Mathematica Pannonica
3/2 (1992), 73 - 79

A EGOROFF-TYPE THEOREM
FOR SET-VALUED MEASURABLE
FUNCTIONS

T. Nishiura

Department of Mathematics, Wayne State University, Detroit,
Michigan 48202, USA.

F. J. Schnitzer

Institut fur Mathematik, Montanuniversitdt, 8700 Leoben, Franz-
Josef - Strafie 18, Osterreich.

Received December 1991
AMS Subject Classification: 26 E 25
Keywords: Set - valued measurable functions, radical cluster- set functions.

Abstract: Results of the following type treated: If ¢ : S® — C(S¥), k > 2,
i1s a Lebesgue measurable function it is shown that there exists a continuous
function f : Bpy1 — SF\ {oo} so that the radial cluster-set function fg of

f equals ¢ almost every where on S™.

In [6] and [7], question of interpolations by radial cluster set func-
tions were addressed for functions of Baire class 1. The results of these
papers can be used to prove Egoroff-type theorems and Lusin-type
theorems for set - valued measurable functions. The present note illus-
trates one such Egoroff-type theorem. The construction found here can
be used to establish other theorems of this type as well as Lusin - type
theorems. Throughout the note, & and n are integers such that & > 2
and n > 1.
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1. Statement of the theorem. We shall begin the statement

of our Egoroff-type theorem. The notation used in its statement will be

explained immediately after the statement and the proof of the theorem

will be given in Sect. 3.

Theorem. Let ¢ : S™ — C(S*) be a Lebesgue measurable function.

Then, there is a continuous function f : Byy1 — S*\ {oo} and there is

an increasing sequence of positive numbers {ry,} converging to 1 such

that

(i) the radial cluster - set function fr of f is equal to ¢ Lebesgue almost
everywhere on S™, and

(ii) for each positive number € there is a Lebesque measurable set E
such that the continuous functions T, : S™ — C(S*), m =1,2,...,
defined by

Pm(z):{f(rz) ‘Tm STSTm+1} z€8S",

converge uniformly to ¢ on E and u(S™\ E) < .

As usual, R"*! is the (n + 1)- dimensional Euclidean space. Its
open unit ball and corresponding boundary are B,4; and S™, respec-
tively. The Lebesgue measure on S™ is denoted by x. The point oo is
the point (0,...,1) on the k-sphere S* of R¥+!. By C(S*) we mean
the collection of all nonempty subcontinua of S¥*. When C (SF) is en-
dowed with the Hausdorff metric D, we have from a theorem of Curtis
and Schori that C(S*) is homeomorphic to the Hilbert cube I “o where
I =[0,1] (see {10) and [11]).

Let us now turn to the radial cluster sets of a continuous function
f defined on B4, into S*. Assign to each point z of the boundary S™
of B,4+1 the set

fr(z) =N{C1({f(rz): §<r<1}):0< b6 <1}

called the radial cluster set of f at z, where Cl denotes the closure
operator in S¥. The set fg(z) is a nonempty subcontinuum of S¥. The
resulting function ‘

fr:S™ — C(5%)

is called the radial cluster- set function of f. It is proved in [6] that fr
is a Baire class 2 function and that there are continuous functions f for
which fr is not of Baire class 1. Of course, when n = 1 and k = 2, the
classical complex analysis case results.
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Finally, the Lebesgue measurability of ¢ : S™ — C(S*) is defined
in the usual way, that is, ¢ "*[F] is Lebesgue measurable for each closed

set F' of C'(Sk).

2. Preliminary Lemmas. The proof of our theorem, which is
given in Section 3, will rely heavily on the existence of certain homo-
topies. This section is devoted to these existence lemmas.

The first lemma is Lemma 5.7 of [6]. The statement of the lemma
will require the use of the stereographic projection 7 in R*+1 of
S*\ {oo} onto R¥. Here, R¥ is identified with the k- dimensional coor-
dinate hyperplane of R¥*! formed by setting the last coordinate equal
to 0. We shall denote the Lipschitz constant of #=! by M.

Lemma 1. Suppose thate > 0. Ifg:S™ — RF and ¢ : S — C(S%)
are continuous, then there ezists a homotopy a : S™ x I — R¥* such
that, for all z in ST,

(i) a(z,0) = a(z,1) = g(z), and

(i) D(n~[a(z, D}, §(2)) < 2dist (r~(g(2)), #(2)) + M.

From [6, Lemma 5.2] we infer the next lemma.

Lemma 2. Suppose that € > 0, that E i3 a compact, totally discon-

nected subset of S™ and that hy and hy are continuous mappings of S™
into SF \ {oo}. Let

K = {z€8S": |ho(z) — h1(2)| £ 1}.

Then, there exzists a homotopy B : S™ x I — S¥\ {oo} such that
(i) B(z,0) = ho(z) and B(z,1) = hi(z) for z in S™, and
(i) |diam (B(z,I)) — |ho(2) — h1(2)|] <€ for z in KN E.

3. Proof of the Theorem. Let us begin with the homeomor-
phism H of C(S*) onto I*° given by the theorem of Curtis and Schori.
The p-th coordinate H, of H is a continuous function of C(S*) into
I. Also, a function ¢ from a space X into C(S*) is continuous if and
only if H, o ¢ are continuous for all p. Consequently, we can prove the
following lemma.

Lemma 3. Let ¢ : S® — C(S*) be a Lebesgue measurable function
and £ > 0. Then, there ezists a closed, totally disconnected subset E of
S™ such that the n - dimensional Lebesgue measure u(S™ \ E) does not
exceed € and ¢ resiricted to E, is continuous.

Proof. For each p, the function H, o ¢ is real-valued. By classical
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real function theory, there exists a closed subset E, of S™ such that
u(S™\ E,) < 2=#+V¢ and H, 04 restricted to E, is continuous. Since y
is regular measure and S™ is locally Euclidean, we may further assume
that E, is totally disconnected. The set E = N{E, : p > 1} is the
required set.

Proof of the Theorem. By Lemma 3, there is a sequence {F;} of
closed, totally disconnected subsets of S™ such that ¢|F}, the restriction
of ¢ to F}, is continuous and u(S™ \ F') = 0 where F is the union of
{F;}. Since the members of the collection {F;} are compact, totally
disconnected sets, we may assume also that the collection is disjointed.
By Michael’s Theorem [14, Th. 2], the continuous set - valued function
¢|F; has a continuous selection s; : Fj — S, that is, s j 1s a continuous
function such that sj(z) € ¢|Fj(z) for z € Fj. From [13, pp. 74-80],
we infer for each j the existence of a sequence of continuous functions
sjm + Fj = 8F\ {00}, m = 1,2,..., such that |s;(2) —s,(2)] < 1/(2m)
for all z in Fj.

For each m, let G, = U{F; : j < m}. We have already men-
tioned that the Curtis- Schori Theorem gives us the fact that C(S*) is
homeomorphic to the Hilbert cube. Consequently, the Tietze Extension
Theorem can be applied to get a continuous extension ¢, : S — C(S¥)
of ¢|Grm for each m. Next, for each m, let hm : G— — S\ {oo} be
the continuous function defined by hm(2) = sjm(z) for z in Fj and 1 <
<J < m. As the set G, is compact, by the Tietze Extension Theorem,
hm : Gm — S¥\ {00} also has a continuous extension to S™ which will
be denoted again by h,,. Thus, for each m, there is a pair of continuous

maps ¢, : S — C(S™) and hs, : S® — S* \ {00} with the properties:

¢m(29 = ¢(z) for z in G,
dist (hm(2),4(2)) <1/m for z in Gpm,
|hm(z) — hmt1(2)| <1/m for 2z in Gn.

We apply Lemma 1 to ¢, and g, = 70 by, to get a homotopy ay, :
: 8™ x I — R¥ such that, for all z in S*,

77 0 am(2,0) = 771 0 am(2,1) = hp(2)
and
D(r" 0 am(z, 1), ¢m(2)) < 2dist (hm(2), dm(2)) + M/m.
Next, we apply Lemma 2 to A, and hm41 to get a homotopy B, :



A Egoroff - type theorem for set- valued measurable functions 77

8™ x I — S*\ {co} such that, for all z in S”,
ﬂm(Z,O) = hm(z)7 ﬁm(zal) = hm+1

and

(diam (B (2, 1)) = |hm(2) = hana (2)]] < 1/m.

Now we shall piece together the homotopies 77! o0 ay, and [,

to get the desired function f : Bpyy — S¥\ {oo}. Let {r;} and
{rl,} be increasing sequences of positive numbers converging to 1 with
Tm < Thy < Tm41. On the closed set {z € Bpy1 :rm < |z| < 1l } we
define f by rescaling the homotopy 7! o a, in the obvious manner,
and on the closed set {z € Bpy1 : 7, < |z| € rmy1} we define f by
rescaling the homotopy B, in the obvious manner. This defines f on
the relatively closed set {z € B,41 : 71 < |z| < 1} of Bpyy. The Tietze
Extension Theorem applied to the closed set {z € By : |z| < 71} will
complete the definition of the continuous function f on B,4;.

Let us verify that I'n(2) = {f(rz) : 7 < 7 < Ty}, m =
=1,2,..., converges uniformly to ¢(z) on G; for each j. To this end,
let m > j and z € G;. Since Gj is contained in G, we obtain from
the identity

Tm(2) = 771 0 am(z,I) U Bm(z, I)
and the definition of the Hausdorff metric D the inequality
D(Tm(2), 77" 0 am(z, 1)) < diam (Bn).
Consequently,
D(Tm(2), ¢(2)) < D(Tm(2), 77 0 a2, 1)) + D(n7" 0 atm (2, 1), $(2)) <
< diam (Bm(z, I)) + 2dist (hm(2),d(2)) + M/m <
< Vim(2) = bt ()] + 1/ + 2dist (), 8(2)) +
+M/m<(4+ M)/m.
Thus, we have that I'r,(2) converges to ¢(z) uniformly on G,. Finally,
let us show fr(z) = ¢(z) for each z in F. Each z in F is a member of

G; for some j. Clearly, for p > m > j, we have from the definition of
the Hausdorff metric D that

D(U{Ty(2) : m < ¢ <p}, é(2)) < (4 + M)/m.
Therefore,
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D(CL({f(rz) :rm <7 <1}), 6(2)) < (4 + M)/m,

from which we conclude that fr(z) = ¢(z). Since u(S™\ F) = 0, we
have that fr is equal to ¢ Lebesgue almost everywhere on S™. ¢
Remark. The convergence of I'y, to ¢ in the theorem is closely re-
lated to the concept of uniform convergence defined by Bagemihl and
McMillan in [2]. Further investigations of this type of convergence can
be found in [6] and [7]. The references [3], [4], [5], [8] and [9] contain
discussions on radial limit behavior of continuous functions defined on
an open ball. ‘

Finally, consider the setting of classical complex variables. That
is, R? is identified with the set C of complex numbers and the unit disk
and the unit circle are By and S!, respectively. Moreover, the set of
extended complex numbers ¢ = C U {oo} becomes S2. By employing
the Arakeljan Approximation Theorem [1] in the same manner as in
[7], [8], [9] and [12], we can establish the following corollary. Since its
proof is a straightforward modification of those in the above references,
we shall not prove the corollary.

Corollary. Let ¢ : S! — C’(@) be a Lebesgue measurable function.

Then, there 13 an analytic function f from the unit disk {z € C: |z| <

< 1} into C and there is an increasing sequence of real numbers {r,}

converging to 1 such that

(1) the radial cluster - set function fr of f is equal to ¢ Lebesgue almost
everywhere on S, and

(ii) for each positive number e there is a measurable set E such that the
continuous functions I'y, : ST — C(@), m=1,2,..., defined by

Cr(€) = {f(r€) :rm <r <rmy1}, €£€St,

converge uniformly to ¢ on E and u(S' \ E) <e.
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