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Abstract: In a previous paper [8] we introduced and studied the concept
of ¢-operation on a fuzzy topology 7 on a set X. In this paper we intro-
duce the concept of fuzzy 1 - continuous mappings which generalizes most
~forms of fuzzy continuity. Also we introduce the concept of fuzzy 1) - open
(fuzzy v -closed) mappings in which fuzzy open (fuzzy closed) and fuzzy

homeomorphism, fuzzy §-open (fuzzy 8-closed) and fuzzy &-open (fuzzy
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&§ - closed) become special cases. Then we introduce the concept of fuzzy i -
homeomorphism, generalizing the concepts of fuzzy homeomorphism, fuzzy 6 -
homeomorphism and fuzzy é- homeomorphism. Finally, we prove that these

concepts are good extensions.

1. Introduction

In order to unify several characterizations and properties of some
fuzzy topological concepts and their weaker and stronger forms, in [8] we
introduced and studied the concept of an operation ¢ on a fuzzy topol-
ogy 7 on a set X. Then we introduced the concepts of ¢ - closure (¢ -
interior) of fuzzy sets and - closed (¢ -open) fuzzy sets. We showed
that the collection of ¢ - open fuzzy sets plays a significant role in the
context of fuzzy topology in a natural way analogous to that of the
- open sets in general topology [5, 9].

In this paper, we introduce the concept of fuzzy @i - continuous
mappings to unify several characterizations and properties of fuzzy con-
tinuity, fuzzy 6 - continuity, fuzzy 6 - continuity, fuzzy weak - continuity,
fuzzy strong @ - continuity, fuzzy almost - continuity, fuzzy almost strong
@ - continuity, fuzzy super continuity and fuzzy weak 0 - continuity.
Then we introduce and study the concepts of fuzzy i - open and fuzzy
o1 - closed mappings. After that we introduce the concept of fuzzy i -
homeomorphism, generalizing the concepts of fuzzy homeomorphism,
fuzzy 6 - homeomorphism and fuzzy 6 - homeomorphism. Several char-
acterizations of these mappings are investigated. Finally, Lowen’s good
extension criterion is used to test all concepts mentioned above.

2. Preliminaries

The class of all fuzzy sets in a universe X will denoted by IX.
Fuzzy sets of X will be denoted by Greek letters as u, v, 1, etc. Crisp
subsets of X will be denoted by capital letters as A, B, C, etc. The
value of a fuzzy set p at the element z of X will be denoted by u(z).
Fuzzy singletons [10] will be denoted by z., y,, z,. The class of all fuzzy
singletons will be denoted by S(X). Hence z. C y means ¢ €]0,1] and
e < p(z). The definitions and results in a fuzzy topological space (fts,
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for short) due to Chang [2] have already been standardized. For two
fuzzy sets p and v, we shall write ugv (resp. pgqv) to mean that y is
quasi - coincident (resp. not quasi- coincident) with v [13]. Let u € IX
and z. € S(X), by Ng(zc), int (), cl(p) and co(y), we mean, the
family of all open ¢ - neighbourhoods of z., the 1nter10r of s the closure
of 4 and the complement of p.
Proposition 2.1 [8]. Let p,v € I* and {u;j:j € J} CIX, then:
(1) pgv = pnv #£0;
(2) pgv <= (Jz. € S(X))(z: C p and z.qv);
(3) (V(z,y) € X*)(V(e,v) € (10,1])*)(z # y = 2. qyu)
(4) z.qu <= z. C co (B);
(8) ugco(p); |
(6) p C v & (Vz. € S(X))(zs - po=> z Cv) & (Vz. €
€ S(X))Nzeqp = zqv).
Definition 2.2 [4]. For u € IX we define- '
(1) po = {z|z € X and p(z) > a} as the wesk « - cut of p, where
a €]0,1];
(2) pw = {z|z € X and u(z) > a} as the strong a- cut of u, where
a € [0,1].
The strong 0- cut of u is called the support of [z and is denoted as
supp (1),
Definition 2.3 [4]. Let (X,T) be an ordmary topologlcal space. The
set of all lower semicontinuous functions from (X, T') into the closed unit
interval equipped with the usual topology constitutes a fuzzy topology
on X that is called the induced fuzzy topology associated with (X, T)
and is denoted as (X, w(T)).
Lemma 2.4 [4]. Let (X,T) be an ordinary topological space, p € IX
and A € 2%, Then we have:
(1) 1 € w(T) = (Ya & [0,1])(n= € T);
(2) pew(T) < (Va€l0,1])(ps € T');
(3) AeT <14 e w(T);
(4) AeT < 14 cw(T);
(8) cl(14) = la(a), where 14 denotes the characteristic mapping of
ACX.
Definition 2.5 [8]. Let (X,7) be a fts. A mapping ¢ : 7 — IX such
that (Vu € 7)(p C p¥), where p¥ denotes the value of ¢ at p, is called
an operation on T. The family of all operations on a fuzzy topology T
on a set X is denoted by O(x,r)-.
Examples 2.6. The mapping ¢ : 7 — IX defined by:
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(1) (Vu € 7)(u? = p), is an operation on 7, the so-called identity
operation 1;

(2) (Vi € 7)(u? = cl(p)), is an operation on 7, the so- called closure
operation cl;

(3) (Vu € 7)(p® = int(cl(g))), is an operation on 7, the so- called
interior - closure operation intocl.

Definition 2.7 [8]. An operation ¢ € O(x,) is said to be:

(1) regular < (Va, € S(X))(¥(v,1) € N3(ze))(3p € No(ae))(o*
C v¥Nn%);

(2) monotone < (Y(v,n) € 72)(v T n = v¥ C n¥).

It follows immediately that every monotone operation is regular,

but the converse may not be true [8].

Definition 2.8 [8]. Let (X, 7) be a fts. The mapping ¢~ : 7' — IX is

called an operation on 7' iff (VA € 7')(A D A\¥" ), where 7' denotes the

family of all closed fuzzy sets of X. The family of all operations on 7'

on a set X is denoted by O(x, ).

Definition 2.9 [8]. The operations ¢ € Ox,r) and ¢~ € O(x,,) are

said to be dual iff (Vv € 7)(co(v¥) = (co(v))*" ). Equivalently, ¢ and

@~ are dual iff (VA € 7/)((co(N))? = co(A?7)).

Definition 2.10 [8]. Let (X, ) beafts, ¢ € O(x ) and p € IX. Then:

(1) the - closure of i, denoted by cl,(u), is given by:

ze C cly(p) <= (Vn € No(z))(n*qu);
2) the @ -interior of u, denoted by int ,(u), is given by:
2 U ¥

Zeqint o(p) <= (I € No(z.))(n® C ).

Definition 2.11 [8]. Let (X, 7) be afts, ¢ € O(x ;) and p € IX. Then:
(1) pis called ¢ - closed <= cl,(p) = p;

(2) p is called ¢ - open <= int ,(p) = y;

(3) pis ¢-open iff co(u)is ¢ - closed.

Theorem 2.12 [8]. Let (X,7) be a fts and ¢ € O(x,r). If ¢ is regular,
then the family of all ¢ - open fuzzy sets forms a fuzzy topology on X
and is denoted by T,. Moreover, 7, C 7.

Definition 2.13 [8] Let (X, 7) be a fts, ¢ € O(x,,) and p € IX. Then
p is called an ¢.q- neighbourhood of z. <= (v € Ng(z.))(v? C p).
Theorem 2.14 [8]. (Vu € IX) (u is ¢ - open in (X,7) <= p 1s open
in (X, 7%)).

Definition 2.15 [8] A fts (X, 7) is called:
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(1) @.FTy iff for any z.,y, € S(X) and z # y, (Ju € No(z.))(3n €
€ No(yv))(yy qu® and z. gn®);

(2) @.FTy or F- Hausdorff iff for any z.,y, € S(X) and z # y, (3u €
€ No(z.))(3n € No(yy)) (¥ Nn® = 0);

(3) w.FRy or R-regular iff (Vz. € S(X))(Vu € No(z.))(3n € No(z.))
(n® C p).

Theorem 2.16 [8]. A fts (X,7) is o.FRy iff T = 7.

3. Fuzzy oy — continuous mappings

In the remainder of this paper, by (X, 7,¢) and (¥, A, %) we mean
(X,7) and (Y, A) are fts’s, ¢ and 1 are operations on 7 and A respec-
tively.
Definition 3.1. A mapping f from (X, 7,¢) into (Y, A, ) is called
F.o) - continuous iff (Vz. € S(X))(Vn € Ng(f(z.)))(Tv € No(z.))
(f(v*®) Sn¥).
Examples 3.2.
(1) For v =1 = v, F.py) - continuity coincides with F - continuity [2];
(2) for ¢ = cl =1, F.p1p - continuity coincides with F.0 - continuity [6];
(3) for ¢ = intocl = 1, F.p1p - continuity coincides with F.§ - continui-
 ty [4];
(4) for ¢ = 1 and ¥ = cl, F.p - continuity coincides with F.weak-
continuity [1];
(6) for v = ¢l and ¢ = 1, F.p1)- continuity coincides with F.strong
6 - continuity [7];
(6) for ¢ =1and ¢ = intocl, F.g) - continuity coincides with F.almost
continuity [1, 4];
(7) for ¢ = cl and ¢ = int o cl, F.pt - continuous is called F.almost
strong 6 - continuous; '
(8) for ¢ = intocl, and ¥ = ¢ F.pt)-continuous is called F super-
continuous;
(9) for ¢ = intocl, and ¥ = cl, F.pt)- continuous is called F.weakly
6 - continuous.

The next theorem characterizes fuzzy ¢ - continuous mappings in
terms of the - interior (1 - interior) and ¢ - closed (1 - closed) of fuzzy
sets.

Theorem 3.3. For a mapping f: (X,7,p) — (Y, A, ) the following
are equivalent:
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(1) f s Fupv - continuous;

(2) (Yn € A)(f~(n) € into(f~1(n¥)));

(3) (Vi€ I*)(f(clp(p)) € cly(f(1);

(4) (¥n € I¥)(elo(f71(m)) C fH(cly(n)));

(5) (Vne IV)(f~*(int y(n)) S int (£~ (n))).

Proof. (1) = (2): Let n € A and z.qf (). Then f(z:)qn. By (1),
(3v € Ng(z))(f(v¥) € n¥) and hence v¥ C f~(n¥) which implies
that z.qint ,(f~*(n¥)). Thus by Prop. 2.1 (6), we have f~1(n) C
C int (71 (n¥))-

(2) = (3): Let u € I* and f(ze) € cly(f(p)). Then (In €
€ No(f(ze)))(n”7f(u)) and hence f~'(n*)gu which implies
int ,(f~1(n¥))Gu. From z.qf~*(n) and by (2) we obtain (Ip € Ng(z.))
(p? C f~Y(n¥)). Hence p?gu and so z. € cl,(u) which implies that
f(ze) € f(clp(p)). Thus f(clp(p)) S el y(f(1))-

(3) = (4): Let n € I¥. From ff~'(n) C n, we have
cly(ff7H(m) S cly(n). By (3), we have f(clo (f7'(n))) <
C cly(ff7(n)) C cly(n). Thus we have cl,(f7(n)) € f7*(cly(n)).

(4) = (5): Let 7 € IY and z.qf !(inty(n)). Then z. &
Z co(inty(n)) = fcly(co(n)). By (4), we have z. ¢
Z cly(f7'(co(n))) = co(inty,(f~'(n))) and hence z.qint ,(f~(n)).
Thus, f~*(int 4(n)) C int ,(f~(7)).

(5) =>(1): Let z. € S(X)andn € Ng(z¢). From 17’/’ geo(n¥), we
have f(z.) € cly(co(n¥)) = co(int 4(n¥)) and hence f(z.)gint 4(n¥)
which implies that z.qf~(int 4(n?)). By (5), we have
z.qint ,(f~1(n¥)) and hence (Hu € No(z.))(p® € f~Y(n¥)) and so
f(pe) cn®. 0
Corollary 3.4. Let f: (X, 71,0) — (Y,A,%) be a mapping. If (Vz. €
;57’(&)())(\777 € No(f(2e))(3p € No(ee) N 7o)(f(#) € n¥), then f is

P - continuous.

Corollary 3.5. Let f: (X,7,¢) — (Y,A,9) is an F.pt - continuous
mapping, then the inverse image of each 1 - closed (Y - open) fuzzy set
i8 @ - closed (v - open).

The converse need not be true as can be seen from the following
example.

Example 3.6. Let X = {z,y} and u,n,p € IX defined by:
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Il
o
o

Iz p=0.3
n(z) =0.6 n(y) = 0.7,
where o denotes the constant mapping with value a. Let 7 = {X .0, 1,

m,p} and A = {X,0,7,p}. Then (X,7) and (X,A) are fts’s. Define
w:7— IX and ¢ : A — IX by:

X 0¥ =0
7 n¥ =1
p .9 {

I

€ € €
(1
=

X¥=X (¥=9
Y=n  p¥=04.

I
I

Il
o

Clearly ¢ and v are regular operations. Moreover one easily finds:
T = {X,0,p,n} and Ay = {X,0,n}. Consider the identity mapping
[ (X,7,0) = (X,A,¥). Then the inverse image of each Y- open is
¢-open but f is not F.py-continuous. Indeed, for z.,e = 0.8 and
p € No(f(z.)) there is no v € Ng(z.) such that f(v%®) C p¥.

In the following theorem it is shown that v -regularity of the
codomain space is a sufficient condition to obtain the converse of
Cor. 3.5.

Theorem 3.7. Let f : (X,7,0) — (Y,A,%) be a mapping. If the
inverse image of each v - open is o - open and (Y,A) is .FRy, then f
18 F.pip - continuous.

Proof. Let z. € S(X) and n € Ng(f(z)). From (Y,A) is ¢.FR, and
Th. 2.16, we infer n € Ay. By hypothesis f~1(5) € 7, and zeqf Y (n)
and hence (du € Ng(z.))(u? C f~(n)) which implies that f(p?) C
Cn Cn¥. Thus f is F.p1 - continuous. ¢

Theorem 3.8. A mapping f : (X,7,0) — (Y,A,) 18 F.o9) - contin-
wous iff (Vze € S(X))(VA1 € A and f(ze) € M)(Fha € 7')(ze € A2)
and f()\fN) ) /\;ﬁN, where ™, Y~ are the dual operations of v and 1
respectively.

Proof. Straightforward. ¢

Theorem 3.9. The azioms o.FT; and w.F'Ty are inverse invariant
under a F.p1) - continuous injective mapping.

Proof. As example, we prove the ¢.FT, inverse invariance. Let f
be a F.op - continuous mapping from (X, 7,¢) into (¥,A,), where
(Y,A) is %.FTy. Let z.,y, € S(X) with £ # y. Since f is injec-
tive, we have f(z) # f(y). From (Y,A) is ¢.FT,, we obtain (3n, €
€ No(f(z)))(En2 € No(f(yo))nf N0y’ = 0). By Fipy- continuity
of f, (Ju1 € No(ze))(Fn2 € No(u))(f(uf) € nf and f(uf) € nf).
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Hence f(u¥) N f(ud) = 0 and so pf Ny = 0. Thus (X,7) is ¢.FT;-
fts. O

Theorem 3.10. The aziom ¢.F Ry 1s inverse invartant under a F.p) -
continuous, F - open and injective mapping.

Proof. Let f be a F.p1) - continuous, F'-open and injective mapping
from (X, 7,¢) into (Y, A, 1), where (Y,A) is 9.FR;. Let z. € S(X)
and u € No(z.). From f is F - open, we have f(u) € No(f(z.)). Since
(Y, A) is 1.FRy, we obtain (In € Ng(f(z:)))(n¥ € f(r)). By Fpip-
continuity of f, (3v € Ng(z))(f(v¥) C n¥). Hence, v¥ = f~1f(v¥) C
C f71(n¥) C f71f(p) = p (f being injective). Thus, (X, 7) is ¢.FR;-
fts. O

Theorem 3.11. If f,g : (X, 7 go) (Y,A,v) are F.p1p - continuous
mappings, p 18 regular and (Y, A) is . F'Ty, then the set p = U{z, | T €

€ I* and f(z.) = g(z:)} 18 @-closed in X and if cl, () = X and
(Voo € u)(F(ze) = 9(z0)), then f = g.

Proof. For any z € X, f(z.) = g(zc) iff f(:c) g(z). Hence, if
ze € p, we have f(z) 75 g(z). Since (Y,A) is ¢.FT,, then (39 €
€ No(f(ze)))(3ne € Nq(g(xs)))(nf’ nn? =0). By Foy- continuity
of f and g, (Jvi,va € Ng(z))(f(v¥) C n? and g(v¥) C nf). Then
f)ng(vg) =0.

Now, smce cp is regular then (3p € Ng(z))(p? CvfNuvs). In
the light of 171 N 772 = [, it is easily seen that p¥ Ny = @ and hence
p? Gu which implies that z. € cl,(p). Thus p is ¢-closed. Finally,
since 4 = cl,(p) = X, we have (Vo € X)(3z. C p)(f(z:) = g(z.)) and
consequently (Vz € X)(f(z) = ¢g(z)). Thus f=g¢. O

4. Fuzzy py—open and oy —closed mappings

Definition 4.1. A mapping f: (X, 7,¢) — (Y, A, v) is called:
(1) F.ptp- open iff for every p € IX, f(int ,(p)) C int 4(f(1));

(2) F.pip- closed iff for every p € IX, cly(f(p)) € f(clu(p)).
Examples 4.2.

(1) If ¢ = ¢ and ¢ = 1, then F.py-open (F.p1-closed) mapping
coincides with F -open (F - closed) [2];

(2) when ¢ = cl and ¢ = cl, then F.py -open (F.¢y - closed) map-
ping is called F.0-open (F.6- closed);

(3) if p = intocl and ¥ = intocl, then F.pt-open (F.p - closed)
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mapping is called F.§-open (F.é - closed).

Theorem 4.3. If a mapping f : (X,7,¢) = (Y,A,2) 13 F.p1p - open
(F.otp - closed), then the image of every ¢ - open (i - closed) fuzzy set 1s
1 - open (1 - closed). The converse is true if (X,7) is ¢.FR;.
Proof. Let u € 7p. Then p = int ,(p) and hence f(u) = f(int ()
Since f is F.p-open, we have f(u) C int 4(f(p)) and hence f(u) €
€ Ay. Conversely, if (X,7) is ¢.F Ry, then by Th. 2.16, we have (Vu €
€ I*)(int ,(p) € 7,) and hence f(int,(u)) € Ay which implies that
f(int ,(p)) C int 4(f(n)). Proof of other case can be given in similar
way. O

The next example shows that ¢.F R, is needed in the statement
Th. 4.3.
Example 4.4. Let X = {z,y}, p,v,n,p € IX defined by:

pa)=04  pu(y)=03 n(z)=07  n(y)=06
v(z) =0.6 v(y) =0.7 p=04

Let 7 = {X,0,n,v} and A = {X,0,n,p}. Then (X,7) and (X, A) are
fts’s. Define ¢ : 7 — IX and 9 : A — IX by:

X=X (=90 X=X 0

v =v p? =04

Y =10
n¥=n p’=05.

Clearly ¢ and 1 are regular operations. Moreover one easily finds: 7, =
= {X,0,v} and Ay = {X,0,7} and hence 7,{X,0,4} and A =
— (X0, co(n)}. Define f : (X,7,5) — (X, A, 4) satisfying f(z) = y
and f(y) = z, then every image of ¢ - closed (¢ -open) is v - closed (¢ -
open), but f is not F.ov - closed. Indeed, for v € IX, we have cl ,(v) =
= {(2,0.6), (y,0.9)}. So, f(cly(v)) = {(2,0.9), (y,0.6)}. Since
f(v) = n, we have cly(f(v)) = cly(n) = 0.9. Hence cly(f(v)) €
Z f(dl ().

Theorem 4.5. Let f: (X,7,0) = (Y,A,)) be a mapping.

(1) If (¥ € 7)(f(n) € A and f(n*) = (f(m)¥), then f is Fipsp - open.
(@) IF (VA € P)(F() € A and F0%) = (FON)¥), then 1 is Fpip-

closed. :

Proof. (1) Let x4 € I* and y,qf(int ,(p)). Then (z. C f~1(vy))
(zeqint ,(p)) and hence (I € Ng(z:))(n¥ S u). From hypothe-
sis we obtain that f(n) € No(y,) and (f(n))¥ C f(g) and hence
ypqint 4(f(p)). Thus f(int,(u)) € inty(f(x)). The proof of (2) is

similar. ¢
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Corollary 4.6. Let f: (X,7,¢) — (Y, A, %) be a mapping.

(1) I (Vn € 7)(f(n) € A and f(n?) = (F(n)¥), then the image of
every @ - open fuzzy set is 1 - open.

(2) If (VA € ) (f(X) € A and F(A¥") = (FOO)¥7), then the image
of every ¢ - closed fuzzy set is 1 - closed.
The following example shows that the converse of Cor. 4.6 is not

true in general.

Example 4.7. Let X = {z,y}, u,v,n,p,0 € I* defined by:

u(z) =0.5 w(y) =0.6 v(z) =0.8 v(y)=10.9
n(z) =0.5 n(y) =04  p(z)=04  p(y)=0.6
oc=04.

Let 7 = {X,0,u,m,p,0} and A = {X,0,u,v,p,0}. Then (X,7) and
(X, A) are fts’s. Define ¢ : 7 — IX and ¥ : A — IX by:

'u,"azu ,,79":77 /f‘b:M V¢=1/
pf=p of =o ¥ =p ¥ =0o.

It is easy to see that ¢ and 1 are regular operations and T, = T and

Ay = A. Consider the identity mapping f : (X,7,¢) — (X, A, ). It

is easy to see that the image of every ¢ - open fuzzy set is v - open (and

hence f is F.p1 -open, since (X, 7) is ¢.FRy), but for 4 € 7 we have

f(u) € A and f(u®) # (f(u))¥.

Definition 4.8. A bijective mapping f : (X,7,¢) — (Y, A, %) is called

F.otp- homeomorphism iff both f and f~! are F.o9 - continuous.

Example 4.9.

(1) If ¢ = 2 and ¥ = 1, then F.p3-homeomorphism coincides with
F - homeomorphism [2].

(2) If ¢ = cl and 3 = cl, then F.pt - homeomorphism is called F.6-
homeomorphism.

(3) If o = intocl and ¢ = int o cl, then F.pt - homeomorphism is
called F.6 - homeomorphism.

Theorem 4.10. If f : (X,7,¢) — (Y,A,v) is bijective, then the

following properties of f are equivalent:

(1) f 13 F.pyp - homeomorphism;

(2) f is F.pyp - continuous and F.pi - open;

(3) f is F.p - continuous and F.oip - closed;
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(4) (Y € PVl () = el o(£(1)):
Proof. (1) = (2): Let p € IX. From f~! is F.po1 - continuous, we
have (f~1)"!(int ,(¢)) C int x((f~*)"!(u)) and hence f(int,(p)) C
C int y(f(1).

(2) = (8): Let 4 € I*. From f is F.pot-open and bijective,
we obtain that f(int,(co(y))) € inty(f(co(r))) and hence
co(f(ecly(p))) € co(cly(f(p))) which implies that cly(f(p)) C

C f(cly(p))-
(3) => (4) and (4) = (1) can be easily proved. {

5. Good extensions

Definition 5.1 [13]. A property Py of a fts is said to be a good ez-
tension of the property P in classical topology iff whenever the fts is
topologically generated (induced) say by (X,T), then (X,w(T)) has
property Py iff (X, T) has property P.

Theorem 5.2 [8]. Let (X,T) be a topological space and ¢ be an op-
eration on T. Consider the induced fuzzy topological space (X,w(T))
and the operation ¢, : w(T) — I* defined by: (Vu € w(T))(u? =

= U (aenlyv)), where h(p) = sup p(z). Then:
0<a<h(p) z€X

(1) w(Tp) = (W(T))e s
(2) ey, (1a) =1a,a)
(3) int ‘Pw(lA) = 1int‘p(A);

(4) cl tpw(/“‘) = U (Qﬂ 1C1¢(u3))i Ve e IX;'
0<a<h(p)
(5) inty, (W)= U (eNlin,ug) YueIX.
0<a<h(p)

Proposition 5.3. Let f: X — Y be a mapping, p € I, AC X and
B CY. Then the following relations hold:

(1) FHu=) = (1) s

(2) f(uz) = (F)m.

(3) f71(1B) =1s-1(m)-

(4) f(1a) =1p)-

Theorem 5.4. A mapping f: (X, T1,¢) = (Y,T2,v) is py - continu-
ous iff f:(X,w(T1),¢u) = (T,w(T2), %) 18 F.p,t., - continuous.
Proof. Let pu € (w(12))y, . From Th. 5.2 (1), we have p € w((T2)y).
Then (Va € [0,1])(uw € (T2)y). From f is ¢ - continuous and Prop.
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5.3 (1), we have (Va € [0,1[)((f~* (1)) = € (T1),) and hence f~1(u) €
€ w((Th)e) = (W(T1))e,- Thus f is F.p,i, - continuous. Conversely,
let B € (T2)y. Then by Th. 5.2 (1), 1 € (w(T2))y,. Since f is
F.p,1,, - continuous, we have f~1(1p) = 1;-1(g) € w((T1),) and hence
f~Y(B) € (T1),. Thus is ¢y - continuous. {

Theorem 5.5. A mapping - f : (X,T1,¢) — (Y, T2, ) 13 03 - open iff
(X, 0(Th),pw) = (Y,w(T2), %) is Fpuths - open.

Proof. Let p € I*. Then (Va € [0,1[)(zz C X). From f is @1 - open,
it follows f(int ,(uz)) € int 4(f(p=)). Then we obtain successively:

Tetimt o)) & Linty (P s 2N LpGintp (uz)) € 2N Line y (fa2)) -
U @ lfta,wo) € U (@Nlineygws) -

0<a<h(n) 0<a<h(n)
f( U (an 1intw(#a))) < U (@n ity -
0<a<h(n) 0<a<h(n)

Then f(int ., (¢)) C int 4, (f(x)) and hence f is F.o, 3., - open.
Conversely, let A C X. Then 14 € IX and so f(int, (14)) C
C int 4, (f(14)). Then we have successively:

F(Lint,(a)) € inty, (1ra)) s Liint o (4)) € Lint 4 (£(4)) -

Then f(int ,(A4)) C int 4(f(A4)) and hence f is py -open. ¢
Theorem 5.6. A mapping f : (X, Th,¢) — (Y, T2,v¢) is o - closed iff
fi (X, w(Th),00) = (Y,w(T2), %) 18 Fuputh, - closed.
Proof. It is similar to that of Th. 5.5. ¢

With the results seen above we conclude that:
Theorem 5.7. f: (X, Th,¢) — (Y,T2,%¢) is o9 - homeomorphism iff
f:(X,w(Th),vu) = (Y,w(T2),¥,) i3 Fputp, - homeomorphism.
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