/r; A,
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so that there is a potent §;-subring in ((X + r;A)/r;A)/(T/r;A), and
consequently there is a potent §;—subring in (X +r;A)/riA. Hence X/U
has a potent §;—subring. It follows that U € A;(4) —a contradiction.

By our construction r; A := N(P € A;(A)) it follows that rnA=A
if and only if A;j(A) = 0. In the case 1 = 1 this means (by the lemma)
that 1A = A if and only if A has no semiprime ideals, i.e. A is a
B-radical ring. In the case i = 2 we note that a locally nilpotent ring A
clearly has Az(A) = 0. On the other hand, let B be aring with Aq(B) =
— (). If B has a potent finitely generated subring (z1,...,Zn), (Wwe may
assume all z; are potent elements), we may, in view of the finiteness,
select a maximal element in the set {C<B : {z1,... ,za} € C}, say M.
But then clearly M must be in Ay(B), contradicting Ay(B) = 0. Thus
we have that ro = £. The same argument applied in the case 1 = 3,
together with the fact that a singly generated subring () of a ring is
nilpotent if and only if z is a nilpotent element, ensures that rs3 = N. 0
Corollary 4. The function I'; defined by

Ti(A) :={I € Ai(A): I 1saprime ideal}

is a stable isolator gemerating the radical v; for i =1,2,3.
Proof. One readily sees that IT'; satisfies condition (x) and therefore
T'; is a stable isolator.

Let B be a prime ring such that r; B = 0. This means exactly that
every nonzero ideal of B has a potent §;—subring. Since r; = f LN
are special radicals, every ring A with r;A = 0 is a subdirect sum of
prime rings Bo with r; B = 0. Thus for a ring A the condition

$; A = ﬂ(P - Fi(A)) =0

is equivalent to r; A = 0. Moreover, by I'; < A it follows that r; X C s;X
for every ring X. Now suppose that r;X # 8;X for aring X. Then we
have

si(siX/[riX) = ri(s; X/riX) =0,

which implies that r; X is an element of the maximal stable isolator gen-
erating the quasi-radical s;. Hence s;X C r; X follows, contradicting
the assumption. ¢

The natural cardinality considerations in Th. 4 seem to explain
the imperturbable monopoly that 3, £ and N have maintained on the
lower end of the chain of useful concrete radicals.
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