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Abstract: Some classes of quasi- continuous, Darboux like functions are
studied. The maximal additive and multiplicative families for these classes
are characterized. A necessary and suflicient condition for f to be the uni-
form limit of a sequence of quasi- continuous functions having the Darboux

property is given.

1. Introduction. We shall consider the following families of real
functions defined on some interval I:
Const — the class of all constant functions;
C — the class of all continuous functions;
A - the class of all almost continuous functions (in the sense of
Stallings ([20}); f : X — Y 1is said to be almost continuous
if for every open set G C X X Y containing f, there exists a
continuous function g : X — Y lying entirely in G}
Conn — the class of all connectivity functions; f : X — Y is a con-
nectivity function if for every connected subset C of X, f|C
is a connected subset of X x Y;
D — the class of all Darboux functions;
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B, — the family of all functions of the first class of Baire;
Isc(usc) — the class of all lower (upper) semicontinuous functions;

M - the class of Darboux functions f for which if z; is a right
(left) hand sided point of discontinuity of f, then flzo) =0
and there exists a sequence (z,) such that f(z,) = 0 and
Tn \ ZTo (Zn /" zo) ([8] and [14]);

Q — the class of all quasi- continuous functions; a function f:
: X =Y is quasi- continuous at a point zo iff 7o € int f~1v)
for every neighbourhood V' of f(z) ([15]);

Uo(U) — the class of all functions defined on I such that for every
subinterval J C I (and for every set A of the cardinality less
than the continuum) the set f(J) (respectively f(J \ A)) is
dense in the interval [inf f|J, sup f|J] ([4]); it is remarked in
[4] that in these definitions the interval [inf f|J, sup f|J | can
be replaced by the interval [f(a), f(b)], where J = (a,b);

Y — the family of all functions with the Young property, i.e. func-
tions which are bilaterally dense in themselves ([21]); some
authors call functions having this property peripherally con-
tinuous ([2], [9]). (We make no distinction between a func-
tion and its graph.)

The inclusions A C Conn ¢ D are noticed in [1], the inclusions
DCUC U G follow from [4]. The inclusion M C By is remarked
in [14]. Now we shall prove the inclusion M C Q.

Lemma 1. If f € M and zq is a point of right - hand (left- hand) sided
discontinuity of f then there exists a sequence (zn) of points at which f
18 Tight - hand sided or left- hand sided continuous with flzn) =0 and
Tn \ Zo (Zn " z0).

Proof. Let us assume that f is right - hand sided discontinuous at some
point zg, U = (29,29 + €) for some € > 0 and U contains no point of
continuity of f at which f has the value zero. Observe that the set
B = {z € U : f(z) = 0} is nowhere- dense and non-empty. Let (1)
be a sequence of all components of the set U \ B. Notice that f (z) =0
for every z € B. Thus if I, = (a, b), then f(a) = f(b) = 0 and f is
right -hand (left - hand) sided continuous at the point a (respectively,
b). Hence there are points in U N B at which f is right - hand or left -
hand sided continuous. ¢

It follows easily from this lemma that for every point z, at which
a function f € M is discontinuous there exists a sequence (zn) of
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continuity points of f such that nlLIr;o zy, = z¢ and 111520 f(za) = f(=0),
and this condition implies quasi- continuity of f at zo (see e.g. [10]).
Lemma 2. (a) A function f i3 quasi- continuous and satisfies the
Young condition iff for every zo € I there exzist two sequences (Tn)
and (zn) of continuity points of f such that x, / xo, zn \, To and
Tlll{r;of(xn) = J}_{Iéof(zn) = f(zo) (this condition must be interpreted
unilaterally for end - points of I).

(b) Let f be quasi - continuous. Then f € U iff for each x € I the
unilateral cluster sets of f at x are intervals and contain f(z).
Proof. (a) follows immediately from the fact that f : I — R is quasi-
continuous at some point z iff there exists a sequence (z, ) of continuity
points such that lim z, = z¢ and T}eréof(xn) = f(zo), i.e. fIC(f) is

c-dense in f, where we denote by C(f) the set of all continuity points
of f (seee.g. [10], Lemma 2). We can also write the following condition:
f e QYiff f(zo) € C(fIC(f),z0) N CT(fIC(f),z0) for each zo € I.
(By C~(f,z) and C*(f,z) we denote the left - hand and right-hand
sided cluster sets of f at a point z.)

(b) follows from the fact that f|C(f) is c¢-dense in f and the
following characterization of the classes Uy and U, which is proved in
[4], theorems 3.1 and 3.2:

(i) f € Uy iff for each = € I the unilateral cluster sets of f at z are
intervals and contain f(z);
(ii) feU ff f €Uy and f is c-dense in itself. ¢

For the classes of real functions defined on an interval I we can

state
Q

w
Const CCCMCACConn CDCUCU S ).
N
B
In the class B; we have the following equalities:
ABy; = Conn By = DBy =UyBy =UBy = YB;  see [1] and {3].

In the first part of the present paper we remark that in the class
Q the following inclusions hold:

AQ CConnQ CDQ CUQ =UQ T YVQ.
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Let Z be a class of real functions. We define the maximal additive
(multiplicative, latticelike, respectively) class for Z as the class of all
such functions f € Z, for which f+g € Z (fg € Z or max(f,g) € 2
and min(f, g) € Z, respectively) whenever ¢ € Z. The adequate classes
we denote by M, (Z), Mn(Z) and My(Z). Moreover let Mnin(Z) =
={f € Z: if g € Z then min(f,g) € Z} and Mp..(Z) = {f € Z: if
g € Z then max(f, g) € Z}. Note that My(Z) = Mumin(Z)N Mmax(Z).

The following equalities are known:

K~_. | MjK) Mu(K) | Mmax(K) | Mmin(K) [ Mo(K)
D |Const ([19]) |Const ([19]) |Dusc ([7]) |Dlsc ([7]) C

DB, C ([3]) M ([8]) |Dusc ([7]) |Dlsc ([7]) C
A C ([14]) M ([14]) ? ? C ([14])
Conn | C ([14]) M ([14]) ? ? C ([14])

Recently D. Banaszewski and K. Banaszewski proved the following re-
sults:

K~ [Ma(K) [Mn(K) | Muax(K) | Muin(C) [ Me(K)
Y _|C([23)) IM([23]) | C([23]) C (23)) ¢
ODB, | C ([22]) | M ([22]) |ODusc ([22]) | O0Dkse ([22]) | €

In the second part of the present paper we shall add next lines to
this table, namely,

QD Const |Const |QDusc | OQDlsc C
QA C M ? ? C
QConn| C M ? ? C

It is well-known that a uniform limit of Darboux functions can
be a function without the Darboux property. It was proved in [4] that
a function f is a uniform limit of Darboux functions iff f € . Since
the classes By and U are closed with respect to uniform limits and
DB; = UB;, the class DB, is closed with respect to uniform limits too
(see e.g, [3]). The class Q is closed with respect to this operation too,
but the class D@ is not.

In the last part of this paper we shall prove that a function f is a
uniform limit of quasi- continuous functions having Darboux property
iff f € QU. Notice also that a real function defined on R is a pointwise
limit of some sequence of functions from the class QD iff it is pointwise
discontinuous ([12]).
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2. We start with some universal construction of quasi - continuous func-
tions having Darboux property. Let A C R be a set c¢- dense in itself
(where ¢ denotes the cardinality of the continuum) and let B be a sub-
set of R. Let D*(A, B) denote the class of all functions f : A — B
which take on every y € B in every non-empty interval of A (i.e. a set
of the form A N (a,b) for some a,b € R). It is well-known that the
family D*(A4, B) is non-empty (see e.g. [5]).

Let I = [0,1], C C I be the Cantor set and for each n € N let
Jn be the family of all components of the set I\ C of the n-th order
(i.e. such components of I\ C which length is equal to 37"). Let

A=TI\U{J:J € |J Jn}. Notice that this set is c- dense in itself. Let
n=1 ' '

(¢n) be a sequence of all rationals such that for every rational ¢ the set
{n : ¢n = q} is infinite. Then for a given function ¢ € D*(A4,R) the
function f : I — R defined by ‘

p(z) forze A

f(x):{Qn fOI‘&TEU{_j,JEJn},nEN

is quasi- continuous and has the Darboux property.

Now we shall employ this method to construct some example
of a quasi- continuous function with the Darboux property but not
connected. It is easy to find (by transfinite induction) a function
¢ € D*(A,R) such that ¢(z) # —z for each z € A. We define a
function f: I — R in the following way:

p(z) forze A

flz) =14 qn forzeU{J:J€Tpand g, € J},neN
z+1 otherwise.

Then f € @D and rng f = R but fN{(z,z) : z € I} = 0 and therefore
f is not connected.

Notice also that the function f which was constructed by J. Jas-
trzebski in [13] is quasi - continuous and connected but not almost con-
tinuous. Moreover, the function g : I — R defined by g¢(z) = ¢, for
z € U{J : J € Jn} and ¢g(z) = 0 otherwise, belongs to the class
QU but g does not have the Darboux property. Finally, the function
h:I — R, h(z) = sin(1l/z) for z € (0,1] and A(0) = 0 is quasi-
continuous and almost continuous but A is not continuous. Thus all
inclusions C € AQ C ConnQ ¢ DQ C UQ are proper. The equality
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QUy = UQ follows from Lemma 2 (b). Now let (I,), be a sequence
of all components of the complement of the Cantor set such that the
unions J I,y and U L, are dense in C and let f be the charac-

n=1 n=1

teristic function of the set C U (J I,. Then f € YQ \ U Q.
n=1 '

3. Theorem 1. Assume that I = [0,1], X,Y C R are intervals, a, b, c

are reals such thata <b<cand F: X xY - R satisfies the following

conditions: _

(1) . :' Y - R, F.(y) = F(z,y) is continuous and (F,)~1(b) is
countable for each z € X;

(2) F¥ : X — R, F¥(z) = F(z,y) is continuous and (FY)~1(b) is
countable for each y € Y;

(3) card{z e X:VyeY F(z,y) # a} < 2v;

(4) card{z € X : Yy € Y F(z,y) # c} < 2¥.

Then for every non - constant, continuous function f : I — X there

exists a Lebesgue measurable, quasi- continuous function g : I - Y

with the Darbouz property such that F(f,g) does not have the Darbous

property (compare with [24]).

Proof. Notice that the following condition follows from (1):

(1) VzeX Fy(z)eY F(z,y(z)) +#b.

Let f : I — X be a non- constant, continuous function. Let D
be the set of all points z € X for which the set f71(z) has a positive
measure. Then the set D is countable and it follows from (1) that the
set {y € Y: 3z € D F(z,y) = b} is countable too. Thus there exists a,
countable, dense set P C Y such that

(5) VeeD VpeP F(z,p)#b.
Moreover, we have also the following property

(6) Vpe P m({z: F(f(z),p) =b}) =0,

where the symbol m(A) denotes the Lebesgue measure of A. In fact,
{z: F(f(2),p) = b} = U{f~(z) : F(z,p) = b} and it follows from (2)
and (5) that this union has a measure zero.

Let (pn) be a sequence of all points of P such that for any pe P
the set {n : p, = p} is infinite.
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Now we shall modify the construction of quasi- continuous func-
tion having Darboux property from the second part of this paper.
We choose (inductively) a sequence of finite families of open intervals

(Jr)52, such that:
(M) Jo = {0};

(8) if L is a component of the set I\U{J : J € Ji, k < n} then there
exists some I{ € J,4; such that K C L, and

m(L)> > m(K)>m(L)/3;

K€Jnt1,KCL

(9) F(f(z),pn) #bforeach z € U{J: J € Jn};
(10) if J € J, and K is an interval on which f is constant and KNJ #*
# 0, then K C J;
(11) if d,e are the end- points of some interval J € J,, then f(e) #
£ £(d)
Such a choice is possible. Indeed, let us assume that are have

chosen a family J,. Let L € I\ |J |UJk. Thentheset Z = LN{z € I :
k<n

: F(f(2), pnt1) = b} is closed and nowhere- dense. Moreover, it follows

from (6) that Z has a measure zero. Let (L.,) be a finite sequence of

components of L\ Z such that 3" m(Ln,) > 2m(L)/3. By (10), f|L, is

m
constant on no neighbourhood of ends of L,, (for each m). Thus for each
m we can choose a subinterval K, of L, which satisfies (9), (10) and
(11) and with m(Kp) > m(Lm)/2. Finally we put Jp41={Kmn CL:
: L € Jn} and observe that this family satisfies all conditions (8), (9),
(10) and (11).

Now let A = I\ U{K : K € J,, n € N}. Evidently this set is
¢- dense in itself, nowhere - dense and has a measure zero. Additionally,
it follows from (11) that f is not constant on any interval of A. Let
C = A. Then C\ A is countable and f is constant on no interval.of C.
Hence we have the following property:

(12) for each subinterval J of I, if JN A # { then the set f(J N A) has
the cardinality of the continuum.

Indeed, let us suppose that J is a closed subinterval of I such
that J N A # 0 and the set f(J N A) has the cardinality less than the
continuum. Because the set C'\ A is countable, the set f(J-N C) has
the cardinality less than the continuum too. Since f is continuous and
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J N C is a compact set, the set f(J N C) is closed and consequently,
it is countable. Let (y,) be a sequence of all points of f(J N C) and
foreachn e Nlet C, = JNCN f(ys). By (11) the sets C,, are

nowhere-dense in J N C and |J C, = J N C, which contradicts the

n=1

Baire theorem. Therefore (12) holds.
Lemma 3. If a set A isc - dense in itself and f : A — X is a continuous
function which satisfies the condition (12), then there ezists a function
¢ € D*(AY) such that F(f(z),(z)) # b for each z € A, F(f(z1),
©(z1)) = a and F(f(z2), ¢(z2)) = ¢ for some 1,22 € AN J and each
interval J for which AN J # § (compare e.g. with [16]).
Proof (of Lemma 3). Let (I,) be a sequence of all basis sets in 4. We
list all elements of the family (1) x ¥ in the sequence (I X {y}) <z«
and choose (by induction) sequences s.,ty,w, € I, t,,wl, €Y such
that:
(13) sy € Iy \ {sp,tp,wp : f < 7} and F(f(sv),y~) # b,
(14) 62 € L\ ({395,058 <7} U {sr}) amd FUF(Er)t) = a,
(15) wy € L\ ({35, 19, ws : 6 <7} U {sy,1,)) and F(f{12), 0! ) .

Now we define a function ¢ : A — Y by

Yy for z = s,,

t! for z =t,,
plz)=4 7 for o —
wl, or T = w.,

y(z) otherwise,

where v < 2% and y(z) is defined in (1'). It is easy to verify that
the function ¢ has the required properties. The proof of Lemma 3 is
completed.

Now we can finish the proof of Th. 1. We define a function g : I —
—Ybyg(z)=paforzcU{J:J e T}, n= 1,2,...,and g(z) = ¢(z)
for z € A. It is easy to see that the function g is quasi - continuous,
measurable and has the Darboux property. Instead the function F (f,9)
takes the values a,c and does not take the value b, and consequently,
F(f,g) does not have the Darboux property. ¢
Corollary 1. (1) If we put X =Y =R, F(z,y) =z +y, a = —1,
b= 0 and c = 1, then we obtain the following inclusion: M, (QD) N
NC C Const . Since the opposite inclusion is clear, we have the equality
Mo (@D)NC = Const.

(2) We have also the equality M,,(QD)NC = Const. The inclu-
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sion “D7” 1s trivial. The second inclusion follows from Th. 1, if we put
X=Y=R, F(z,y)=2-y,a=0,b=1and c = 2.
(3) Similarly we can conclude that

{f:I-R:feC and f/g€D for each g€ QD, g:I—R,}=Const
and
{f:I-Ry:f€C and g/f €D for each g€ QD}={f: I-R : f €Const}.

Lemma 4. Let us assume that f € QYusc (f € QVlsc) and g € QU.
Then max(f,g) € Q (min(f,g) € Q). (Notice that the assumption
f,9 € Y is necessary; we have Muin(Q) = Mnax(Q) = C ([17])).
Proof. Observe that for quasi-continuous functions f, g the set C(f)N
NC(g) is residual in I and max(f, g) is continuous at every point from
this set. Thus it is enough to prove that for each z € I there exists a
sequence (z) of points of the set C(f) N C(g) such that lim z, = z
and lim max(f,g)(zn) = max(f,g)(z). Let zo € I. We shall consider
three cases.

(a) f(zo) > g(zo) and there exists a sequence (z,) of points of
C(f) N C(g) such that lim z, =z, lim f(z,) = f(zo) and f(z,) >
> g(zn) for each n € N. Then lim max(f,¢)(z,) = lim flzn) =
= f(zo0) = max(f,g)(zo) and therefore max(f,g) is quasi- continuous
at zg.

(b) f(zo) > g(z0) and f(zn) < g(za) (if n is sufficiently big) for
every sequence (z,) of points of C(f)NC(g) such that lim z, = z¢ and

li_r)n f(zn) = f(zo). Since f € QY, there exists a sequence (z,,) such
’?ha,?a:n € C(f)NC(g), lim z, =9 and lim f(z,) = f(zo). We can
assume that lim g(mn)n;ciogts (finite or irrllfﬂlﬁe). Then lim g¢(z,) >
> lim f(za) = f(vo). Since g € U, C(g,z0) is an interval ([4])
an(iz —glizrefore there exists a sequence (z],) such that z/, € C(f)n
NC(g), nh—»néox," = ¢ and nlinéog(:r;l) = f(z¢). Since f is upper semi-
continuous, lim f(z!) < f(zo). Hence lim max(f,g)(z!) = f(zo)
and there ex?gsooa subsequence (z], ) of (:gjo:uch that klirr.}o max(f,g)

(z5,.) = f(zo) and consequently, max(f, g) is quasi- continuous at the
point zg.
(¢) f(zo) < g(zo). Then there exists a sequence (z,) of points
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such that z, € C(f) N C(g), lim z, = =z, lim g(z,) = g(x9) >

> f(zo) and g(zs) > f(zo) for each n € N. Since f is upper semi-
continuous, lim f(z,) < f(z¢) and consequently, lim max(f,g)(z,)=

= nli_{r;o 9(zn) = g(zo) = max(f, g)(zo). Hence max(f,g) is quasi- con-
tinuous at the point zgy. ¢

Lemma 5. If f € M and g € Q)Y then the product fg is quasi-
continuous.

Proof. Of course it is sufficient to prove that fg is quasi-continuous
at every point zo at which f is not continuous. Then f(z¢) = 0 and,
by Lemma 1, if f is not continuous at z¢ from the left (from the right)
then there exists a sequence (z) of points at which f is unilaterally
continuous such that f(z,) = 0 for each n and z, / z¢ (zn \, o).
For every n € N we choose a unilateral neighbourhood U, of z, such
that |f(z)| < 1/(n - |g(za)]) if g(zn) # 0 and |f(z)] < 1/n whenever
g(zn) =0, for each z € Uy,. Since g € QY, Lemma 2 (a) implies that for
every n € N there exists z, € UnN(zn—1/n,z,+1/n)NC(f)NC(g) for
which [g(2s) — g(zn)| < €n, where e, = 1if g(z,) = 0 and €, = |g(z,)|

otherwise. Then fg is continuous at each z,, lim z, = lim z, = zg
n—o0 n—-+00

and nlirgo(fg)(zn) = 0 = (fg)(zo). This implies the quasi- continuity
of fg at the point zo. ¢
We shall apply also the following two lemmata, which were proved
in [14].
Lemma 6. Let & be some property of functions, let X; be the class
of all functions f: X — R (where X 1s a topological space) possessing
the property ® and let Xy be the class of all functions g: X — R x R
possessing the same property ®. Let the classes X1 and Xo fulfil the
following conditions:
Q) f feA,andgeC (g: R - R), thengo f € Xy;
(i) f feXr andgeC (g: X = R), then h = (f,g) € Xy, where h :
2 (f(z),9(z)) forz € X.
Then C C Mo (X1) N My (X1) N M(Xy).
Lemma 7. Let X be a subfamily of Uy and let the following conditions
hold:
(i) of f: I =R, f € X and J is a subinterval of an interval I, then
flJ e x;
(iv) if h:(a,b) =R, he X, y € Ct(h,a) and z € C~(h,b), then the
functions hy : [a,b) = R, hy : (a,b] — R and hs3 : [a,b] — R belong
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to X, where hy = hU {(a,y)}, ha = hU{(b,2)}, hs = h1 U ho;
(v) if I C R is an interval, a € I and fi(IN(—o0,a]) € X, fI(I N0
Nla,00)) € X, then f € X;
(vi) Const C My(X) and —1 € M, (X).
Then Mg (X) C C, Mmin(X) € Xlsc and Mupax(X) C Xusc
(hence My(X) CC).
: If moreover the class X f'u,lﬁl.s the additional condition
(vii) f f: I — (0,00) and f € X then 1/f € X,
then also M (X) C M.
Let us observe that the family X = QD does not satisfy the
assumptions of Lemma 6 but it satisfies all assumptions of Lemma 7.

Thus
(a) Ma(QD) - C’
(b) Mnin(@D) € QDlsc and Mpyax(QD) € QDusc,
(c) Mn(QD) C M.
Now we can prove the following theorem.
Theorem 2. We have the following equalities:
(1) M,(@D) = Const,
(2) Mn(QD) = Const,
(3) Mmin(QD) = QDlsc and Muyax(QD) = QDusc.
Proof. Evidently, we have Const C M,(QD) N M,(QD). The in-
clusion M,(QD) C Const follows from Lemma 7 and from Cor. 1 (1).
Hence M,(QD) = Const.

Now we shall prove that M,(QD) C Const. It is enough to
prove that M,,(QD) C C and to use Cor. 1(2). Fix f € Mn,(QD) and
suppose that f is not continuous, i.e. I\C(f) # 0. Since f € M, the set
A =TI\ C(f) is nowhere- dense, f(z) = 0 for z € A and f is continuous
on every component of the set I\ A. Since f is not continuous, f is not
constant. Since f € D, rng(f) has the cardinality equals the continuum
and consequently there exists a component J of I\ A such that f|J is
continuous and not constant. We apply Cor. 1(2) and obtain some
quasi - continuous function ¢ : J — R having the Darboux property for
which f - g ¢ D. Thus there exists a function h defined on the interval
I such that h € QD and f-h ¢ D, which contradicts to f € M, (@D).

Now we shall prove (3). By Lemma 7 it follows that we need to
prove the following two inclusions: QDusc € Mpax(QD) and QDlsc C
C Mpuin(@D). To prove that QDusc C Mpnax(2QD) let f € QDusc
and g € 9D. Since Muax(D) = Dusc, max(f,g) € D. By Lemma 4 it
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follows that max(f,g) € Q and therefore max(f, g) € QD. The proof
that QDlsc C Mpin(QD) is similar. ¢

Observe now observe that the family Q@ satisfies all assumptions
of Lemma, 6 (see [18]) and therefore, :

€ & Mo(Q) N Mm(Q) N Mimax(Q) N Mumin(Q) ([11], [17]).
We have also the inclusion
C C Ma(A) N Mp(A) N Mpax(A) N Mumin(A) ([14])
and consequently, \
C C Mo(QA)N M (QA) N Mipax(QA) N Mpin(QA).
Similarly,
C € M4(QConn) N M, (QConn ) N Mumax(QConn ) N Mpin (QConn ).

Moreover, the families QA and QConn satisfy all assumptions of
Lemma 7. Thus we obtain the following theorem.

Theorem 3. Let K = A or K = Conn. Then the following equalities
hold:

Ma(QK)=C, MyQK)=C and Mu(QK) =M.

Proof. The first two equalities follow immediately from lemmata 6
and 7. In the third equality it is sufficient to prove tlie inclusion M C
C Mn(QK). Fix f € M and g € QK. Since M,(K) = M ([14]),
f-g9 € K. By Lemma 5 we obtain that f-g € Q. Hence f-¢ € KQ and
consequently M C M, (QK). ¢

Problem. For K € {A4,Conn} find Muax(QK) and Mpin(QK).

4. In this section we shall prove that the family QU is the uniform
closure of the class of all quasi- continuous functions having the Dar-
boux property. Functions which we shall consider are defined on the
unit interval I = [0, 1].

Lemma 8. Assume that f € QU, (J,)n is a sequence of pairwise
disjoint open intervals and g is a function such that g9(z) = f(z) for z €
€ UJn, 91U Jn is continuous and f(J,) C C*(g|Jn, an)NC~(g|Jn, br),

where Jp, = (an,b,), n € N. Then g € QU.
Proof. Note that the set A = F(|J J,.) is nowhere- dense and therefore

B = C(f)\ A is dense in I and T}|B is dense in f. Additionally ¢ is
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continuous at each point x € B. We shall verify that ¢|B is dense
in g. Let U = U; x U; be a neighbourhood of (z,g(z)) (obviously it
is sufficient to consider only z € A). Then g(z) = f(z) and since f
is quasi- continuous, (t, f(t)) € U for some t € B. If t ¢ |JJ, then

g(t) = f(t) and (t,9(¢)) € U. Otherwise t € J, for some n. Then
an € Uy or b, € Uy. Let eg. a, € Uy. Since f(t) € CH(g|Jn,as),
there exists s € Uy N J, N B such that (s,g(s)) € U. Thus g is quasi-
continuous.

Now we verify that ¢ € /. By Lemma 2(b) it suffices to observe
that for every = € I the sets C~(g,z) and C*(g,z) are intervals and
f(z) € C~(g,2) N C*(g,z). Assume that g is not continuous at z e.g.
from the right. Then g(z) = f(z) and C*(f,z) C C*(g,z). Moreover
for y € C*(g,z) \ C*(f,z) there exists t € C*(f,z) such that [t,y] C
C C*(g,x). Indeed, since y ¢ C*(f,z), there exist sequences (kp)n of
positive integers and (y,)n such that y, € Ji,, nli_{réo Yn = y and the

sequence (g(a, )) converges to some limit ¢ € R. Then t € C*(f, z).
Since f|Jk, is continuous, (f(ak,),yn) C g(Jk,). Therefore [t,y] C
C C*(g,z). This proves that C*(g,z) is an interval and g(z) €
€ C*(g,2). 0

Lemma 9. For each f € QU and positive € there ezists g € QU which
18 constant on no interval and such that ||f —g|| < &. Moreover, if f is
of the Baire class o or measurable, then g may be taken from the same
class.

Proof. Let {J, C I: n € N} be the family of all maximal open intervals
on which f is constant. Let J, = (an,b,) and let f(J,) = {y,} for each
n € N. Since f € U, we obtain f(a,) = f(bn) = yn. For every n we
define a continuous surjection ¢, : J, — [Yn — €,yn + €] such that
gn(an) = gn(bn) = yn and g, is constant on no subinterval of J,,. Then
the function g : I — R defined by g(z) = gn(z) for z € J,, n € N and
g9(z) = f(z) otherwise has the desired properties. Evidently ||f—g|| < e
and ¢ is constant on no subinterval of I. By Lemma 8, ¢ € QU. Finally
it is easy to verify that if f is of the Baire class o or measurable, then
g is from the same class. ¢ ‘

Lemma 10. For every f € QU and ¢ > 0 there exists a function
g € QD such that ||f — g|| < €. Moreover, if f is of the Baire class «
or measurable then g may be taken from the same class.

Proof. By Lemma 9 we can assume that f : I — R is constant on
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no subinterval of I. Fix n € N with 1/n < e. Since f €U, T = f(I)
is an interval. Assume that T' = (—o00,00) (the proof is similar when
T =[a,b], T = [a,00) or T = (—o0,a]). Put ax = k/n, Jx = (ar,ar+1),
Ar = f71(Jx) and By = f~1(az) for each integer k. Since f is quasi-
contlnuous, fIC(f) is bilaterally dense in f and therefore we obtain the
following conditions (for each k):

(1) Ar = Gx UK}y, where Gy, is a non - empty, open set, K} is nowhere-
dense, Gx N K} = § and K C G N (z,00) N Gy N (—o00, ),

(2) Bx is a nowhere-dense subset of (Gr—;UGk)N (z,00) N
ﬂ(Gk 1 U Gk) N (—oo :L')

Fix an integer k. Let (Ix,m)m be a sequence of all components of Gy.

For every m we define a continuous surjection gkm : Lgm — Jr such
that:
(3) the end- points of Ix ., belong to gk_,}n(y) for each y € Ji.

Now we define the function g : I — R by g(z) = gg m(z) for
z € It,m (for each k,m) and g(z) = f(z) otherwise. Evidently ||f—g|| <
< 1/n < e. By Lemma 8, g € QU. To show that g has the Dar-
boux property fix @ < b with g(a) # g(b) (e.g. g(a) < ¢(b)) and
y € (g(a),g(b)). Let J = (a,b). Obviously it is sufficient to con-
sider the case when J is included in no interval Iy m. Because g € U,
[9(a),g(B)] C g(J). Let k be an integer such that y € Jz. Then
(g(a), g(b))NJx # 0 and consequently, JNg~1(J) # §. Since g~ (Jx) C
C f~!(Jk), the condition (1) implies Iy ,, N J # 0 for some m € N. Let
It,m = (c,d). Since J is not a subset of Iy m, ¢ € J or d € J. Let e.g.
¢ € J. Then g(zx) = y for some z € (c, b).

Finally let us assume that f is of the Baire class o and let G C R
be an open set. Then ¢7}(G) = U gk_in(G) U(f~H&)\ U Iy m) is

clearly a Borel set of the additive class a. Hence g is of the Balre class
a. Similarly we can prove that g is measurable if so is f.
Theorem 4. A necessary and sufficient condition for f to belong to
QU 13 that f be the uniform limit of a sequence of quasi- continuous
functions having the Darbouz property. Moreover, if f is of the Baire
class o or measurable then the approzimating functions may be taken
to be Baire class a or measurable.

Proof. Because the families of all quasi - continuous, of the Baire class
a, measurable functions are closed with respect to uniform limits (see [6]
and e.g. [3]) and the uniform limits of sequences of Darboux functions
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belong to the class U [4], we obtain the sufficiency. The necessity is
proved by applying Lemma 10. ¢
Corollary 2. The class QU 13 closed with respect to uniform limits.
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