GENERALIZED MAPPINGS BE-TWEEN FUZZY TOPOLOGICAL SPACES

A. Kandil

Department of Mathematics, Benha University, Egypt

E. E. Kerre

Applied Mathematics and Computer Sciences, University Gent, Krijgslaan 281, S9, B-9000 Gent, Belgium

A. A. Nouh¹

Applied Mathematics and Computer Sciences, University Gent, Krijgslaan 281, S9, B-9000 Gent, Belgium

M. E. El-Shafei

Department of Mathematics, Mansoura University, Egypt

Received June 1990

AMS Subject Classification: 54 A 40

Keywords: Fuzzy topology, fuzzy continuity, fuzzy open and closed mappings, fuzzy homeomerphism.

Abstract: In a previous paper [8] we introduced and studied the concept of φ -operation on a fuzzy topology τ on a set X. In this paper we introduce the concept of fuzzy $\varphi\psi$ -continuous mappings which generalizes most forms of fuzzy continuity. Also we introduce the concept of fuzzy $\varphi\psi$ -open (fuzzy $\varphi\psi$ -closed) mappings in which fuzzy open (fuzzy closed) and fuzzy homeomorphism, fuzzy θ -open (fuzzy θ -closed) and fuzzy δ -open (fuzzy

¹On leave from Mathematics Department, Mansoura University, Egypt.

 δ -closed) become special cases. Then we introduce the concept of fuzzy $\varphi\psi$ -homeomorphism, generalizing the concepts of fuzzy homeomorphism, fuzzy θ -homeomorphism and fuzzy δ -homeomorphism. Finally, we prove that these concepts are good extensions.

1. Introduction

In order to unify several characterizations and properties of some fuzzy topological concepts and their weaker and stronger forms, in [8] we introduced and studied the concept of an operation φ on a fuzzy topology τ on a set X. Then we introduced the concepts of φ -closure (φ -interior) of fuzzy sets and φ -closed (φ -open) fuzzy sets. We showed that the collection of φ -open fuzzy sets plays a significant role in the context of fuzzy topology in a natural way analogous to that of the φ -open sets in general topology [5, 9].

In this paper, we introduce the concept of fuzzy $\varphi\psi$ -continuous mappings to unify several characterizations and properties of fuzzy continuity, fuzzy θ -continuity, fuzzy δ -continuity, fuzzy weak-continuity, fuzzy strong θ -continuity, fuzzy almost-continuity, fuzzy almost strong θ -continuity, fuzzy super continuity and fuzzy weak θ -continuity. Then we introduce and study the concepts of fuzzy $\varphi\psi$ -open and fuzzy $\varphi\psi$ -closed mappings. After that we introduce the concept of fuzzy $\varphi\psi$ -homeomorphism, generalizing the concepts of fuzzy homeomorphism, fuzzy θ -homeomorphism and fuzzy δ -homeomorphism. Several characterizations of these mappings are investigated. Finally, Lowen's good extension criterion is used to test all concepts mentioned above.

2. Preliminaries

The class of all fuzzy sets in a universe X will denoted by I^X . Fuzzy sets of X will be denoted by Greek letters as μ , ν , η , etc. Crisp subsets of X will be denoted by capital letters as A, B, C, etc. The value of a fuzzy set μ at the element x of X will be denoted by $\mu(x)$. Fuzzy singletons [10] will be denoted by x_{ε} , y_{ν} , z_{ρ} . The class of all fuzzy singletons will be denoted by S(X). Hence $x_{\varepsilon} \subseteq \mu$ means $\varepsilon \in]0,1]$ and $\varepsilon \leq \mu(x)$. The definitions and results in a fuzzy topological space (fts,

for short) due to Chang [2] have already been standardized. For two fuzzy sets μ and ν , we shall write $\mu q \nu$ (resp. $\mu \overline{q} \nu$) to mean that μ is quasi-coincident (resp. not quasi-coincident) with ν [13]. Let $\mu \in I^X$ and $x_{\varepsilon} \in S(X)$, by $N_Q(x_{\varepsilon})$, int (μ) , cl (μ) and co (μ) , we mean, the family of all open q-neighbourhoods of x_{ε} , the interior of μ , the closure of μ and the complement of μ .

Proposition 2.1 [8]. Let $\mu, \nu \in I^X$ and $\{\mu_j : j \in J\} \subseteq I^X$, then:

- (1) $\mu q \nu \Longrightarrow \mu \cap \nu \neq 0$;
- (2) $\mu q \nu \iff (\exists x_{\varepsilon} \in S(X))(x_{\varepsilon} \subseteq \mu \text{ and } x_{\varepsilon} q \nu);$
- (3) $(\forall (x,y) \in X^2)(\forall (\varepsilon,\nu) \in (]0,1])^2)(x \neq y \Longrightarrow x_{\varepsilon} \overline{q}y_{\nu});$
- (4) $x_{\varepsilon} \overline{q} \mu \iff x_{\varepsilon} \subseteq \operatorname{co}(\mu);$
- (5) $\mu \overline{q} \operatorname{co}(\mu)$;
- (6) $\mu \subseteq \nu \iff (\forall x_{\varepsilon} \in S(X))(x_{\varepsilon} \subseteq \mu \implies x_{\varepsilon} \subseteq \nu) \iff (\forall x_{\varepsilon} \in S(X))(x_{\varepsilon}q\mu \implies x_{\varepsilon}q\nu).$

Definition 2.2 [4]. For $\mu \in I^X$ we define

- (1) $\mu_{\alpha} = \{x | x \in X \text{ and } \mu(x) \geq \alpha\}$ as the weak α cut of μ , where $\alpha \in]0,1];$
- (2) $\mu_{\overline{\alpha}} = \{x | x \in X \text{ and } \mu(x) > \alpha\}$ as the strong α cut of μ , where $\alpha \in [0,1[$.

The strong 0 - cut of μ is called the *support* of μ and is denoted as supp (μ) .

Definition 2.3 [4]. Let (X,T) be an ordinary topological space. The set of all lower semicontinuous functions from (X,T) into the closed unit interval equipped with the usual topology constitutes a fuzzy topology on X that is called the *induced fuzzy topology* associated with (X,T) and is denoted as $(X,\omega(T))$.

Lemma 2.4 [4]. Let (X, T) be an ordinary topological space, $\mu \in I^X$ and $A \in 2^X$. Then we have:

- (1) $\mu \in \omega(T) \iff (\forall \alpha \in [0,1[)(\mu_{\overline{\alpha}} \in T);$
- (2) $\mu \in \omega(T)' \iff (\forall \alpha \in]0,1])(\mu_{\alpha} \in T');$
- (3) $A \in T \iff 1_A \in \omega(T)$;
- (4) $A \in T' \iff 1_A \in \omega(T)'$;
- (5) $\operatorname{cl}(1_A) = 1_{\operatorname{cl}(A)}$, where 1_A denotes the characteristic mapping of $A \subseteq X$.

Definition 2.5 [8]. Let (X, τ) be a fts. A mapping $\varphi : \tau \to I^X$ such that $(\forall \mu \in \tau)(\mu \subseteq \mu^{\varphi})$, where μ^{φ} denotes the value of φ at μ , is called an *operation on* τ . The family of all operations on a fuzzy topology τ on a set X is denoted by $O_{(X,\tau)}$.

Examples 2.6. The mapping $\varphi : \tau \to I^X$ defined by:

- (1) $(\forall \mu \in \tau)(\mu^{\varphi} = \mu)$, is an operation on τ , the so-called *identity* operation i;
- (2) $(\forall \mu \in \tau)(\mu^{\varphi} = \operatorname{cl}(\mu))$, is an operation on τ , the so-called *closure* operation cl;
- (3) $(\forall \mu \in \tau)(\mu^{\varphi} = \text{int}(\operatorname{cl}(\mu)))$, is an operation on τ , the so-called interior-closure operation into cl.

Definition 2.7 [8]. An operation $\varphi \in O_{(X,\tau)}$ is said to be:

- (1) regular \iff $(\forall x_{\varepsilon} \in S(X))(\forall (\nu, \eta) \in N_Q^2(x_{\varepsilon}))(\exists \rho \in N_Q(x_{\varepsilon}))(\rho^{\varphi} \subseteq \nu^{\varphi} \cap \eta^{\varphi});$
- (2) monotone \iff $(\forall (\nu, \eta) \in \tau^2)(\nu \subseteq \eta \Longrightarrow \nu^{\varphi} \subseteq \eta^{\varphi}).$

It follows immediately that every monotone operation is regular, but the converse may not be true [8].

Definition 2.8 [8]. Let (X, τ) be a fts. The mapping $\varphi^{\sim} : \tau' \to I^X$ is called an *operation on* τ' iff $(\forall \lambda \in \tau')(\lambda \supseteq \lambda^{\varphi^{\sim}})$, where τ' denotes the family of all closed fuzzy sets of X. The family of all operations on τ' on a set X is denoted by $O_{(X,\tau')}$.

Definition 2.9 [8]. The operations $\varphi \in O_{(X,\tau)}$ and $\varphi^{\sim} \in O_{(X,\tau')}$ are said to be dual iff $(\forall \nu \in \tau)(\operatorname{co}(\nu^{\varphi}) = (\operatorname{co}(\nu))^{\varphi^{\sim}})$. Equivalently, φ and φ^{\sim} are dual iff $(\forall \lambda \in \tau')((\operatorname{co}(\lambda))^{\varphi} = \operatorname{co}(\lambda^{\varphi^{\sim}}))$.

Definition 2.10 [8]. Let (X, τ) be a fts, $\varphi \in O_{(X,\tau)}$ and $\mu \in I^X$. Then: (1) the φ -closure of μ , denoted by $\operatorname{cl}_{\varphi}(\mu)$, is given by:

$$x_{\varepsilon} \subseteq \operatorname{cl}_{\varphi}(\mu) \iff (\forall \eta \in N_{Q}(x_{\varepsilon}))(\eta^{\varphi}q\mu);$$

(2) the φ -interior of μ , denoted by int $\varphi(\mu)$, is given by:

$$x_{\varepsilon}q \operatorname{int}_{\varphi}(\mu) \iff (\exists \eta \in N_Q(x_{\varepsilon}))(\eta^{\varphi} \subseteq \mu).$$

Definition 2.11 [8]. Let (X, τ) be a fts, $\varphi \in O_{(X,\tau)}$ and $\mu \in I^X$. Then:

- (1) μ is called φ -closed \iff cl $\varphi(\mu) = \mu$;
- (2) μ is called φ -open \iff int $\varphi(\mu) = \mu$;
- (3) μ is φ -open iff $co(\mu)$ is φ -closed.

Theorem 2.12 [8]. Let (X, τ) be a fts and $\varphi \in O_{(X,\tau)}$. If φ is regular, then the family of all φ -open fuzzy sets forms a fuzzy topology on X and is denoted by τ_{φ} . Moreover, $\tau_{\varphi} \subseteq \tau$.

Definition 2.13 [8] Let (X, τ) be a fts, $\varphi \in O_{(X,\tau)}$ and $\mu \in I^X$. Then μ is called an $\varphi.q$ -neighbourhood of $x_{\varepsilon} \iff (\exists \nu \in N_Q(x_{\varepsilon}))(\nu^{\varphi} \subseteq \mu)$.

Theorem 2.14 [8]. $(\forall \mu \in I^X)$ $(\mu \text{ is } \varphi \text{ - open in } (X, \tau) \iff \mu \text{ is open in } (X, \tau^{\varphi})).$

Definition 2.15 [8] A fts (X, τ) is called:

- (1) $\varphi.FT_1$ iff for any $x_{\varepsilon}, y_{\nu} \in S(X)$ and $x \neq y$, $(\exists \mu \in N_Q(x_{\varepsilon}))(\exists \eta \in N_Q(y_{\nu}))(y_{\nu} \overline{q} \mu^{\varphi})$ and $x_{\varepsilon} \overline{q} \eta^{\varphi})$;
- (2) $\varphi.FT_2$ or F-Hausdorff iff for any $x_{\varepsilon}, y_{\nu} \in S(X)$ and $x \neq y$, $(\exists \mu \in N_Q(x_{\varepsilon}))(\exists \eta \in N_Q(y_{\nu}))(\mu^{\varphi} \cap \eta^{\varphi} = \emptyset)$;
- (3) $\varphi . FR_2$ or R regular iff $(\forall x_{\varepsilon} \in S(X))(\forall \mu \in N_Q(x_{\varepsilon}))(\exists \eta \in N_Q(x_{\varepsilon}))$ $(\eta^{\varphi} \subseteq \mu).$

Theorem 2.16 [8]. A fts (X, τ) is φ . FR_2 iff $\tau = \tau_{\varphi}$.

3. Fuzzy $\varphi\psi$ – continuous mappings

In the remainder of this paper, by (X, τ, φ) and (Y, Δ, ψ) we mean (X, τ) and (Y, Δ) are fts's, φ and ψ are operations on τ and Δ respectively.

Definition 3.1. A mapping f from (X, τ, φ) into (Y, Δ, ψ) is called $F.\varphi\psi$ -continuous iff $(\forall x_{\varepsilon} \in S(X))(\forall \eta \in N_Q(f(x_{\varepsilon})))(\exists \nu \in N_Q(x_{\varepsilon}))$ $(f(\nu^{\varphi}) \subseteq \eta^{\psi})$.

Examples 3.2.

- (1) For $\varphi = i = \psi$, $F \cdot \varphi \psi$ continuity coincides with F continuity [2];
- (2) for $\varphi = cl = \psi$, $F \cdot \varphi \psi$ continuity coincides with $F \cdot \theta$ continuity [6];
- (3) for $\varphi = \text{int} \circ \text{cl} = \psi$, $F \cdot \varphi \psi$ continuity coincides with $F \cdot \delta$ continuity [4];
- (4) for $\varphi = i$ and $\psi = \text{cl}$, $F.\varphi\psi$ -continuity coincides with F.weak-continuity [1];
- (5) for $\varphi = \text{cl}$ and $\psi = i$, $F.\varphi\psi$ -continuity coincides with F.strong θ -continuity [7];
- (6) for $\varphi = i$ and $\psi = \text{intocl}$, $F.\varphi\psi$ continuity coincides with F.almost continuity [1, 4];
- (7) for $\varphi = \text{cl}$ and $\psi = \text{int} \circ \text{cl}$, $F.\varphi\psi$ -continuous is called F.almost strong θ -continuous;
- (8) for $\varphi = \text{int} \circ \text{cl}$, and $\psi = i F.\varphi\psi$ -continuous is called F.super-continuous;
- (9) for $\varphi = \text{int} \circ \text{cl}$, and $\psi = \text{cl}$, $F.\varphi\psi$ -continuous is called F.weakly θ -continuous.

The next theorem characterizes fuzzy $\varphi\psi$ - continuous mappings in terms of the φ - interior (ψ - interior) and φ - closed (ψ - closed) of fuzzy sets.

Theorem 3.3. For a mapping $f:(X,\tau,\varphi)\to (Y,\Delta,\psi)$ the following are equivalent:

- (1) f is $F \cdot \varphi \psi$ continuous;
- (2) $(\forall \eta \in \Delta)(f^{-1}(\eta) \subseteq \operatorname{int}_{\varphi}(f^{-1}(\eta^{\psi})));$
- (3) $(\forall \mu \in I^X)(f(\operatorname{cl}_{\varphi}(\mu)) \subseteq \operatorname{cl}_{\psi}(f(\mu)));$
- (4) $(\forall \eta \in I^Y)(\operatorname{cl}_{\varphi}(f^{-1}(\eta)) \subseteq f^{-1}(\operatorname{cl}_{\psi}(\eta)));$
- (5) $(\forall \eta \in I^Y)(f^{-1}(\operatorname{int}_{\psi}(\eta)) \subseteq \operatorname{int}_{\varphi}(f^{-1}(\eta))).$
- **Proof.** (1) \Longrightarrow (2): Let $\eta \in \Delta$ and $x_{\varepsilon}qf^{-1}(\eta)$. Then $f(x_{\varepsilon})q\eta$. By (1), $(\exists \nu \in N_Q(x_{\varepsilon}))(f(\nu^{\varphi}) \subseteq \eta^{\psi})$ and hence $\nu^{\varphi} \subseteq f^{-1}(\eta^{\psi})$ which implies that $x_{\varepsilon}q$ int $\varphi(f^{-1}(\eta^{\psi}))$. Thus by Prop. 2.1 (6), we have $f^{-1}(\eta) \subseteq$ \subseteq int $\varphi(f^{-1}(\eta^{\psi}))$.
- $(2) \Longrightarrow (3): \text{ Let } \mu \in I^X \text{ and } f(x_{\varepsilon}) \not\subseteq \operatorname{cl}_{\psi}(f(\mu)). \text{ Then } (\exists \eta \in N_Q(f(x_{\varepsilon}))) (\eta^{\psi} \overline{q} f(\mu)) \text{ and hence } f^{-1}(\eta^{\psi}) \overline{q} \mu \text{ which implies int } \varphi(f^{-1}(\eta^{\psi})) \overline{q} \mu. \text{ From } x_{\varepsilon} q f^{-1}(\eta) \text{ and by } (2) \text{ we obtain } (\exists \rho \in N_Q(x_{\varepsilon})) (\rho^{\varphi} \subseteq f^{-1}(\eta^{\psi})). \text{ Hence } \rho^{\varphi} \overline{q} \mu \text{ and so } x_{\varepsilon} \not\subseteq \operatorname{cl}_{\varphi}(\mu) \text{ which implies that } f(x_{\varepsilon}) \not\subseteq f(\operatorname{cl}_{\varphi}(\mu)). \text{ Thus } f(\operatorname{cl}_{\varphi}(\mu)) \subseteq \operatorname{cl}_{\psi}(f(\mu)).$
- (3) \Longrightarrow (4): Let $\eta \in I^Y$. From $ff^{-1}(\eta) \subseteq \eta$, we have $\operatorname{cl}_{\psi}(ff^{-1}(\eta)) \subseteq \operatorname{cl}_{\psi}(\eta)$. By (3), we have $f(\operatorname{cl}_{\varphi}(f^{-1}(\eta))) \subseteq \operatorname{cl}_{\psi}(ff^{-1}(\eta)) \subseteq \operatorname{cl}_{\psi}(\eta)$. Thus we have $\operatorname{cl}_{\varphi}(f^{-1}(\eta)) \subseteq f^{-1}(\operatorname{cl}_{\psi}(\eta))$.
- $(4) \Longrightarrow (5)$: Let $\eta \in I^Y$ and $x_{\varepsilon}qf^{-1}(\operatorname{int}_{\psi}(\eta))$. Then $x_{\varepsilon} \not\subseteq \operatorname{co}(\operatorname{int}_{\psi}(\eta)) = f^{-1}(\operatorname{cl}_{\psi}(\operatorname{co}(\eta)))$. By (4), we have $x_{\varepsilon} \not\subseteq \operatorname{cl}_{\varphi}(f^{-1}(\operatorname{co}(\eta))) = \operatorname{co}(\operatorname{int}_{\varphi}(f^{-1}(\eta)))$ and hence $x_{\varepsilon}q\operatorname{int}_{\varphi}(f^{-1}(\eta))$. Thus, $f^{-1}(\operatorname{int}_{\psi}(\eta)) \subseteq \operatorname{int}_{\varphi}(f^{-1}(\eta))$.
- $(5) \Longrightarrow (1): \text{ Let } x_{\varepsilon} \in S(X) \text{ and } \eta \in N_{Q}(x_{\varepsilon}). \text{ From } \eta^{\psi} \, \overline{q} \text{ co } (\eta^{\psi}), \text{ we have } f(x_{\varepsilon}) \not\subseteq \text{ cl }_{\psi}(\text{ co } (\eta^{\psi})) = \text{ co } (\text{ int }_{\psi}(\eta^{\psi})) \text{ and hence } f(x_{\varepsilon})q \text{ int }_{\psi}(\eta^{\psi}) \text{ which implies that } x_{\varepsilon}qf^{-1}(\text{ int }_{\psi}(\eta^{\psi})). \text{ By } (5), \text{ we have } x_{\varepsilon}q \text{ int }_{\varphi}(f^{-1}(\eta^{\psi})) \text{ and hence } (\exists \mu \in N_{Q}(x_{\varepsilon}))(\mu^{\varphi} \subseteq f^{-1}(\eta^{\psi})) \text{ and so } f(\mu^{\varphi}) \subseteq \eta^{\psi}. \diamondsuit$
- Corollary 3.4. Let $f:(X,\tau,\varphi)\to (Y,\Delta,\psi)$ be a mapping. If $(\forall x_{\varepsilon}\in S(X))(\forall \eta\in N_Q(f(x_{\varepsilon})))(\exists \mu\in N_Q(x_{\varepsilon})\cap \tau_{\varphi})(f(\mu)\subseteq \eta^{\psi})$, then f is $F.\varphi\psi$ -continuous.
- Corollary 3.5. Let $f:(X,\tau,\varphi)\to (Y,\Delta,\psi)$ is an $F.\varphi\psi$ -continuous mapping, then the inverse image of each ψ -closed $(\psi$ -open) fuzzy set is φ -closed $(\varphi$ -open).

The converse need not be true as can be seen from the following example.

Example 3.6. Let $X = \{x, y\}$ and $\mu, \eta, \rho \in I^X$ defined by:

$$\mu = \underline{0.6}$$
 $\rho = \underline{0.3}$ $\eta(x) = 0.6$ $\eta(y) = 0.7$,

where $\underline{\alpha}$ denotes the constant mapping with value α . Let $\tau = \{X, \emptyset, \mu, \eta, \rho\}$ and $\Delta = \{X, \emptyset, \eta, \rho\}$. Then (X, τ) and (X, Δ) are fts's. Define $\varphi : \tau \to I^X$ and $\psi : \Delta \to I^X$ by:

Clearly φ and ψ are regular operations. Moreover one easily finds: $\tau_{\varphi} = \{X, \emptyset, \mu, \eta\}$ and $\Delta_{\psi} = \{X, \emptyset, \eta\}$. Consider the identity mapping $f: (X, \tau, \varphi) \to (X, \Delta, \psi)$. Then the inverse image of each ψ -open is φ -open but f is not $F.\varphi\psi$ -continuous. Indeed, for $x_{\varepsilon}, \varepsilon = 0.8$ and $\rho \in N_Q(f(x_{\varepsilon}))$ there is no $\nu \in N_Q(x_{\varepsilon})$ such that $f(\nu^{\varphi}) \subseteq \rho^{\psi}$.

In the following theorem it is shown that ψ -regularity of the codomain space is a sufficient condition to obtain the converse of Cor. 3.5.

Theorem 3.7. Let $f:(X,\tau,\varphi)\to (Y,\Delta,\psi)$ be a mapping. If the inverse image of each ψ - open is φ - open and (Y,Δ) is $\psi.FR_2$, then f is $F.\varphi\psi$ - continuous.

Proof. Let $x_{\varepsilon} \in S(X)$ and $\eta \in N_Q(f(x_{\varepsilon}))$. From (Y, Δ) is $\psi.FR_2$ and Th. 2.16, we infer $\eta \in \Delta_{\psi}$. By hypothesis $f^{-1}(\eta) \in \tau_{\varphi}$ and $x_{\varepsilon}qf^{-1}(\eta)$ and hence $(\exists \mu \in N_Q(x_{\varepsilon}))(\mu^{\varphi} \subseteq f^{-1}(\eta))$ which implies that $f(\mu^{\varphi}) \subseteq \subseteq \eta \subseteq \eta^{\psi}$. Thus f is $F.\varphi\psi$ -continuous. \Diamond

Theorem 3.8. A mapping $f:(X,\tau,\varphi)\to (Y,\Delta,\psi)$ is $F.\varphi\psi$ -continuous iff $(\forall x_{\varepsilon}\in S(X))(\forall \lambda_1\in \Delta' \text{ and } f(x_{\varepsilon})\not\subseteq \lambda_1)(\exists \lambda_2\in \tau')(x_{\varepsilon}\not\subseteq \lambda_2)$ and $f(\lambda_2^{\varphi^{\sim}})\supseteq \lambda_1^{\psi^{\sim}}$, where φ^{\sim} , ψ^{\sim} are the dual operations of φ and ψ respectively.

Proof. Straightforward. \Diamond

Theorem 3.9. The axioms $\varphi.FT_1$ and $\varphi.FT_2$ are inverse invariant under a $F.\varphi\psi$ - continuous injective mapping.

Proof. As example, we prove the $\varphi.FT_2$ inverse invariance. Let f be a $F.\varphi\psi$ -continuous mapping from (X,τ,φ) into (Y,Δ,ψ) , where (Y,Δ) is $\psi.FT_2$. Let $x_{\varepsilon},y_{\nu}\in S(X)$ with $x\neq y$. Since f is injective, we have $f(x)\neq f(y)$. From (Y,Δ) is $\psi.FT_2$, we obtain $(\exists \eta_1\in N_Q(f(x_{\varepsilon})))(\exists \eta_2\in N_Q(f(y_{\nu})))(\eta_1^{\psi}\cap \eta_2^{\psi}=\emptyset)$. By $F.\varphi\psi$ -continuity of f, $(\exists \mu_1\in N_Q(x_{\varepsilon}))(\exists \mu_2\in N_Q(y_{\nu}))(f(\mu_1^{\varphi})\subseteq \eta_1^{\psi})$ and $f(\mu_2^{\varphi})\subseteq \eta_2^{\psi}$.

Hence $f(\mu_1^{\varphi}) \cap f(\mu_2^{\varphi}) = \emptyset$ and so $\mu_1^{\varphi} \cap \mu_2^{\varphi} = \emptyset$. Thus (X, τ) is $\varphi . FT_2$ - fts. \Diamond

Theorem 3.10. The axiom φ . FR_2 is inverse invariant under a $F.\varphi\psi$ -continuous, F-open and injective mapping.

Proof. Let f be a $F.\varphi\psi$ -continuous, F-open and injective mapping from (X, τ, φ) into (Y, Δ, ψ) , where (Y, Δ) is $\psi.FR_2$. Let $x_{\varepsilon} \in S(X)$ and $\mu \in N_Q(x_{\varepsilon})$. From f is F-open, we have $f(\mu) \in N_Q(f(x_{\varepsilon}))$. Since (Y, Δ) is $\psi.FR_2$, we obtain $(\exists \eta \in N_Q(f(x_{\varepsilon})))(\eta^{\psi} \subseteq f(\mu))$. By $F.\varphi\psi$ -continuity of f, $(\exists \nu \in N_Q(x_{\varepsilon}))(f(\nu^{\varphi}) \subseteq \eta^{\psi})$. Hence, $\nu^{\varphi} = f^{-1}f(\nu^{\varphi}) \subseteq f^{-1}(\eta^{\psi}) \subseteq f^{-1}f(\mu) = \mu$ (f being injective). Thus, (X, τ) is $\varphi.FR_2$ -fts. \Diamond

Theorem 3.11. If $f, g: (X, \tau, \varphi) \to (Y, \Delta, \psi)$ are $F.\varphi\psi$ - continuous mappings, φ is regular and (Y, Δ) is $\psi.FT_2$, then the set $\mu = \bigcup \{x_{\varepsilon} \mid x_{\varepsilon} \in I^X \text{ and } f(x_{\varepsilon}) = g(x_{\varepsilon})\}$ is φ - closed in X and if $\operatorname{cl}_{\varphi}(\mu) = X$ and $(\forall x_{\varepsilon} \subseteq \mu)(f(x_{\varepsilon}) = g(x_{\varepsilon}))$, then f = g.

Proof. For any $x \in X$, $f(x_{\varepsilon}) = g(x_{\varepsilon})$ iff f(x) = g(x). Hence, if $x_{\varepsilon} \not\subseteq \mu$, we have $f(x) \neq g(x)$. Since (Y, Δ) is $\psi.FT_2$, then $(\exists \eta_1 \in N_Q(f(x_{\varepsilon})))(\exists \eta_2 \in N_Q(g(x_{\varepsilon})))(\eta_1^{\psi} \cap \eta_2^{\psi} = \emptyset)$. By $F.\varphi\psi$ -continuity of f and g, $(\exists \nu_1, \nu_2 \in N_Q(x_{\varepsilon}))(f(\nu_1^{\varphi}) \subseteq \eta_1^{\beta})$ and $g(\nu_2^{\varphi}) \subseteq \eta_2^{\beta}$. Then $f(\nu_1^{\varphi}) \cap g(\nu_2^{\varphi}) = \emptyset$.

Now, since φ is regular then $(\exists \rho \in N_Q(x_{\varepsilon}))(\rho^{\varphi} \subseteq \nu_1^{\varphi} \cap \nu_2^{\varphi})$. In the light of $\eta_1^{\psi} \cap \eta_2^{\psi} = \emptyset$, it is easily seen that $\rho^{\varphi} \cap \mu = \emptyset$ and hence $\rho^{\varphi} \overline{q} \mu$ which implies that $x_{\varepsilon} \not\subseteq \operatorname{cl}_{\varphi}(\mu)$. Thus μ is φ -closed. Finally, since $\mu = \operatorname{cl}_{\varphi}(\mu) = X$, we have $(\forall x \in X)(\exists x_{\varepsilon} \subseteq \mu)(f(x_{\varepsilon}) = g(x_{\varepsilon}))$ and consequently $(\forall x \in X)(f(x) = g(x))$. Thus f = g. \Diamond

4. Fuzzy $\varphi\psi$ – open and $\varphi\psi$ – closed mappings

Definition 4.1. A mapping $f:(X,\tau,\varphi)\to (Y,\Delta,\psi)$ is called:

- (1) $F.\varphi\psi$ open iff for every $\mu \in I^X$, $f(\operatorname{int}_{\varphi}(\mu)) \subseteq \operatorname{int}_{\psi}(f(\mu))$;
- (2) $F.\varphi\psi$ closed iff for every $\mu \in I^X$, $\operatorname{cl}_{\psi}(f(\mu)) \subseteq f(\operatorname{cl}_{\varphi}(\mu))$. Examples 4.2.
- (1) If $\varphi = i$ and $\psi = i$, then $F \cdot \varphi \psi$ open $(F \cdot \varphi \psi \text{closed})$ mapping coincides with F open (F closed) [2];
- (2) when $\varphi = \text{cl}$ and $\psi = \text{cl}$, then $F.\varphi\psi$ -open $(F.\varphi\psi$ -closed) mapping is called $F.\theta$ -open $(F.\theta$ -closed);
- (3) if $\varphi = \text{int o cl}$ and $\psi = \text{int o cl}$, then $F \cdot \varphi \psi$ open $(F \cdot \varphi \psi \text{closed})$

mapping is called $F.\delta$ - open $(F.\delta$ - closed).

Theorem 4.3. If a mapping $f:(X,\tau,\varphi)\to (Y,\Delta,\psi)$ is $F.\varphi\psi$ - open $(F.\varphi\psi$ - closed), then the image of every φ - open $(\varphi$ - closed) fuzzy set is ψ - open $(\psi$ - closed). The converse is true if (X,τ) is $\varphi.FR_2$.

Proof. Let $\mu \in \tau_{\varphi}$. Then $\mu = \operatorname{int}_{\varphi}(\mu)$ and hence $f(\mu) = f(\operatorname{int}_{\varphi}(\mu))$. Since f is $F.\varphi\psi$ -open, we have $f(\mu) \subseteq \operatorname{int}_{\psi}(f(\mu))$ and hence $f(\mu) \in \Delta_{\psi}$. Conversely, if (X,τ) is $\varphi.FR_2$, then by Th. 2.16, we have $(\forall \mu \in I^X)(\operatorname{int}_{\varphi}(\mu) \in \tau_{\varphi})$ and hence $f(\operatorname{int}_{\varphi}(\mu)) \in \Delta_{\psi}$ which implies that $f(\operatorname{int}_{\varphi}(\mu)) \subseteq \operatorname{int}_{\psi}(f(\mu))$. Proof of other case can be given in similar way. \Diamond

The next example shows that $\varphi.FR_2$ is needed in the statement Th. 4.3.

Example 4.4. Let $X = \{x, y\}, \ \mu, \nu, \eta, \rho \in I^X$ defined by:

$$\mu(x) = 0.4$$
 $\mu(y) = 0.3$ $\eta(x) = 0.7$ $\eta(y) = 0.6$ $\nu(x) = 0.6$ $\nu(y) = 0.7$ $\rho = \underline{0.4}$

Let $\tau = \{X, \emptyset, \mu, \nu\}$ and $\Delta = \{X, \emptyset, \eta, \rho\}$. Then (X, τ) and (X, Δ) are fts's. Define $\varphi : \tau \to I^X$ and $\psi : \Delta \to I^X$ by:

$$X^{\varphi} = X \qquad \emptyset^{\varphi} = \emptyset \qquad \qquad X^{\psi} = X \qquad \emptyset^{\psi} = \emptyset$$

$$\nu^{\varphi} = \nu \qquad \mu^{\varphi} = \underline{0.4} \qquad \qquad \eta^{\psi} = \eta \qquad \rho^{\psi} = \underline{0.5} \, .$$

Clearly φ and ψ are regular operations. Moreover one easily finds: $\tau_{\varphi} = \{X, \emptyset, \nu\}$ and $\Delta_{\psi} = \{X, \emptyset, \eta\}$ and hence $\tau'_{\varphi}\{X, \emptyset, \mu\}$ and $\Delta'_{\psi} = \{X, \emptyset, \operatorname{co}(\eta)\}$. Define $f: (X, \tau, \varphi) \to (X, \Delta, \psi)$ satisfying f(x) = y and f(y) = x, then every image of φ -closed (φ -open) is ψ -closed (ψ -open), but f is not $F.\varphi\psi$ -closed. Indeed, for $\nu \in I^X$, we have $\operatorname{cl}_{\varphi}(\nu) = \{(x, 0.6), (y, 0.9)\}$. So, $f(\operatorname{cl}_{\varphi}(\nu)) = \{(x, 0.9), (y, 0.6)\}$. Since $f(\nu) = \eta$, we have $\operatorname{cl}_{\psi}(f(\nu)) = \operatorname{cl}_{\psi}(\eta) = \underline{0.9}$. Hence $\operatorname{cl}_{\psi}(f(\nu)) \nsubseteq f(\operatorname{cl}_{\varphi}(\nu))$.

Theorem 4.5. Let $f:(X,\tau,\varphi)\to (Y,\Delta,\psi)$ be a mapping.

- (1) If $(\forall \eta \in \tau)(f(\eta) \in \Delta \text{ and } f(\eta^{\varphi}) = (f(\eta))^{\psi})$, then f is $F.\varphi\psi$ -open.
- (2) If $(\forall \lambda \in \tau')(f(\lambda) \in \Delta' \text{ and } f(\lambda^{\varphi}) = (f(\lambda))^{\psi})$, then f is $F \cdot \varphi \psi closed$.

Proof. (1) Let $\mu \in I^X$ and $y_{\nu}qf(\operatorname{int}_{\varphi}(\mu))$. Then $(\exists x_{\varepsilon} \subseteq f^{-1}(y_{\nu}))$ $(x_{\varepsilon}q\operatorname{int}_{\varphi}(\mu))$ and hence $(\exists \eta \in N_Q(x_{\varepsilon}))(\eta^{\varphi} \subseteq \mu)$. From hypothesis we obtain that $f(\eta) \in N_Q(y_{\nu})$ and $(f(\eta))^{\psi} \subseteq f(\mu)$ and hence $y_{\nu}q\operatorname{int}_{\psi}(f(\mu))$. Thus $f(\operatorname{int}_{\varphi}(\mu)) \subseteq \operatorname{int}_{\psi}(f(\mu))$. The proof of (2) is similar. \Diamond

Corollary 4.6. Let $f:(X,\tau,\varphi)\to (Y,\Delta,\psi)$ be a mapping.

- (1) If $(\forall \eta \in \tau)(f(\eta) \in \Delta \text{ and } f(\eta^{\varphi}) = (f(\eta))^{\psi})$, then the image of every φ -open fuzzy set is ψ -open.
- (2) If $(\forall \lambda \in \tau')(f(\lambda) \in \Delta' \text{ and } f(\lambda^{\varphi^{\sim}}) = (f(\lambda))^{\psi^{\sim}})$, then the image of every φ closed fuzzy set is ψ closed.

The following example shows that the converse of Cor. 4.6 is not true in general.

Example 4.7. Let $X = \{x, y\}, \mu, \nu, \eta, \rho, \sigma \in I^X$ defined by:

$$\mu(x) = 0.5$$
 $\mu(y) = 0.6$ $\nu(x) = 0.8$ $\nu(y) = 0.9$ $\eta(x) = 0.5$ $\eta(y) = 0.4$ $\rho(x) = 0.4$ $\rho(y) = 0.6$ $\sigma = 0.4$.

Let $\tau = \{X, \emptyset, \mu, \eta, \rho, \sigma\}$ and $\Delta = \{X, \emptyset, \mu, \nu, \rho, \sigma\}$. Then (X, τ) and (X, Δ) are fts's. Define $\varphi : \tau \to I^X$ and $\psi : \Delta \to I^X$ by:

It is easy to see that φ and ψ are regular operations and $\tau_{\varphi} = \tau$ and $\Delta_{\psi} = \Delta$. Consider the identity mapping $f: (X, \tau, \varphi) \to (X, \Delta, \psi)$. It is easy to see that the image of every φ - open fuzzy set is ψ - open (and hence f is $F.\varphi\psi$ - open, since (X,τ) is $\varphi.FR_2$), but for $\mu \in \tau$ we have $f(\mu) \in \Delta$ and $f(\mu^{\varphi}) \neq (f(\mu))^{\psi}$.

Definition 4.8. A bijective mapping $f:(X,\tau,\varphi)\to (Y,\Delta,\psi)$ is called $F.\varphi\psi$ -homeomorphism iff both f and f^{-1} are $F.\varphi\psi$ -continuous. **Example 4.9.**

- (1) If $\varphi = i$ and $\psi = i$, then $F \cdot \varphi \psi$ -homeomorphism coincides with F-homeomorphism [2].
- (2) If $\varphi = \text{cl}$ and $\psi = \text{cl}$, then $F.\varphi\psi$ -homeomorphism is called $F.\theta$ -homeomorphism.
- (3) If $\varphi = \text{int} \circ \text{cl}$ and $\psi = \text{int} \circ \text{cl}$, then $F.\varphi\psi$ -homeomorphism is called $F.\delta$ -homeomorphism.

Theorem 4.10. If $f:(X,\tau,\varphi)\to (Y,\Delta,\psi)$ is bijective, then the following properties of f are equivalent:

- (1) f is $F.\varphi\psi$ -homeomorphism;
- (2) f is $F.\varphi\psi$ continuous and $F.\varphi\psi$ open;
- (3) f is $F.\varphi\psi$ continuous and $F.\varphi\psi$ closed;

(4) $(\forall \mu \in I^X)(f(\operatorname{cl}_{\varphi}(\mu)) = \operatorname{cl}_{\psi}(f(\mu))).$

Proof. (1) \Longrightarrow (2): Let $\mu \in I^X$. From f^{-1} is $F \cdot \varphi \psi$ - continuous, we have $(f^{-1})^{-1}(\inf_{\varphi}(\mu)) \subseteq \inf_{\psi}((f^{-1})^{-1}(\mu))$ and hence $f(\inf_{\varphi}(\mu)) \subseteq \inf_{\psi}(f(\mu))$.

(2) \Longrightarrow (3): Let $\mu \in I^X$. From f is $F.\varphi\psi$ -open and bijective, we obtain that $f(\operatorname{int}_{\varphi}(\operatorname{co}(\mu))) \subseteq \operatorname{int}_{\psi}(f(\operatorname{co}(\mu)))$ and hence $\operatorname{co}(f(\operatorname{cl}_{\varphi}(\mu))) \subseteq \operatorname{co}(\operatorname{cl}_{\psi}(f(\mu)))$ which implies that $\operatorname{cl}_{\psi}(f(\mu)) \subseteq \subseteq f(\operatorname{cl}_{\varphi}(\mu))$.

 $(3) \Longrightarrow (4)$ and $(4) \Longrightarrow (1)$ can be easily proved. \Diamond

5. Good extensions

Definition 5.1 [13]. A property P_f of a fts is said to be a *good extension* of the property P in classical topology iff whenever the fts is topologically generated (induced) say by (X,T), then $(X,\omega(T))$ has property P_f iff (X,T) has property P.

Theorem 5.2 [8]. Let (X,T) be a topological space and φ be an operation on T. Consider the induced fuzzy topological space $(X,\omega(T))$ and the operation $\varphi_{\omega}:\omega(T)\to I^X$ defined by: $(\forall \mu\in\omega(T))(\mu^{\varphi_{\omega}}=\bigcup_{0<\alpha< h(\mu)}(\underline{\alpha}\cap 1_{(\mu_{\overline{\alpha}})^{\varphi}}))$, where $h(\mu)=\sup_{x\in X}\mu(x)$. Then:

- (1) $\omega(T_{\varphi}) = (\omega(T))_{\varphi_{\omega}};$
- (2) $\operatorname{cl}_{\varphi_{\omega}}(1_A) = 1_{\operatorname{cl}_{\omega}(A)};$
- (3) int $\varphi_{\omega}(1_A) = 1_{\operatorname{int} \varphi(A)};$
- (4) $\operatorname{cl}_{\varphi_{\omega}}(\mu) = \bigcup_{0 \leq \alpha < h(\mu)} (\underline{\alpha} \cap 1_{\operatorname{cl}_{\varphi}(\mu_{\overline{\alpha}})}), \forall \mu \in I^X;$
- (5) int $_{\varphi_{\omega}}(\mu) = \bigcup_{0 \leq \alpha < h(\mu)} (\underline{\alpha} \cap 1_{\operatorname{int}_{\varphi}(\mu_{\overline{\alpha}})}), \forall \mu \in I^X.$

Proposition 5.3. Let $f: X \to Y$ be a mapping, $\mu \in I^X$, $A \subseteq X$ and $B \subseteq Y$. Then the following relations hold:

- (1) $f^{-1}(\mu_{\overline{\alpha}}) = (f^{-1}(\mu))_{\overline{\alpha}}.$
- (2) $f(\mu_{\overline{a}}) = (f(\mu))_{\overline{\alpha}}$.
- (3) $f^{-1}(1_B) = 1_{f^{-1}(B)}$.
- (4) $f(1_A) = 1_{f(A)}$.

Theorem 5.4. A mapping $f:(X,T_1,\varphi)\to (Y,T_2,\psi)$ is $\varphi\psi$ -continuous iff $f:(X,\omega(T_1),\varphi_\omega)\to (T,\omega(T_2),\psi_\omega)$ is $F.\varphi_\omega\psi_\omega$ -continuous.

Proof. Let $\mu \in (\omega(T_2))_{\psi_{\omega}}$. From Th. 5.2 (1), we have $\mu \in \omega((T_2)_{\psi})$. Then $(\forall \alpha \in [0,1])(\mu_{\overline{\alpha}} \in (T_2)_{\psi})$. From f is $\varphi \psi$ -continuous and Prop.

5.3 (1), we have $(\forall \alpha \in [0,1[)((f^{-1}(\mu))_{\overline{\alpha}} \in (T_1)_{\varphi}))$ and hence $f^{-1}(\mu) \in \omega((T_1)_{\varphi}) = (\omega(T_1))_{\varphi_{\omega}}$. Thus f is $F.\varphi_{\omega}\psi_{\omega}$ -continuous. Conversely, let $B \in (T_2)_{\psi}$. Then by Th. 5.2 (1), $1_B \in (\omega(T_2))_{\psi_{\omega}}$. Since f is $F.\varphi_{\omega}\psi_{\omega}$ -continuous, we have $f^{-1}(1_B) = 1_{f^{-1}(B)} \in \omega((T_1)_{\varphi})$ and hence $f^{-1}(B) \in (T_1)_{\varphi}$. Thus is $\varphi\psi$ -continuous. \Diamond

Theorem 5.5. A mapping $f:(X,T_1,\varphi)\to (Y,T_2,\psi)$ is $\varphi\psi$ - open iff $f:(X,\omega(T_1),\varphi_\omega)\to (Y,\omega(T_2),\psi_\omega)$ is $F.\varphi_\omega\psi_\omega$ - open.

Proof. Let $\mu \in I^X$. Then $(\forall \alpha \in [0,1])(\mu_{\overline{\alpha}} \subseteq X)$. From f is $\varphi \psi$ - open, it follows $f(\operatorname{int}_{\varphi}(\mu_{\overline{\alpha}})) \subseteq \operatorname{int}_{\psi}(f(\mu_{\overline{\alpha}}))$. Then we obtain successively:

$$\begin{aligned} \mathbf{1}_{f(\operatorname{int}_{\varphi})(\mu_{\overline{\alpha}})} &\subseteq \mathbf{1}_{\operatorname{int}_{\psi}(f(\mu_{\overline{\alpha}}))} \,, \quad \underline{\alpha} \cap \mathbf{1}_{f(\operatorname{int}_{\varphi}(\mu_{\overline{\alpha}}))} \subseteq \underline{\alpha} \cap \mathbf{1}_{\operatorname{int}_{\psi}(f(\mu_{\overline{\alpha}}))} \,, \\ & \bigcup_{0 \leq \alpha < h(\mu)} \left(\underline{\alpha} \cap \mathbf{1}_{f(\operatorname{int}_{\varphi}(\mu_{\overline{\alpha}}))}\right) \subseteq \bigcup_{0 \leq \alpha < h(\mu)} \left(\underline{\alpha} \cap \mathbf{1}_{\operatorname{int}_{\psi}(f(\mu_{\overline{\alpha}}))}\right) \,, \\ f\left(\bigcup_{0 \leq \alpha < h(\mu)} \left(\underline{\alpha} \cap \mathbf{1}_{\operatorname{int}_{\varphi}(\mu_{\overline{\alpha}})}\right)\right) \subseteq \bigcup_{0 \leq \alpha < h(\mu)} \left(\underline{\alpha} \cap \mathbf{1}_{\operatorname{int}_{\psi}(f(\mu_{\overline{\alpha}}))}\right) \,. \end{aligned}$$

Then $f(\operatorname{int}_{\varphi_{\omega}}(\mu)) \subseteq \operatorname{int}_{\psi_{\omega}}(f(\mu))$ and hence f is $F.\varphi_{\omega}\psi_{\omega}$ -open. Conversely, let $A \subseteq X$. Then $1_A \in I^X$ and so $f(\operatorname{int}_{\varphi_{\omega}}(1_A)) \subseteq \operatorname{int}_{\psi_{\omega}}(f(1_A))$. Then we have successively:

$$f(1_{\operatorname{int}_{\varphi}(A)}) \subseteq \operatorname{int}_{\psi_{\omega}}(1_{f(A)}), \quad 1_{f(\operatorname{int}_{\varphi}(A))} \subseteq 1_{\operatorname{int}_{\psi}(f(A))}.$$

Then $f(\operatorname{int}_{\varphi}(A)) \subseteq \operatorname{int}_{\psi}(f(A))$ and hence f is $\varphi \psi$ -open. \Diamond Theorem 5.6. A mapping $f: (X, T_1, \varphi) \to (Y, T_2, \psi)$ is $\varphi \psi$ -closed iff $f: (X, \omega(T_1), \varphi_{\omega}) \to (Y, \omega(T_2), \psi_{\omega})$ is $F.\varphi_{\omega}\psi_{\omega}$ -closed. Proof. It is similar to that of Th. 5.5. \Diamond

With the results seen above we conclude that:

Theorem 5.7. $f:(X,T_1,\varphi)\to (Y,T_2,\psi)$ is $\varphi\psi$ -homeomorphism iff $f:(X,\omega(T_1),\varphi_\omega)\to (Y,\omega(T_2),\psi_\omega)$ is $F.\varphi_\omega\psi_\omega$ -homeomorphism.

References

- [1] AZAD, K. K: On fuzzy semicontinuity, fuzzy almost continuity and fuzzy weakly continuity, J. Math. Anal. Appl. 82 (1981), 14-32.
- [2] CHANG, C. L.: Fuzzy topological spaces, J. Math. Anal. Appl. 245 (1968), 182-190.
- [3] GANGULY, S. and SAHA, S.: A note on δ-continuity and δ-connected sets in fuzzy set theory, Simon Stevin 62 (2) (1988), 127-141.

- [4] GEPING, W. and HU LANFANG,: On introduced fuzzy topological spaces, J. Math. Anal. Appl. 108 (1985), 495-506.
- [5] JANKOVIC, D. S.: Properties of $\alpha\beta$ -continuous functions, Private communication (1981).
- [6] KANDIL, A., KERRE, E. E., NOUH, A. A. and EL-SHAFEI, M. E.: Fuzzy θ -perfect irreducible mappings and fuzzy θ -proximity spaces, in *Fuzzy Sets* and Systems 45 (1992), 93-102.
- [7] KANDIL, A., KERRE, E. E., EL-SHAFEI, M. E. and NOUH, A. A.: Fuzzy strongly θ-continuous mappings, Proceedings of the Assiut First International Conference of Mathematics and Statistics (1990), Part VIII, 97-114.
- [8] KANDIL, A., KERRE, E. E., NOUH, A. A. and EL-SHAFEI, M. E.: Operations and mappings on fuzzy topological spaces, Annales de la Société Scientifique de Bruxelles 105/4 (1991), 167-188.
- [9] KASAHARA, S.: Operation-compact spaces, Math. Japonica 24 (1) (1979), 97-105.
- [10] KERRE, E. E.: A call for crispness in fuzzy set theory, Fuzzy Sets and Systems 29 (1989), 57-65.
- [11] KERRE, E. E.: Fuzzy sets and approximate reasoning, Lecture notes, University of Gent, Belgium (1988), 266 p., private edition.
- [12] LOWEN, R.: A comparison of different compactness notions in fuzzy topological spaces, J. Math. Anal. Appl. 64 (1978), 446-454.
- [13] PU PAO-MING and LIU YING-MING: Fuzzy topology I, J. Math. Anal. Appl. 76 (1980), 571-599.
- [14] SAHA, S.: Fuzzy δ -continuous mappings, J. Math. Anal. Appl. 126 (1987), 130-142.
- [15] WARREN, R. H.: Neighbourhoods, bases and continuity in fuzzy topological spaces, Rocky Mountain J. Math. 8 (1978), 459-470.