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Abstract: In this paper we describe three methods of constructing the gen-
eral solution of the functional equation f(z)f(~1/Z) = —1 and we discuss a

few examples. The paper ends with a simple uniqueness theorem.

The functional equation

1) f(2)f(=1/z) = -1

occurs in astrophysics (cf. [4]). Here the unknown function f maps the
complex plane punctured at zero C* := C\ {0} into itself and relation
(1) (7 denotes the complex conjugate of z) is assumed to hold for all

z € C*.
Write

(2) h(z) = -1z = —z/|z|*, zeC*.
The function h : C* — C* is an involution
(3) h(h(z)) ==z, z€C*,

without fixed points (of order 1). With the aid of (2) equation (1) can
be written in the form
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(4) f(h(z)) = (f(2)), =zeC".

Relation (4) expresses the permutability of the functions f and h.

In this paper we describe three methods of constructing the gen-
eral solution of equation (1) and we discuss a few examples. The paper
ends with a simple uniqueness theorem.

1. The first method of solving (1) follows the pattern described
in [2; Chapter I] (cf. also [1]). Put
5) Dy:={2€C*|Imz>0}U{z€C*|Rez>0, Imz =0},
Dy := {zEC*IImz<0}U{zE(C*IRez<0, Im z =0}.

We have
(6) DiUD,=C*, D;nNDy;=4,

and the function h maps (in a one-to—one manner) D; onto Dy and
conversely:

(7) WD) =Dy, h(Dy)=D;.

Let F : D; — C* be a quite arbitrary function and define the
function f: C* — C* by the formula

_ F(z)v ZED17
(8) ﬂ”_{hwm@m,zepm

Definition (8) is correct in view of (6) and (7). We are going to show
that function (8) satisfies equation (4) {i.e., equation (1)) on C*. Take
an arbitrary z € C*. According to (6) either z € Dy or z € D,. In the
former case we have by (8) f(z) = F(z) so that h(f(z)) = h(F(z)), and
by (7) h(z) € D,, whence, again by (8),

f(h(2)) = RIF(R(R(2)))] = (F(2)) = h(f(2))
(cf. (3)). Consequently relation (4) holds true.
When z € D,, then h(z) € D1, and we obtain using (8) and (3)
h(f(2)) = h[M(F(R(2)))] = F(k(2)) = f(~(2)) .

Thus (4) holds in this case, too.
It is clear that taking in formula (8) all possible functions F' :
: D, — C* we obtain all solutions f : C* — C* of equation (4). (In
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order to get a given solution f of (4) one takes F' = f|D;.) Thus we
have, since equations (1) and (4) are equivalent.

Proposition 1. With notation (2) and (5), for every function F :
: Dy — C* the function f defined by (8) satisfies functional equation
(1), and all the solutions f : C* — C* of (1) may be obtained in this
manner.

Thus formula (8) yields the general solution f : C* — C* of
equation (1), the function F playing the role of a parameter. We say
(see [2] or [3]) that the general solution of (1) depends on an arbitrary
function.

It is readily seen from (8) that equation (1) has a lot of very
irregular (e.g., discontinuous or nonmeasurable) solutions: to obtain
them it is enough to take in {8) an irregular F. We shall return to the
problem of the regularity of solutions of (1) later in this paper. Here
we observe only that if the function F' : D; — C* is continuous on D4
and, moreover, for real negative zp it fulfils the condition

_lim  F(z) = h(F(-=)),

then the solution f of equation (1) obtained from formula (8) is con-
tinuous on C*. Thus also in the class of the continuous functions
f : € — C* the solution of equation (1) depends on an arbitrary
function.

Remark 1. In this construction instead of sets (5) we could take
arbitrary sets fulfilling conditions (6) and (7) (in the argument we use
only these properties, the particular shape of sets (5) is irrelevant), e.g.
we could take

D, ::{ZE(C|0<|z|<1}U{z€C||z|=1, Imz >0} U {1},
DQV::{zE(Cllzl>1}U{z€C“z]=1,Imz<0}U{—1}.r

The essential thing is that the set D; should contain exactly one point
of every couple {z,h(2)}, z € C* (i.e. of every orbit under A contained
in C*) and D, = C* \ D;. )

2. The second method of constructing the general solution of (1)
is that of the linearization. Its general principles are explained, e.g.,
in [3; p. 5], but the details must be worked out separately in every
particular case.

First we define a function o : C* — C* by the formula
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z, z € Dy,
9 =
© o(2) { 1/z=z/|2|?, z€ Dy,

where the sets D; and D; are given by (5). The direct verification
shows that o satisfies for all z € C* the functional relation (the Schréder
equation; cf. [2], [3])

(10) olh(z)] = —a(z).

Moreover, o is invertible. Indeed, suppose that for some u,v € C* we
have

(11) o(u) = a(v).

By (5) and (9) we have 0(D1) = Dy, o(D2) = D, and (11) implies
according to (6) that the points u and v must both lie in the same set
D;. In other words, either u,v € Dy, or u,v € D;. In the former case,
in view of (9), relation (11) turns into

(12) u=v,

while in the latter case (11) yields 1/u = 1/v which again is equivalent
to (12). Thus for arbitrary u,v € C* relation (11) implies (12), which
means that the function o is invertible, as claimed.

Consequently there exists the function ¢™! : C* — C*, inverse to
o, and by virtue of (10) it satisfies on C* the functional equation

(13) o Y =2) = h(o7(2)).
Let 9 : C* — C* be an arbitrary odd function:

(14) Y(—z) = —(z), zeC",
and define the function f : C* — C* by the formula
(15) fz) =7 P(o(2))], zeC*.

Function (15) satisfies equation (4) (or, equivalently, equation (1)) on
C*. In fact, according to (15), (10), (14) and (13), we have for arbitrary
z€C* '

F(h(2)) = o7 (o (h(2))] = 0 [$(=0(2))] =
=0 [~(a(2))] = hlo T (¥(a(2)))] = h(f(2)).

Conversely, if a function f : C* — C* satisfles equation (4) (i.e., (1))
on C*, then it can be written in form (15), where ¥(z) := o[f(071(2))]
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is an odd function by virtue of (13), (4) and (10). Thus we have the
following .
Proposition 2. With notations (5) and (9), for every odd function
¥ : C* — C*, the function f defined by (15) satisfies the functional
equation (1), and all the solutions f: C* — C* of (1) may be obtained
in this manner.

Remark 2. In this construction function (9) could be replaced by an
arbitrary other particular invertible solution & : C* — C* of equation
(10). There exist many such solutions (the general invertible solution
o : C* — C* of (10) depends on an arbitrary function) and any one
of them can be used here. The argument depends only on (10) and
on the invertibility of o and not on the particular shape of function
(9). However, we have been unable to find a more regular invertible
particular solution of equation (10) on C*.

Formula (15) yields the general solution of equation (1) on C*.
Unavoidably, also this formula contains an arbitrary (odd) function as
a parameter. Formula (15) is more elegant and looks more agreeable
than formula (8) but its disadvantage is that — due to the peculiar
shape of the function ¢ — it is rather difficult to deduce from (15) the
regularity properties of f. From this point of view the third method of
solving (1), which we are now about to explain, seems most promising.

3. The third method of constructing the general solution of equa-
tion (1) is not new either (cf., e.g., [2, p. 148]), but I know of no place
where it would be explained in a more general setting.

Let fo : C* — C* be a particular solution of equation (1) on C*
and let g : C* — C* be an arbitrary function. Put

(16) f(2) = fo(2)9(2)/ 9(h(2)), =eC*.
We have by (2) and (3), since f, satisfies equation (4),
F(1(2)) = fo(R(2))g(h(2))/ 9(2) = h(fo(2))g(h(2))/ 9(2) =

_ () _
= TR0 e = M),

which means that f satisfies equation (4) on C*. Conversely, let f and
fo be arbitrary solutions of equation (4) on C* and let ¢ : D; — C*
(where the sets Dy and D, are given by (5)) be an arbitrary function
tulfilling the condition
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(17) [p(2))* = f(2)/ fo(2), z€C".
We define the function g : C* — C* by the formula
90(2)7 z € D17
18 z) = -
(18) 9(=) {1/(p(h(z)), 2 € D,.

For z € D; we have by (7) h(z) € D3, and according to (18)
and (3)

9(2) = ¢(2), g(h(z)) =1/ 0(2), g(h(2)) =1/(2)
so that g(2)/ g(h(2)) = [#(2)]* and by (17)

(19) 9(2)/ g(h(2)) = f(2)/ fo(2).
For z € D, we have by (7) h(z) € Dy and according to (18)

9(z) =1/ ¢(h(2)), g(M(2)) =¢(h(2)), g(h(2)) = ¢(h(2)),

whence we obtain by virtue of (17), and (2), since both f and fo satisfy
equation (4),

o(2)/ ) = 1/ [(WE)] = U/ TOENE = FolW(=)/ FAG=)) =
= B(R(/ FFED) = @)/ fol#),

i.e. again we get (19). Consequently relation (19), and thus also relation
(16), holds for all z € C* and we have proved the following
Proposition 3. With notation (2), if fo : C* — C* is a particular
solution of equation (1), then for every function g : C* — C* the func-
tion f defined by (16) satisfies the functional equation (1), and all the
solutions f : C* — C* of (1) may be obtained in this manner.

Taking as fy the simplest possible particular solution fy(2) = 2 of
(1), we obtain from (16) the formula

(20) f(z) = 29(2)/ 9(h(2)), =z€C".

Formula (20) yields the general solution of equation (1) on C* and, as
was to be expected, it contains an arbitrary function in the role of a
parameter.

Remark 3. In each method of solving equation (1) we have used sets
(5), but in each instance they played a different role. In the first method
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sets (5) appeared directly in the formula for the solution, in the second
method they were used to construct a particular solution o of equation
(10) and so they appear in formula (15) only indirectly. (The same
function o could also be defined in another way, without appealing to
sets (5)). In the third method sets (5) were used in the proof, but not
in the formulation of Prop. 3.

4. Now we are going to discuss a number of examples.
1. Let fy : C* — C* be an arbitrary solution of equation (1) on
C*. Taking in (16) g(2) = ¢ = const # 0 we obtain

(21) f(z) =nfo(z), zeC,
where n = ¢/ ¢ fulfils the condition
(22) In| =1.

Thus, together with fo also every function f of form (21), where 7 fulfils
(22), is a solution of (1).

2. In (20) take g(z) = cz™, where ¢ # 0 is a constant and n is an
integer. We obtain

(23) fe) =nz""", zeC,

where n = (—1)"¢/ ¢ is a constant fulfilling (22). Functions (23) (with
arbitrary n € Z and 7 fulfilling (22)) yield a family of analytic solutions
of (1) on C* which have a removable singularity or a pole at zero,
depending on whether n > 0 or n < 0. (For the converse cf. Section 4).

3. In (20) we take g(z) = ce?, ¢ # 0. Since eXpz = exp Z, we
have g(h(z)) = ce'/# and

(24) f(z) =nzett, zecCr.

Functions (24) (with arbitrary n fulfilling (22)) yield a family of analytic
solutions of equation (1) on C* which have as essential singularity at

Zero.
4. Let

g(z) = cém°(z —up)™ (2 —up)™r
be a polynomial of degree
(25) n=mo+my+--+my,

with distinct roots ug = 0, uy,...,u, of multiplicity mg > 0, my > 0,
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..., mp > 0 respectively, p > 0. Write
(26) v = h(ul), ey Up = h(up) .
Then
g(h(z)) = (=1)"eai ... uyrz " (z —v1)™ ... (2 —vp)™"

and, according to (20),

azmotn i,y VML (z—u,)™P
(27) f(Z) =1 (z—vl()ml..l.)(z—v,,()mp 2
where
(28)  a=(=L)mFTtme (g gme] T = oL e

and n = (—1)""™°¢/ € is a constant fulfilling (22). For arbitrary distinct
ui,...,up € C*, arbitrary integers mg > 0, m; > 0,...,m, > 0, and
arbitrary n fulfilling (22), function (27), where a, n, and vy, ..., v, are
given by (28), (25) and (26), respectively, is a meromorphic solution of
equation (1) with poles at vy,...,v,. (But if some u; are equal to some
vj with m; > m; for the corresponding indices ¢, j, then function (27)
has removable singularities at these points v;).

As a matter of fact functions (27) are not solutions of equation
(1) on C* in the spirit of the earlier parts of this paper. They do not
map C* into C*: they have zeros and poles on C*. But they satisfy
equation (1) on C*\ {u1,...,up,v1,...,Vp}, and even on the whole C*,
in the sense that the product f(z) f(—1/%) is equal to —1 everywhere
on C* except at the points uy,...,up, v1,...,vp, Where it has removable
singularities.

5. It is easy to check that the functions

(29) fz)=nz*"t, zecC*,

where 7 fulfils (22) and n is an integer, satisfy equation (1) on C*. Func-
tions (29) are continuous, but nowhere differentiable on C*. Similarly
the functions

f(Z) = 7722n+1 " y 2 € C* )
and
f@) =g A e,

(obtained from (16) on taking fo(z) = (—1)™nz?"*!, g(z) = z™ and
fo(z) = (=1)"nz*™*!, g(2) = 2™), where m, n, are integers and 7 is
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a constant fulfilling (22), yield families of continuous nondifferentiable
solutions of equation (1).
6. Let Dy denote the set

Do ={z € C*|Re z,Im z € Q}.

Both sets Dy and C* \ Dy are dense in C* and h(z) € Dy for 2z € Dy,
while for z € C* \ Dy also h(z) € C*\ Dy. Therefore the function
f:C* — C* defined by

fl(z)7 ZED(),
f2(z)) ZEC*\DO,

satisfies equation (4) (and thus also equation (1)) on C* whenever the
functions f; : C* — C* and f, : C* — C* do. Taking in particular

f1(2)=2', f2(2)=_Z7 ZE(C*’
we obtain from (30)

(30) )= {

z, z € Dy,

(31) f(z):{_z 2 €C*\ Dy,

Function (31) is a measurable, discontinuous (at every point of C*)
solution of equation (1) on C*.

Such examples could be multiplied. The functions given in exam-
ples 3-6 are only a few representatives of solutions of equation (1) in
given regularity cases. It is not difficult to show that in each of these
classes the general solution of (1) depends on an arbitrary function.
The same is true also about nonmeasurable solutions f : C* — C* of
equation (1). In order to obtain such solutions it is enough to take a
nonmeasurable F' : D; — C* in formula (8).

Therefore the simple uniqueness theorem which we are going to
prove in the next section, in spite of the fact that the conditions imposed
on f are quite strong, nevertheless seems to be of a considerable interest.

5. As pointed out at the beginning of this paper, the function A
given by (2) has no fixed points of order 1. Therefore the conditions
ensuring the uniqueness of solutions of equation (1) must have a global
character and essential use must be made of the involved structure of
the complex plane.
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Theorem. Let f : C* — C* be a solution of equation (1} on C* and
suppose that f is analytic on C* and has a removable singularity or a
pole at the origin. Then f has form (23), where n is an integer and n
is a constant fulfilling condition (22).

Proof. Suppose that an f : C* — C* fulfils the conditions of the
theorem. Thus there exists an entire function ¢ : C* — C* and an
integer p (positive, negative, or zero) such that

(32) f(z) = 2P¢(2), zeC*,
and
(33) ¢(0) #0.

(f, and hence ¢, cannot be zero on C* because of (1)). The function
|| is continuous at zero, therefore, in view of (33), there exist positive
constants a, € and r such that

(34) O<a—ce<|p(z)<a+te, |z|<r.

Now we insert (32) into (1) to obtain

(35) (—1Pe(2)e(-1/2) = -1, z€C",
that is,
(36) p(z) = (=17 p(-1/7), =zeC*.

For |z| > 1/r we have | — 1/Z| < r so that, by virtue of (34),
a—e<|p(-1/2)| <a+e, |z|>1/r,

and in particular

6D YFTD| =V |e(-1)| < Ya—e), |sl>1r.

Relations (37) and (36) imply that the entire function ¢ is bounded on
C and thus it must be constant:

(38) w(z)=n=const, z€C

Inserting (38) into (35) we obtain |n|*> = (—1)P~!, whieh implies (22)
and, moreover, shows that p — 1 must be an even number:

(39) p—1=2n.
Formula (23) results now from (32), (38) and (39). ¢




On a functional equation occurring in asirophysics 27

References

[1] KUCZMA, M.: General solution of a functional equation, Ann. Polon Math.
8 (1960), 201-207.

[2] KUCZMA, M.: Functional equations in a single variable, M onographie Mat.
46 Polish Scientific Publishers, Warszawa, 1968.

[3] KUCZMA, M., CHOCZEWSKI, B. and GER, R.: Iterative functional equa-
tions, zEncyclopedia of mathematics and its applications vol. 32, Cambridge
University Press, Cambridge, New York, Port Chester, Melbourne, Sidney,
1990.

[4] MASLANKA, K.: private communication.






