ON QUASI-CONTINUOUS FUNC-TIONS HAVING DARBOUX PROP-ERTY

Tomasz Natkaniec

Institute of Mathematics, Pedagogical University, Chodkiewicza 30, 85-064 Bydgoszcz, Poland

Received October 1990

AMS Subject Classification: 26 A 15, 54 C 08

Keywords: Quasi-continuity, Darboux property, almost continuity, connectivity, uniform limit, maximal additive class, maximal multiplicative class.

Abstract: Some classes of quasi-continuous, Darboux like functions are studied. The maximal additive and multiplicative families for these classes are characterized. A necessary and sufficient condition for f to be the uniform limit of a sequence of quasi-continuous functions having the Darboux property is given.

1. Introduction. We shall consider the following families of real functions defined on some interval *I*:

Const - the class of all constant functions;

- C the class of all continuous functions;
- \mathcal{A} the class of all almost continuous functions (in the sense of Stallings ([20]); $f: X \to Y$ is said to be almost continuous if for every open set $G \subset X \times Y$ containing f, there exists a continuous function $g: X \to Y$ lying entirely in G;
- Conn the class of all connectivity functions; $f: X \to Y$ is a connectivity function if for every connected subset C of X, f|C is a connected subset of $X \times Y$;
 - \mathcal{D} the class of all Darboux functions;

- \mathcal{B}_1 the family of all functions of the first class of Baire;
- lsc(usc) the class of all lower (upper) semicontinuous functions;
 - \mathcal{M} the class of Darboux functions f for which if x_0 is a right (left) hand sided point of discontinuity of f, then $f(x_0) = 0$ and there exists a sequence (x_n) such that $f(x_n) = 0$ and $x_n \setminus x_0$ $(x_n \nearrow x_0)$ ([8] and [14]);
 - Q the class of all quasi-continuous functions; a function f: $X \to Y$ is quasi-continuous at a point x_0 iff $x_0 \in \overline{\inf f^{-1}(V)}$ for every neighbourhood V of $f(x_0)$ ([15]);
 - $\mathcal{U}_0(\mathcal{U})$ the class of all functions defined on I such that for every subinterval $J \subset I$ (and for every set A of the cardinality less than the continuum) the set f(J) (respectively $f(J \setminus A)$) is dense in the interval $[\inf f|J, \sup f|J]$ ([4]); it is remarked in [4] that in these definitions the interval $[\inf f|J, \sup f|J]$ can be replaced by the interval [f(a), f(b)], where J = (a, b);
 - y the family of all functions with the Young property, i.e. functions which are bilaterally dense in themselves ([21]); some authors call functions having this property peripherally continuous ([2], [9]). (We make no distinction between a function and its graph.)

The inclusions $\mathcal{A} \subsetneq \mathcal{C}$ onn $\subsetneq \mathcal{D}$ are noticed in [1], the inclusions $\mathcal{D} \subsetneq \mathcal{U} \subsetneq \mathcal{U}_0 \subsetneq \mathcal{Y}$ follow from [4]. The inclusion $\mathcal{M} \subset \mathcal{B}_1$ is remarked in [14]. Now we shall prove the inclusion $\mathcal{M} \subset \mathcal{Q}$.

Lemma 1. If $f \in \mathcal{M}$ and x_0 is a point of right-hand (left-hand) sided discontinuity of f then there exists a sequence (x_n) of points at which f is right-hand sided or left-hand sided continuous with $f(x_n) = 0$ and $x_n \setminus x_0$ $(x_n \nearrow x_0)$.

Proof. Let us assume that f is right-hand sided discontinuous at some point x_0 , $U=(x_0,x_0+\varepsilon)$ for some $\varepsilon>0$ and U contains no point of continuity of f at which f has the value zero. Observe that the set $B=\{x\in U: f(x)=0\}$ is nowhere-dense and non-empty. Let (I_n) be a sequence of all components of the set $U\setminus \overline{B}$. Notice that f(x)=0 for every $x\in \overline{B}$. Thus if $I_n=(a,b)$, then f(a)=f(b)=0 and f is right-hand (left-hand) sided continuous at the point a (respectively, b). Hence there are points in $U\cap B$ at which f is right-hand or left-hand sided continuous. \Diamond

It follows easily from this lemma that for every point x_0 at which a function $f \in \mathcal{M}$ is discontinuous there exists a sequence (x_n) of

continuity points of f such that $\lim_{n\to\infty} x_n = x_0$ and $\lim_{n\to\infty} f(x_n) = f(x_0)$, and this condition implies quasi-continuity of f at x_0 (see e.g. [10]). Lemma 2. (a) A function f is quasi-continuous and satisfies the Young condition iff for every $x_0 \in I$ there exist two sequences (x_n) and (z_n) of continuity points of f such that $x_n \nearrow x_0$, $z_n \searrow x_0$ and $\lim_{n\to\infty} f(x_n) = \lim_{n\to\infty} f(z_n) = f(x_0)$ (this condition must be interpreted unilaterally for end-points of I).

- (b) Let f be quasi-continuous. Then $f \in \mathcal{U}$ iff for each $x \in I$ the unilateral cluster sets of f at x are intervals and contain f(x).
- **Proof.** (a) follows immediately from the fact that $f: I \to \mathbb{R}$ is quasicontinuous at some point x_0 iff there exists a sequence (x_n) of continuity points such that $\lim_{n\to\infty} x_n = x_0$ and $\lim_{n\to\infty} f(x_n) = f(x_0)$, i.e. f|C(f) is c-dense in f, where we denote by C(f) the set of all continuity points of f (see e.g. [10], Lemma 2). We can also write the following condition: $f \in \mathcal{QY}$ iff $f(x_0) \in C^-(f|C(f), x_0) \cap C^+(f|C(f), x_0)$ for each $x_0 \in I$. (By $C^-(f,x)$ and $C^+(f,x)$ we denote the left-hand and right-hand sided cluster sets of f at a point x.)
- (b) follows from the fact that f|C(f) is \mathfrak{c} -dense in f and the following characterization of the classes \mathcal{U}_0 and \mathcal{U} , which is proved in [4], theorems 3.1 and 3.2:
- (i) $f \in \mathcal{U}_0$ iff for each $x \in I$ the unilateral cluster sets of f at x are intervals and contain f(x);
- (ii) $f \in \mathcal{U}$ iff $f \in \mathcal{U}_0$ and f is \mathfrak{c} -dense in itself. \Diamond

For the classes of real functions defined on an interval I we can state

$$\mathcal{Q}$$
 \cup
 \mathcal{C}
Const $\subsetneq \mathcal{C} \subsetneq \mathcal{M} \subsetneq \mathcal{A} \subsetneq \mathcal{C}$
onn $\subsetneq \mathcal{D} \subsetneq \mathcal{U} \subsetneq \mathcal{U}_0 \subsetneq \mathcal{Y}$.
 $\beta \cap \mathcal{B}_1$

In the class \mathcal{B}_1 we have the following equalities:

$$\mathcal{AB}_1 = \mathcal{C}\text{onn}\,\mathcal{B}_1 = \mathcal{DB}_1 = \mathcal{U}_0\mathcal{B}_1 = \mathcal{UB}_1 = \mathcal{YB}_1$$
 see [1] and [3].

In the first part of the present paper we remark that in the class Q the following inclusions hold:

$$\mathcal{AQ} \subsetneq \mathcal{C}\mathrm{onn}\,\mathcal{Q} \subsetneq \mathcal{DQ} \subsetneq \mathcal{U}_0\mathcal{Q} = \mathcal{U}\mathcal{Q} \subsetneq \mathcal{Y}\mathcal{Q}\,.$$

Let \mathcal{Z} be a class of real functions. We define the maximal additive (multiplicative, latticelike, respectively) class for \mathcal{Z} as the class of all such functions $f \in \mathcal{Z}$, for which $f + g \in \mathcal{Z}$ $(fg \in \mathcal{Z} \text{ or } \max(f,g) \in \mathcal{Z})$ and $\min(f,g) \in \mathcal{Z}$, respectively) whenever $g \in \mathcal{Z}$. The adequate classes we denote by $\mathcal{M}_a(\mathcal{Z})$, $\mathcal{M}_m(\mathcal{Z})$ and $\mathcal{M}_\ell(\mathcal{Z})$. Moreover let $\mathcal{M}_{\min}(\mathcal{Z}) =$ $=\{f\in\mathcal{Z}\colon \text{if }g\in\mathcal{Z}\text{ then }\min(f,g)\in\mathcal{Z}\}\text{ and }\mathcal{M}_{\max}(\mathcal{Z})=\{f\in\mathcal{Z}\colon \text{if }$ $g \in \mathcal{Z}$ then $\max(f,g) \in \mathcal{Z}$. Note that $\mathcal{M}_{\ell}(\mathcal{Z}) = \mathcal{M}_{\min}(\mathcal{Z}) \cap \mathcal{M}_{\max}(\mathcal{Z})$.

The following equalities are known:

K	$\mathcal{M}_a(\mathcal{K})$	$\mathcal{M}_m(\mathcal{K})$	$\mathcal{M}_{ ext{max}}(\mathcal{K})$	$\mathcal{M}_{\min}(\mathcal{K})$	$\mathcal{M}_{\ell}(\mathcal{K})$
\mathcal{D}	\mathcal{C} onst ([19])	$\mathcal{C}\mathrm{onst}$ ([19])		\mathcal{D} lsc ([7])	C
\mathcal{DB}_1	\mathcal{C} ([3])	\mathcal{M} ([8])	$\mathcal{D}\mathrm{usc}$ ([7])	\mathcal{D} lsc ([7])	C
\mathcal{A}	$\mathcal{C}\left(\left[14 ight] ight)$	\mathcal{M} ([14])	?	?	C ([14])
\mathcal{C} onn	$\mathcal{C}\left(\left[14 ight] ight)$	\mathcal{M} ([14])	?	?	C ([14])

Recently D. Banaszewski and K. Banaszewski proved the following results:

K	${\cal M}_a({\cal K})$	$\mathcal{M}_m(\mathcal{K})$	$\mathcal{M}_{ ext{max}}(\mathcal{K})$	$\mathcal{M}_{\min}(\mathcal{K})$	$\mathcal{M}_{\ell}(\mathcal{K})$
\mathcal{Y}	\mathcal{C} ([23])	$\mathcal{M}~([23])$	C ([23])	\mathcal{C} ([23])	C
$\mathcal{Q}\mathcal{D}\mathcal{B}_1$	$\mathcal{C}\left([22] ight)$	\mathcal{M} ([22])	$\mathcal{Q}\mathcal{D}\mathrm{usc}$ ([22])	$\mathcal{Q}\mathcal{D}\mathrm{lsc}$ ([22])	C

In the second part of the present paper we shall add next lines to this table, namely,

QD	$\mathcal{C}\mathrm{onst}$	$\mathcal{C}\mathrm{onst}$	$\mathcal{Q}\mathcal{D}\mathrm{usc}$	$\mathcal{Q}\mathcal{D}\mathrm{lsc}$	C
QA	\mathcal{C}	M	?	?	C
\mathcal{QC} onn	C	M	?	?	С

It is well-known that a uniform limit of Darboux functions can be a function without the Darboux property. It was proved in [4] that a function f is a uniform limit of Darboux functions iff $f \in \mathcal{U}$. Since the classes \mathcal{B}_1 and \mathcal{U} are closed with respect to uniform limits and $\mathcal{DB}_1 = \mathcal{UB}_1$, the class \mathcal{DB}_1 is closed with respect to uniform limits too (see e.g, [3]). The class Q is closed with respect to this operation too, but the class \mathcal{DQ} is not.

In the last part of this paper we shall prove that a function f is a uniform limit of quasi-continuous functions having Darboux property iff $f \in \mathcal{QU}$. Notice also that a real function defined on \mathbb{R} is a pointwise limit of some sequence of functions from the class \mathcal{QD} iff it is pointwise discontinuous ([12]).

2. We start with some universal construction of quasi-continuous functions having Darboux property. Let $A \subset \mathbb{R}$ be a set \mathfrak{c} -dense in itself (where \mathfrak{c} denotes the cardinality of the continuum) and let B be a subset of \mathbb{R} . Let $\mathcal{D}^*(A,B)$ denote the class of all functions $f:A\to B$ which take on every $y\in B$ in every non-empty interval of A (i.e. a set of the form $A\cap(a,b)$ for some $a,b\in\mathbb{R}$). It is well-known that the family $\mathcal{D}^*(A,B)$ is non-empty (see e.g. [5]).

Let I = [0,1], $C \subset I$ be the Cantor set and for each $n \in \mathbb{N}$ let \mathcal{J}_n be the family of all components of the set $I \setminus C$ of the n-th order (i.e. such components of $I \setminus C$ which length is equal to 3^{-n}). Let $A = I \setminus \bigcup \{\overline{J} : J \in \bigcup_{n=1}^{\infty} \mathcal{J}_n\}$. Notice that this set is \mathfrak{c} -dense in itself. Let (q_n) be a sequence of all rationals such that for every rational q the set $\{n : q_n = q\}$ is infinite. Then for a given function $\varphi \in \mathcal{D}^*(A, \mathbb{R})$ the function $f : I \to \mathbb{R}$ defined by

$$f(x) = \begin{cases} \varphi(x) & \text{for } x \in A \\ q_n & \text{for } x \in \bigcup \{\overline{J}, J \in \mathcal{J}_n\}, n \in \mathbb{N} \end{cases}$$

is quasi-continuous and has the Darboux property.

Now we shall employ this method to construct some example of a quasi-continuous function with the Darboux property but not connected. It is easy to find (by transfinite induction) a function $\varphi \in \mathcal{D}^*(A,\mathbb{R})$ such that $\varphi(x) \neq -x$ for each $x \in A$. We define a function $f: I \to \mathbb{R}$ in the following way:

$$f(x) = \begin{cases} \varphi(x) & \text{for } x \in A \\ q_n & \text{for } x \in \bigcup \{\overline{J} : J \in \mathcal{J}_n \text{ and } q_n \notin J\}, n \in \mathbb{N} \\ x+1 & \text{otherwise.} \end{cases}$$

Then $f \in \mathcal{QD}$ and rng $f = \mathbb{R}$ but $f \cap \{(x, x) : x \in I\} = \emptyset$ and therefore f is not connected.

Notice also that the function f which was constructed by J. Jastrzębski in [13] is quasi-continuous and connected but not almost continuous. Moreover, the function $g:I\to\mathbb{R}$ defined by $g(x)=q_n$ for $x\in \cup\{\overline{J}:J\in\mathcal{J}_n\}$ and g(x)=0 otherwise, belongs to the class $\mathcal{Q}\mathcal{U}$ but g does not have the Darboux property. Finally, the function $h:I\to\mathbb{R},\ h(x)=\sin(1/x)$ for $x\in(0,1]$ and h(0)=0 is quasi-continuous and almost continuous but h is not continuous. Thus all inclusions $\mathcal{C}\subseteq\mathcal{A}\mathcal{Q}\subseteq\mathcal{C}$ onn $\mathcal{Q}\subseteq\mathcal{D}\mathcal{Q}\subseteq\mathcal{U}\mathcal{Q}$ are proper. The equality

 $QU_0 = UQ$ follows from Lemma 2 (b). Now let $(I_n)_n$ be a sequence of all components of the complement of the Cantor set such that the unions $\bigcup_{n=1}^{\infty} I_{2n+1}$ and $\bigcup_{n=1}^{\infty} I_{2n}$ are dense in C and let f be the characteristic formula I_{n-1} and I_{n-1} I_{n-1}

teristic function of the set $C \cup \bigcup_{n=1}^{\infty} I_{2n}$. Then $f \in \mathcal{YQ} \setminus \mathcal{U}_0 \mathcal{Q}$.

- **3.** Theorem 1. Assume that I = [0,1], $X, Y \subset \mathbb{R}$ are intervals, a, b, c are reals such that a < b < c and $F : X \times Y \to \mathbb{R}$ satisfies the following conditions:
- (1) $F_x: Y \to \mathbb{R}$, $F_x(y) = F(x,y)$ is continuous and $(F_x)^{-1}(b)$ is countable for each $x \in X$;
- (2) $F^y: X \to \mathbb{R}$, $F^y(x) = F(x,y)$ is continuous and $(F^y)^{-1}(b)$ is countable for each $y \in Y$;
- (3) card $\{x \in X : \forall y \in Y \ F(x,y) \neq a\} < 2^{\omega};$
- (4) card $\{x \in X : \forall y \in Y \ F(x,y) \neq c\} < 2^{\omega}$.

Then for every non-constant, continuous function $f: I \to X$ there exists a Lebesgue measurable, quasi-continuous function $g: I \to Y$ with the Darboux property such that F(f,g) does not have the Darboux property (compare with [24]).

Proof. Notice that the following condition follows from (1):

(1')
$$\forall x \in X \quad \exists y(x) \in Y \quad F(x, y(x)) \neq b.$$

Let $f: I \to X$ be a non-constant, continuous function. Let D be the set of all points $x \in X$ for which the set $f^{-1}(x)$ has a positive measure. Then the set D is countable and it follows from (1) that the set $\{y \in Y: \exists x \in D \ F(x,y) = b\}$ is countable too. Thus there exists a countable, dense set $P \subset Y$ such that

(5)
$$\forall x \in D \quad \forall p \in P \quad F(x,p) \neq b.$$

Moreover, we have also the following property

(6)
$$\forall p \in P \quad m(\{z : F(f(z), p) = b\}) = 0,$$

where the symbol m(A) denotes the Lebesgue measure of A. In fact, $\{z: F(f(z), p) = b\} = \bigcup \{f^{-1}(x): F(x, p) = b\}$ and it follows from (2) and (5) that this union has a measure zero.

Let (p_n) be a sequence of all points of P such that for any $p \in P$ the set $\{n : p_n = p\}$ is infinite.

Now we shall modify the construction of quasi-continuous function having Darboux property from the second part of this paper. We choose (inductively) a sequence of finite families of open intervals $(\mathcal{J}_n)_{n=0}^{\infty}$ such that:

$$\mathcal{J}_0 = \{\emptyset\};$$

(8) if L is a component of the set $I \setminus \bigcup \{J : J \in \mathcal{J}_k, k \leq n\}$ then there exists some $K \in \mathcal{J}_{n+1}$ such that $K \subset L$, and

$$m(L) > \sum_{K \in \mathcal{J}_{n+1}, K \subset L} m(K) \ge m(L)/3;$$

- (9) $F(f(x), p_n) \neq b$ for each $x \in \bigcup \{\overline{J} : J \in \mathcal{J}_n\};$
- (10) if $J \in \mathcal{J}_n$ and K is an interval on which f is constant and $K \cap \overline{J} \neq \emptyset$, then $K \subset \overline{J}$;
- (11) if d, e are the end-points of some interval $J \in \mathcal{J}_n$ then $f(e) \neq f(d)$.

Such a choice is possible. Indeed, let us assume that are have chosen a family \mathcal{J}_n . Let $L \in I \setminus \bigcup_{k \leq n} \bigcup \mathcal{J}_k$. Then the set $Z = L \cap \{z \in I : z \in$

: $F(f(z), p_{n+1}) = b$ } is closed and nowhere-dense. Moreover, it follows from (6) that Z has a measure zero. Let (L_m) be a finite sequence of components of $L \setminus Z$ such that $\sum_{m} m(L_m) \geq 2m(L)/3$. By (10), $f|_{L_m}$ is

constant on no neighbourhood of ends of L_m (for each m). Thus for each m we can choose a subinterval K_m of L_m which satisfies (9), (10) and (11) and with $m(K_m) \geq m(L_m)/2$. Finally we put $\mathcal{J}_{n+1} = \{K_m \subset L : L \in \mathcal{J}_n\}$ and observe that this family satisfies all conditions (8), (9), (10) and (11).

Now let $A = I \setminus \bigcup \{\overline{K} : K \in \mathcal{J}_n, n \in \mathbb{N}\}$. Evidently this set is \mathfrak{c} -dense in itself, nowhere-dense and has a measure zero. Additionally, it follows from (11) that f is not constant on any interval of A. Let $C = \overline{A}$. Then $C \setminus A$ is countable and f is constant on no interval of C. Hence we have the following property:

(12) for each subinterval J of I, if $J \cap A \neq \emptyset$ then the set $f(J \cap A)$ has the cardinality of the continuum.

Indeed, let us suppose that J is a closed subinterval of I such that $J \cap A \neq \emptyset$ and the set $f(J \cap A)$ has the cardinality less than the continuum. Because the set $C \setminus A$ is countable, the set $f(J \cap C)$ has the cardinality less than the continuum too. Since f is continuous and

 $J \cap C$ is a compact set, the set $f(J \cap C)$ is closed and consequently, it is countable. Let (y_n) be a sequence of all points of $f(J \cap C)$ and for each $n \in \mathbb{N}$ let $C_n = J \cap C \cap f^{-1}(y_n)$. By (11) the sets C_n are nowhere-dense in $J \cap C$ and $\bigcup_{n=1}^{\infty} C_n = J \cap C$, which contradicts the Baire theorem. Therefore (12) holds.

Lemma 3. If a set A is \mathfrak{c} - dense in itself and $f:A\to X$ is a continuous function which satisfies the condition (12), then there exists a function $\varphi\in\mathcal{D}^*(A,Y)$ such that $F(f(x),\varphi(x))\neq b$ for each $x\in A$, $F(f(x_1),\varphi(x_1))=a$ and $F(f(x_2),\varphi(x_2))=c$ for some $x_1,x_2\in A\cap J$ and each interval J for which $A\cap J\neq\emptyset$ (compare e.g. with [16]).

Proof (of Lemma 3). Let (I_n) be a sequence of all basis sets in A. We list all elements of the family $(I_n) \times Y$ in the sequence $(I_{\gamma} \times \{y_{\gamma}\})_{{\gamma}<2^{\omega}}$ and choose (by induction) sequences $s_{\gamma}, t_{\gamma}, w_{\gamma} \in I_{\gamma}, t'_{\gamma}, w'_{\gamma} \in Y$ such that:

- (13) $s_{\gamma} \in I_{\gamma} \setminus \{s_{\beta}, t_{\beta}, w_{\beta} : \beta < \gamma\}$ and $F(f(s_{\gamma}), y_{\gamma}) \neq b$,
- (14) $t_{\gamma} \in I_{\gamma} \setminus (\{s_{\beta}, t_{\beta}, w_{\beta} : \beta < \gamma\} \cup \{s_{\gamma}\})$ and $F(f(t_{\gamma}), t'_{\gamma}) = a$,
- (15) $w_{\gamma} \in I_{\gamma} \setminus (\{s_{\beta}, t_{\beta}, w_{\beta} : \beta < \gamma\} \cup \{s_{\gamma}, t_{\gamma}\}) \text{ and } F(f(w_{\gamma}), w'_{\gamma}) = c.$ Now we define a function $\varphi : A \to Y$ by

$$arphi(x) = \left\{ egin{array}{ll} y_{\gamma} & ext{for } x = s_{\gamma}, \ t'_{\gamma} & ext{for } x = t_{\gamma}, \ w'_{\gamma} & ext{for } x = w_{\gamma}, \ y(x) & ext{otherwise}, \end{array}
ight.$$

where $\gamma < 2^{\omega}$ and y(x) is defined in (1'). It is easy to verify that the function φ has the required properties. The proof of Lemma 3 is completed.

Now we can finish the proof of Th. 1. We define a function $g: I \to Y$ by $g(x) = p_n$ for $x \in \bigcup \{\overline{J}: J \in \mathcal{J}_n\}, n = 1, 2, \ldots, \text{ and } g(x) = \varphi(x)$ for $x \in A$. It is easy to see that the function g is quasi-continuous, measurable and has the Darboux property. Instead the function F(f,g) takes the values a, c and does not take the value b, and consequently, F(f,g) does not have the Darboux property. \Diamond

Corollary 1. (1) If we put $X = Y = \mathbb{R}$, F(x,y) = x + y, a = -1, b = 0 and c = 1, then we obtain the following inclusion: $\mathcal{M}_a(\mathcal{QD}) \cap \mathcal{C} \subset \mathcal{C}$ onst. Since the opposite inclusion is clear, we have the equality $\mathcal{M}_a(\mathcal{QD}) \cap \mathcal{C} = \mathcal{C}$ onst.

(2) We have also the equality $\mathcal{M}_m(\mathcal{QD}) \cap \mathcal{C} = \mathcal{C}onst$. The inclu-

sion "\()" is trivial. The second inclusion follows from Th. 1, if we put $X = Y = \mathbb{R}$, $F(x,y) = x \cdot y$, a = 0, b = 1 and c = 2.

(3) Similarly we can conclude that

 $\{f\!:\!I\to\mathbb{R}\!:\!f\!\in\!\mathcal{C}\ and\ f/g\!\in\!\mathcal{D}\ for\ each\ g\!\in\!\mathcal{Q}\mathcal{D}\,,\ g\!:\!I\to\mathbb{R}_+\}\!=\!\mathcal{C}\text{onst}$ and

 $\{f\!:\!I\!\to\!\mathbb{R}_+\!:\!f\!\in\!\mathcal{C}\ and\ g/f\!\in\!\mathcal{D}\ for\ each\ g\!\in\!\mathcal{Q}\mathcal{D}\!\}\!=\!\{f\!:\!I\!\to\!\mathbb{R}_+\!:\!f\!\in\!\mathcal{C}\mathrm{onst}\}.$

Lemma 4. Let us assume that $f \in \mathcal{QY}$ usc $(f \in \mathcal{QY} \text{lsc})$ and $g \in \mathcal{QU}$. Then $\max(f,g) \in \mathcal{Q}$ $(\min(f,g) \in \mathcal{Q})$. (Notice that the assumption $f,g \in \mathcal{Y}$ is necessary; we have $\mathcal{M}_{\min}(\mathcal{Q}) = \mathcal{M}_{\max}(\mathcal{Q}) = \mathcal{C}$ ([17])). **Proof.** Observe that for quasi-continuous functions f,g the set $C(f) \cap C(g)$ is residual in I and $\max(f,g)$ is continuous at every point from this set. Thus it is enough to prove that for each $x \in I$ there exists a sequence (x_n) of points of the set $C(f) \cap C(g)$ such that $\lim_{n \to \infty} x_n = x$ and $\lim_{n \to \infty} \max(f,g)(x_n) = \max(f,g)(x)$. Let $x_0 \in I$. We shall consider three cases.

- (a) $f(x_0) \geq g(x_0)$ and there exists a sequence (x_n) of points of $C(f) \cap C(g)$ such that $\lim_{n \to \infty} x_n = x_0$, $\lim_{n \to \infty} f(x_n) = f(x_0)$ and $f(x_n) \geq g(x_n)$ for each $n \in \mathbb{N}$. Then $\lim_{n \to \infty} \max(f, g)(x_n) = \lim_{n \to \infty} f(x_n) = f(x_0) = \max(f, g)(x_0)$ and therefore $\max(f, g)$ is quasi-continuous at x_0 .
- (b) $f(x_0) \geq g(x_0)$ and $f(x_n) < g(x_n)$ (if n is sufficiently big) for every sequence (x_n) of points of $C(f) \cap C(g)$ such that $\lim_{n \to \infty} x_n = x_0$ and $\lim_{n \to \infty} f(x_n) = f(x_0)$. Since $f \in \mathcal{QY}$, there exists a sequence (x_n) such that $x_n \in C(f) \cap C(g)$, $\lim_{n \to \infty} x_n = x_0$ and $\lim_{n \to \infty} f(x_n) = f(x_0)$. We can assume that $\lim_{n \to \infty} g(x_n)$ exists (finite or infinite). Then $\lim_{n \to \infty} g(x_n) \geq \lim_{n \to \infty} f(x_n) = f(x_0)$. Since $g \in \mathcal{U}$, $C(g, x_0)$ is an interval ([4]) and therefore there exists a sequence (x'_n) such that $x'_n \in C(f) \cap C(g)$, $\lim_{n \to \infty} x'_n = x_0$ and $\lim_{n \to \infty} g(x'_n) = f(x_0)$. Since f is upper semicontinuous, $\lim_{n \to \infty} f(x'_n) \leq f(x_0)$. Hence $\lim_{n \to \infty} \max(f,g)(x'_n) = f(x_0)$ and there exists a subsequence (x'_{n_k}) of (x'_n) such that $\lim_{k \to \infty} \max(f,g)$ $(x'_{n_k}) = f(x_0)$ and consequently, $\max(f,g)$ is quasi-continuous at the point x_0 .
 - (c) $f(x_0) < g(x_0)$. Then there exists a sequence (x_n) of points

such that $x_n \in C(f) \cap C(g)$, $\lim_{n \to \infty} x_n = x_0$, $\lim_{n \to \infty} g(x_n) = g(x_0) > f(x_0)$ and $g(x_n) > f(x_0)$ for each $n \in \mathbb{N}$. Since f is upper semicontinuous, $\overline{\lim_{n \to \infty}} f(x_n) \le f(x_0)$ and consequently, $\lim_{n \to \infty} \max(f, g)(x_n) = \lim_{n \to \infty} g(x_n) = g(x_0) = \max(f, g)(x_0)$. Hence $\max(f, g)$ is quasi-continuous at the point x_0 . \Diamond

Lemma 5. If $f \in \mathcal{M}$ and $g \in \mathcal{QY}$ then the product fg is quasicontinuous.

Proof. Of course it is sufficient to prove that fg is quasi-continuous at every point x_0 at which f is not continuous. Then $f(x_0)=0$ and, by Lemma 1, if f is not continuous at x_0 from the left (from the right) then there exists a sequence (x_n) of points at which f is unilaterally continuous such that $f(x_n)=0$ for each n and $x_n\nearrow x_0$ $(x_n\searrow x_0)$. For every $n\in\mathbb{N}$ we choose a unilateral neighbourhood U_n of x_n such that $|f(x)|<1/(n\cdot|g(x_n)|)$ if $g(x_n)\neq 0$ and |f(x)|<1/n whenever $g(x_n)=0$, for each $x\in U_n$. Since $g\in\mathcal{QY}$, Lemma 2 (a) implies that for every $n\in\mathbb{N}$ there exists $z_n\in U_n\cap (x_n-1/n,x_n+1/n)\cap C(f)\cap C(g)$ for which $|g(z_n)-g(x_n)|<\varepsilon_n$, where $\varepsilon_n=1$ if $g(x_n)=0$ and $\varepsilon_n=|g(x_n)|$ otherwise. Then fg is continuous at each z_n , $\lim_{n\to\infty}z_n=\lim_{n\to\infty}x_n=x_0$ and $\lim_{n\to\infty}(fg)(z_n)=0=(fg)(x_0)$. This implies the quasi-continuity of fg at the point x_0 . \diamondsuit

We shall apply also the following two lemmata, which were proved in [14].

Lemma 6. Let Φ be some property of functions, let \mathcal{X}_1 be the class of all functions $f: X \to \mathbb{R}$ (where X is a topological space) possessing the property Φ and let \mathcal{X}_2 be the class of all functions $g: X \to \mathbb{R} \times \mathbb{R}$ possessing the same property Φ . Let the classes \mathcal{X}_1 and \mathcal{X}_2 fulfil the following conditions:

- (i) if $f \in \mathcal{X}_2$ and $g \in \mathcal{C}$ $(g : \mathbb{R}^2 \to \mathbb{R})$, then $g \circ f \in \mathcal{X}_1$;
- (ii) if $f \in \mathcal{X}_1$ and $g \in \mathcal{C}$ $(g : X \to \mathbb{R})$, then $h = (f, g) \in \mathcal{X}_2$, where $h : z \mapsto (f(x), g(x))$ for $x \in X$. Then $\mathcal{C} \subseteq \mathcal{M}_a(\mathcal{X}_1) \cap \mathcal{M}_m(\mathcal{X}_1) \cap \mathcal{M}_\ell(\mathcal{X}_1)$.

Lemma 7. Let \mathcal{X} be a subfamily of \mathcal{U}_0 and let the following conditions hold:

- (iii) if $f: I \to \mathbb{R}$, $f \in \mathcal{X}$ and J is a subinterval of an interval I, then $f|J \in \mathcal{X}$;
- (iv) if $h:(a,b)\to\mathbb{R}$, $h\in\mathcal{X}$, $y\in C^+(h,a)$ and $z\in C^-(h,b)$, then the functions $h_1:[a,b)\to\mathbb{R}$, $h_2:(a,b]\to\mathbb{R}$ and $h_3:[a,b]\to\mathbb{R}$ belong

to \mathcal{X} , where $h_1 = h \cup \{(a, y)\}, h_2 = h \cup \{(b, z)\}, h_3 = h_1 \cup h_2$;

- (v) if $I \subset \mathbb{R}$ is an interval, $a \in I$ and $f|(I \cap (-\infty, a]) \in \mathcal{X}$, $f|(I \cap (-\infty, a)) \in \mathcal{X}$, then $f \in \mathcal{X}$;
- (vi) Const $\subseteq \mathcal{M}_a(\mathcal{X})$ and $-1 \in \mathcal{M}_m(\mathcal{X})$.

Then $\mathcal{M}_a(\mathcal{X}) \subseteq \mathcal{C}$, $\mathcal{M}_{\min}(\mathcal{X}) \subseteq \mathcal{X}$ lsc and $\mathcal{M}_{\max}(\mathcal{X}) \subseteq \mathcal{X}$ usc (hence $\mathcal{M}_{\ell}(\mathcal{X}) \subseteq \mathcal{C}$).

If moreover the class X fulfils the additional condition

(vii) if $f: I \to (0, \infty)$ and $f \in \mathcal{X}$ then $1/f \in \mathcal{X}$, then also $\mathcal{M}_m(\mathcal{X}) \subseteq \mathcal{M}$.

Let us observe that the family $\mathcal{X} = \mathcal{Q}\mathcal{D}$ does not satisfy the assumptions of Lemma 6 but it satisfies all assumptions of Lemma 7. Thus

- (a) $\mathcal{M}_a(\mathcal{QD}) \subseteq \mathcal{C}$,
- (b) $\mathcal{M}_{\min}(\mathcal{QD}) \subseteq \mathcal{QD}$ lsc and $\mathcal{M}_{\max}(\mathcal{QD}) \subseteq \mathcal{QD}$ usc,
- (c) $\mathcal{M}_m(\mathcal{QD}) \subseteq \mathcal{M}$.

Now we can prove the following theorem.

Theorem 2. We have the following equalities:

- (1) $\mathcal{M}_a(\mathcal{QD}) = \mathcal{C}$ onst,
- (2) $\mathcal{M}_m(\mathcal{QD}) = \mathcal{C}$ onst,
- (3) $\mathcal{M}_{min}(\mathcal{QD}) = \mathcal{QD}lsc$ and $\mathcal{M}_{max}(\mathcal{QD}) = \mathcal{QD}usc$.

Proof. Evidently, we have Const $\subseteq \mathcal{M}_a(Q\mathcal{D}) \cap \mathcal{M}_m(Q\mathcal{D})$. The inclusion $\mathcal{M}_a(Q\mathcal{D}) \subseteq C$ onst follows from Lemma 7 and from Cor. 1 (1). Hence $\mathcal{M}_a(Q\mathcal{D}) = C$ onst.

Now we shall prove that $\mathcal{M}_m(\mathcal{QD}) \subseteq \mathcal{C}$ onst. It is enough to prove that $\mathcal{M}_m(\mathcal{QD}) \subseteq \mathcal{C}$ and to use Cor. 1(2). Fix $f \in \mathcal{M}_m(\mathcal{QD})$ and suppose that f is not continuous, i.e. $I \setminus C(f) \neq \emptyset$. Since $f \in \mathcal{M}$, the set $A = I \setminus C(f)$ is nowhere-dense, f(x) = 0 for $x \in \overline{A}$ and f is continuous on every component of the set $I \setminus \overline{A}$. Since f is not continuous, f is not constant. Since $f \in \mathcal{D}$, rng(f) has the cardinality equals the continuum and consequently there exists a component f of $f \in \overline{A}$ such that $f \mid f$ is continuous and not constant. We apply Cor. 1(2) and obtain some quasi-continuous function $f \in \mathcal{A}$ having the Darboux property for which $f \cdot g \notin \mathcal{D}$. Thus there exists a function $f \in \mathcal{A}$ defined on the interval $f \in \mathcal{A}$ such that $f \in \mathcal{A}$ and $f \in \mathcal{A}$, which contradicts to $f \in \mathcal{M}_m(\mathcal{QD})$.

Now we shall prove (3). By Lemma 7 it follows that we need to prove the following two inclusions: \mathcal{QD} usc $\subseteq \mathcal{M}_{max}(\mathcal{QD})$ and \mathcal{QD} lsc $\subseteq \mathcal{M}_{min}(\mathcal{QD})$. To prove that \mathcal{QD} usc $\subseteq \mathcal{M}_{max}(\mathcal{QD})$ let $f \in \mathcal{QD}$ usc and $g \in \mathcal{QD}$. Since $\mathcal{M}_{max}(\mathcal{D}) = \mathcal{D}$ usc, $\max(f,g) \in \mathcal{D}$. By Lemma 4 it

follows that $\max(f,g) \in \mathcal{Q}$ and therefore $\max(f,g) \in \mathcal{QD}$. The proof that \mathcal{QD} lsc $\subseteq \mathcal{M}_{\min}(\mathcal{QD})$ is similar. \Diamond

Observe now observe that the family Q satisfies all assumptions of Lemma 6 (see [18]) and therefore,

$$\mathcal{C} \subseteq \mathcal{M}_a(\mathcal{Q}) \cap \mathcal{M}_m(\mathcal{Q}) \cap \mathcal{M}_{\max}(\mathcal{Q}) \cap \mathcal{M}_{\min}(\mathcal{Q}) ([11], [17]).$$

We have also the inclusion

$$\mathcal{C} \subseteq \mathcal{M}_a(\mathcal{A}) \cap \mathcal{M}_m(\mathcal{A}) \cap \mathcal{M}_{\max}(\mathcal{A}) \cap \mathcal{M}_{\min}(\mathcal{A}) ([14])$$

and consequently,

$$\mathcal{C} \subseteq \mathcal{M}_a(\mathcal{Q}\mathcal{A}) \cap \mathcal{M}_m(\mathcal{Q}\mathcal{A}) \cap \mathcal{M}_{\max}(\mathcal{Q}\mathcal{A}) \cap \mathcal{M}_{\min}(\mathcal{Q}\mathcal{A}).$$

Similarly,

$$\mathcal{C} \subseteq \mathcal{M}_a(\mathcal{QC}\text{onn}) \cap \mathcal{M}_m(\mathcal{QC}\text{onn}) \cap \mathcal{M}_{\max}(\mathcal{QC}\text{onn}) \cap \mathcal{M}_{\min}(\mathcal{QC}\text{onn}).$$

Moreover, the families QA and QConn satisfy all assumptions of Lemma 7. Thus we obtain the following theorem.

Theorem 3. Let K = A or K = Conn. Then the following equalities hold:

$$\mathcal{M}_a(\mathcal{QK}) = \mathcal{C}$$
, $\mathcal{M}_\ell(\mathcal{QK}) = \mathcal{C}$ and $\mathcal{M}_m(\mathcal{QK}) = \mathcal{M}$.

Proof. The first two equalities follow immediately from lemmata 6 and 7. In the third equality it is sufficient to prove the inclusion $\mathcal{M} \subseteq \mathcal{M}_m(\mathcal{QK})$. Fix $f \in \mathcal{M}$ and $g \in \mathcal{QK}$. Since $\mathcal{M}_m(\mathcal{K}) = \mathcal{M}$ ([14]), $f \cdot g \in \mathcal{K}$. By Lemma 5 we obtain that $f \cdot g \in \mathcal{Q}$. Hence $f \cdot g \in \mathcal{K} \mathcal{Q}$ and consequently $\mathcal{M} \subseteq \mathcal{M}_m(\mathcal{QK})$. \Diamond

Problem. For $K \in \{A, Conn\}$ find $\mathcal{M}_{max}(QK)$ and $\mathcal{M}_{min}(QK)$.

4. In this section we shall prove that the family QU is the uniform closure of the class of all quasi-continuous functions having the Darboux property. Functions which we shall consider are defined on the unit interval I = [0, 1].

Lemma 8. Assume that $f \in \mathcal{QU}$, $(J_n)_n$ is a sequence of pairwise disjoint open intervals and g is a function such that g(x) = f(x) for $x \in \bigcup_n J_n$, $g | \bigcup_n J_n$ is continuous and $f(J_n) \subset C^+(g|J_n, a_n) \cap C^-(g|J_n, b_n)$, where $J_n = (a_n, b_n)$, $n \in \mathbb{N}$. Then $g \in \mathcal{QU}$.

Proof. Note that the set $A = F(\bigcup_{n} J_n)$ is nowhere-dense and therefore $B = C(f) \setminus A$ is dense in I and f|B is dense in f. Additionally g is

continuous at each point $x \in B$. We shall verify that g|B is dense in g. Let $U = U_1 \times U_2$ be a neighbourhood of (x,g(x)) (obviously it is sufficient to consider only $x \in A$). Then g(x) = f(x) and since f is quasi-continuous, $(t,f(t)) \in U$ for some $t \in B$. If $t \notin \bigcup_n J_n$ then g(t) = f(t) and $(t,g(t)) \in U$. Otherwise $t \in J_n$ for some n. Then $a_n \in U_1$ or $b_n \in U_1$. Let e.g. $a_n \in U_1$. Since $f(t) \in C^+(g|J_n,a_n)$, there exists $s \in U_1 \cap J_n \cap B$ such that $(s,g(s)) \in U$. Thus g is quasi-continuous.

Now we verify that $g \in \mathcal{U}$. By Lemma 2(b) it suffices to observe that for every $x \in I$ the sets $C^-(g,x)$ and $C^+(g,x)$ are intervals and $f(x) \in C^-(g,x) \cap C^+(g,x)$. Assume that g is not continuous at x e.g. from the right. Then g(x) = f(x) and $C^+(f,x) \subset C^+(g,x)$. Moreover for $y \in C^+(g,x) \setminus C^+(f,x)$ there exists $t \in C^+(f,x)$ such that $[t,y] \subset C^+(g,x)$. Indeed, since $y \notin C^+(f,x)$, there exist sequences $(k_n)_n$ of positive integers and $(y_n)_n$ such that $y_n \in J_{k_n}$, $\lim_{n \to \infty} y_n = y$ and the sequence $(g(a_{k_n}))_n$ converges to some limit $t \in \overline{R}$. Then $t \in C^+(f,x)$. Since $f|J_{k_n}$ is continuous, $(f(a_{k_n}),y_n) \subset g(J_{k_n})$. Therefore $[t,y] \subset C^+(g,x)$. This proves that $C^+(g,x)$ is an interval and $g(x) \in C^+(g,x)$. \Diamond

Lemma 9. For each $f \in \mathcal{QU}$ and positive ε there exists $g \in \mathcal{QU}$ which is constant on no interval and such that $||f-g|| \leq \varepsilon$. Moreover, if f is of the Baire class α or measurable, then g may be taken from the same class.

Proof. Let $\{J_n \subset I : n \in \mathbb{N}\}$ be the family of all maximal open intervals on which f is constant. Let $J_n = (a_n, b_n)$ and let $f(J_n) = \{y_n\}$ for each $n \in \mathbb{N}$. Since $f \in \mathcal{U}$, we obtain $f(a_n) = f(b_n) = y_n$. For every n we define a continuous surjection $g_n : \overline{J_n} \to [y_n - \varepsilon, y_n + \varepsilon]$ such that $g_n(a_n) = g_n(b_n) = y_n$ and g_n is constant on no subinterval of J_n . Then the function $g: I \to \mathbb{R}$ defined by $g(x) = g_n(x)$ for $x \in J_n$, $n \in \mathbb{N}$ and g(x) = f(x) otherwise has the desired properties. Evidently $||f - g|| \le \varepsilon$ and g is constant on no subinterval of I. By Lemma 8, $g \in \mathcal{QU}$. Finally it is easy to verify that if f is of the Baire class α or measurable, then g is from the same class. \Diamond

Lemma 10. For every $f \in \mathcal{QU}$ and $\varepsilon > 0$ there exists a function $g \in \mathcal{QD}$ such that $||f - g|| < \varepsilon$. Moreover, if f is of the Baire class α or measurable then g may be taken from the same class.

Proof. By Lemma 9 we can assume that $f: I \to \mathbb{R}$ is constant on

no subinterval of I. Fix $n \in \mathbb{N}$ with $1/n < \varepsilon$. Since $f \in \mathcal{U}$, $T = \overline{f(I)}$ is an interval. Assume that $T = (-\infty, \infty)$ (the proof is similar when T = [a, b], $T = [a, \infty)$ or $T = (-\infty, a]$). Put $a_k = k/n$, $J_k = (a_k, a_{k+1})$, $A_k = f^{-1}(J_k)$ and $B_k = f^{-1}(a_k)$ for each integer k. Since f is quasicontinuous, f|C(f) is bilaterally dense in f and therefore we obtain the following conditions (for each k):

- (1) $A_k = G_k \cup K_k$, where G_k is a non-empty, open set, K_k is nowheredense, $G_k \cap K_k = \emptyset$ and $K_k \subset \overline{G_k \cap (x, \infty)} \cap \overline{G_k \cap (-\infty, x)}$,
- (2) B_k is a nowhere-dense subset of $\overline{(G_{k-1} \cup G_k) \cap (x, \infty)} \cap \overline{(G_{k-1} \cup G_k) \cap (-\infty, x)}$.

Fix an integer k. Let $(I_{k,m})_m$ be a sequence of all components of G_k . For every m we define a continuous surjection $g_{k,m}: I_{k,m} \to \overline{J_k}$ such that:

(3) the end-points of $I_{k,m}$ belong to $\overline{g_{k,m}^{-1}(y)}$ for each $y \in \overline{J_k}$.

Now we define the function $g:I\to\mathbb{R}$ by $g(x)=g_{k,m}(x)$ for $x\in I_{k,m}$ (for each k,m) and g(x)=f(x) otherwise. Evidently $||f-g||\leq 1/n<\varepsilon$. By Lemma 8, $g\in\mathcal{QU}$. To show that g has the Darboux property fix a< b with $g(a)\neq g(b)$ (e.g. g(a)< g(b)) and $g\in (g(a),g(b))$. Let g=(a,b). Obviously it is sufficient to consider the case when g=(a,b) is included in no interval g=(a,b). Because $g\in\mathcal{U}$, g=(a,b) is included in no interval g=(a,b). Then g=(a,b) is included in that g=(a,b). Since g=(a,b) is not a subset of g=(a,b). Since g=(a,b) is not a subset of g=(a,b). Let g=(a,b) for some g=(a,b). Let g=(a,b) is not a subset of g=(a,b). Let g=(a,b) for some g=(a,b) for some g=(a,b). Let g=(a,b) for some g=(a,b) for some g=(a,b) for some g=(a,b). Let g=(a,b) for some g=(a,b) for some

Finally let us assume that f is of the Baire class α and let $G \subset R$ be an open set. Then $g^{-1}(G) = \bigcup_{k,m} g_{k,m}^{-1}(G) \cup (f^{-1}(G) \setminus \bigcup_{k,m} I_{k,m})$ is clearly a Borel set of the additive class α . Hence g is of the Baire class α . Similarly we can prove that g is measurable if so is f. \Diamond

Theorem 4. A necessary and sufficient condition for f to belong to QU is that f be the uniform limit of a sequence of quasi-continuous functions having the Darboux property. Moreover, if f is of the Baire class α or measurable then the approximating functions may be taken to be Baire class α or measurable.

Proof. Because the families of all quasi-continuous, of the Baire class α , measurable functions are closed with respect to uniform limits (see [6] and e.g. [3]) and the uniform limits of sequences of Darboux functions

belong to the class \mathcal{U} [4], we obtain the sufficiency. The necessity is proved by applying Lemma 10. \Diamond

Corollary 2. The class QU is closed with respect to uniform limits.

References

- [1] BROWN, J. B.: Almost continuous Darboux functions and Reed's pointwise convergence criteria, Fund. Math. 86 (1974), 1-7.
- [2] BROWN, J. B., HUMKE, P. and LACZKOVICH, M.: Measurable Darboux functions, Proc. AMS 102/3 (1988), 603-610.
- [3] BRUCKNER, A. M.: Differentiation of real functions, Lecture Notes in Math. 659, Springer-Verlag, Berlin-Heidelberg-New York, 1978.
- [4] BRUCKNER, A. M., CEDER, J. G. and WEISS, M.: Uniform limits of Darboux functions, Coll. Math. 15 (1966), 65-77.
- [5] CEDER, J. G.: On factoring a function into a product of Darboux functions, Rend. Circ. Mat. Palermo 31 (1982), 16-22.
- [6] EWERT, J.: On quasi-continuous and cliquish maps with values in uniform spaces, Bull. Acad. Pol. Sc. Math. 32 (1984), 81-88.
- [7] FARKOVA, J.: About the maximum and the minimum of Darboux functions, Matemat. Čas. 21/2 (1971), 110-116.
- [8] FLEISSNER, R.: A note on Baire 1 Darboux functions, Real. Anal. Exchange 3 (1977-78), 104-106.
- [9] GIBSON, R. G.: Darboux like functions, Abstract of the lecture in Banach Center, 1989.
- [10] GRANDE, Z. and NATKANIEC, T.: Lattices generated by T-quasi-continuous functions, Bull. Acad. Pol. Sc. Math. 34 (1986), 525-530.
- [11] GRANDE, Z. and SOLTYSIK, L.: Some remarks on quasi-continuous real functions, *Probl. Mat.* (WSP Bydgoszcz), 10 (1990), 71-79.
- [12] GRANDE, Z. and SOLTYSIK, L.: On sequences of real functions with the Darboux property, *Math. Slovaca* 40 (1990), 261-266.
- [13] JASTRZEBSKI, J. M.: An answer to a question of R. Gibson and F. Roush, Real Anal. Exchange 15 (1989-90), 340-342.
- [14] JASTRZĘBSKI, J. M., JĘDRZEJEWSKI, J. M. and NATKANIEC, T.: On some subclasses of Darboux functions, Fund. Math. 138 (1991), 165-173.
- [15] KEMPISTY, S.: Sur les fonctions quasicontinues, Fund. Math. 19 (1932), 184-197.
- [16] NATKANIEC, T. and ORWAT, W.: Variations on products and quotients of Darboux functions, Real Anal. Exchange 15 (1989-90), 193-203.

- [16] NATKANIEC, T.: On the maximum and the minimum of quasi-continuous functions, Math. Slovaca 42 (1992), 103-110.
- [18] NATKANIEC, T.: On Cartesian products and diagonals of quasi-continuous and cliquish maps, to appear.
- [19] RADAKOVIČ, T.: Über Darbouxsche und stetige Funktionen, Monatsh. Math. Phys. 38 (1931), 117-122.
- [20] STALLINGS, J.: Fixed point theorems for connectivity maps, Fund. Math. 47 (1959), 249-263.
- [21] YOUNG, J.: A theorem in the theory of functions of a real variable, Rend. Circ. Mat. Palermo 24 (1907), 187-192.
- [22] BANASZEWSKI, D.: On some subclasses of DB_1 functions, *Probl. Mat.* (WSP Bydgoszcz), to appear.
- [23] BANASZEWSKI, K.: Algebraic properties of E-continuous functions, Real Anal. Exchenge 18 (1992-93), to appear.
- [24] KIRCHHEIM, B. and NATKANIEC, T.: On universally bad Darboux functions, Real Anal. Exchange 16 (1990-1991), 481-486.