Mathematica Pannonica

3/2 (1992), 97 — 106

w-JORDAN NEAR-RINGS 1

A. Benini

Facolta di Ingegneria, Universitd, I-25128 Brescia, Via Branze 9,
Italia.

S. Pellegrini

Facoltd di Ingegneria, Universitd, I-25123 Brescia, Via Branze 9,
Ralia.

Received January 1991
AMS Subject Classification: 16 Y 30.
Keywords: Near-ring, nilpotent near-ring, radical, invariant series.

Abstract: Let N be a zero-symmetric near-ring with an invariant series
whose factors are N-simple. We prove that the radical Jy (V) is nilpotent
and the factor N/J; (N) is a direct sum of a finite number of A-simple and
strongly monogenic near-rings. Moreover we characterize nilpotent near-rings

with invariant series whose factors are of prime order.

Introduction and general results

Many authors have studied near-rings containing particular chains
of ideals (see [5,8,10]) and have often shown the existence of links be-
tween these chains of ideals and the structure of the near-rings under
consideration. In this paper we begin a study of near-rings with an
invariant series whose factors belong to certain given classes. In par-
ticular we study here the zero-symmetric case; the general case and
the construction of finite near-rings satisfying these conditions will be
covered in future papers.

For the zero-symmetric near-rings with an invariant series whose
factors are N-simple, we obtain a result analogous to the Artin-Noether
theorem. We prove that a zero-symmetric near-ring IV with an invariant
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series whose factors are N-simple has the radical J2(NV) nilpotent and
the factor N/J,(V) is a direct sum of A-simple and strongly monogenic
near-rings. Moreover we discuss the finite case and characterize the
near-rings with an invariant series whose factors are of prime order.
We prove a necessary and sufficient condition so that N is nilpotent
and we establish a link between the nilpotence index and the length of
the series. In the case in which index and length coincide, we prove
that the order of N is a prime power.

In the following we will often refer to [12] without express recall.

Let N be a left near-ring. A finite system of subnear-rings of N
contained in one another

N=N;DN;D...DN, = {0}

is called a normal series of N if every subnear-ring N, 1 € {1,2,...,
n}, is a proper ideal in N;_1, an invariant series of N if every subnear-
ring Ny, @ € {1,2,...,n}, is a proper ideal of N. The factor-near-rings
N;i/Niy1 are called principal factors of the invariant series. For invariant
series, in the following, we will indicate Ni/Nit1, Ni/Niyq,... s Ni/Nigpg
respectively with N{, NI’ ..., N¥ and with fir fi's ..., fF the correspond-
ing canonical epimorphisms.
Let us consider now the following classes of near-rings:

So: class of simple near-rings ;

S1: class of simple and strongly monogenic near-rings ;

S2: class of Ny -simple near-rings (1);

S3: class of near-rings without proper subnear-rings;

54t class of near-rings of prime order.
Definition 1. A nearting N is a w-Jordan near-ring (wJ-near-
ring) if it has an invariant series whose factors belong to S,(w €
€{0,1,2,3,4}).
We can observe that in near-ring-theory the classes S; (i € {0,1,2,3,
4}) never coincide without further conditions while in ring-theory, for
instance, S; and S5 coincide. ,

In order to establish relationships between the classes Sw, let us

state some results that concern the near-rings belonging to S;. We
recall that: A near-ring N is Ny-simple if it is without proper additive
subgroups .S such that SN, C S.

1) we observe that if N is zero-symmetric, Np-semplicity and N-semplicity coin-
cide.
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Definition 2. A zero-symmetric near-ring N is A-simple if it is with-
out non-zero N-subgroups H such that HN = {0}.

Theorem 1. A near-ring N belongs to Sz iff N is a zero-ring of prime
order, a constant near-ring of prime order or an A-simple and strongly
MONOJenic NEar-ring . A

Proof. Let N be an Ny-simple near-ring. The constant and the zero-
symmetric parts are both Ny-subgroups of N, hence N is constant or
zero-symmetric . By [2] and Ex.3.9 p.78 of [12] a constant near-ring is
No-simple iff it is cyclic of prime order. If N is zero-symmetric either
nIN = {0} for every n € N, and thus N is a zero-ring of prime order,
or N is strongly monogenic and obviously A-simple. Conversely, if N
is a zero-ring of prime order or a constant near-ring of prime order,
then N is Ng-simple. Let N be an A-simple and strongly monogenic
near-ring. Let us suppose that M is a proper Ng-subgroup of N. Since
N 1s an A-simple near-ring, then M N # {0} and since N is a strongly
monogenic near-ring there is an element h € M such that RN = N.
Since M is an Ny-subgroup, AN is contained in M, a contradiction.
Thus N is Ng-simple. ¢

We observe that a zero-symmetric near-ring which is A-simple and
strongly monogenic is Blackett simple ([4]). ‘
Definition 3. A near-ring N is sirongly No-simple if its subnear-rings
belong to S,.

We will call 53 the class of the strongly Nyp-simple near-rings .
Theorem 2. If N is an Ny-simple near-ring and every subnear-ring
M of N satisfies the d.c.c. on the M-subgroups, then N is strongly
Ny-simple.

Proof. By Th.1, if N is a zero-ring of prime order or a constant
near-ring of prime order, then N is strongly Ny-simple. Let N be an
A-simple and strongly monogenic near-ring and let M be a subnear-
ring of N with d.c.c. on the M-subgroups. Our aim is to show that M
does not contain additive subgroups S so proving that SM C S. Let
us suppose S to be a proper M-subgroup of M. Since N is A-simple
then SN # {0}, thus there is an element s € S such that sN = N,
given that IV is strongly monogenic. Firstly we observe that r(s) = {0}
(where r(s) is the right annihilator of the element s). In fact r(s) # {0}
implies r(s)N # {0}, because r(s) is an N-subgroup of N and N is A-
simple; thus r(s)N = N and N = sN = s[r(s)N] = {0}N = {0} and
this is absurd. Moreover, since S is a proper M-subgroup of M, sM
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is strictly contained in M. We set M; = sM and consider sM;. It is
an M-subgroup of M strictly contained in M, in fact if 3M; = My, it
would be ssM = sM, that is s(sM — M) = {0}. Since r(s) = {0}, then
sM = M and this was previously excluded. In this way we obtain a
chain M D sMj D s2M; D ... which becomes stationary, due to d.c.c.
on the M-subgroups. Sirce this is excluded, M is M-simple. ¢
Proposition 1. If N is a w/-near-ring, then N i3 a (w — 1)J-near-
Ting. : :
Proof. We can easily prove that Sy C S3 C S C 51 C Sy and
consequently that a wJ-near-ring is a (w — 1)J-near-ring. ¢
Proposition 2. The classes Sy, (w € {0,1,2,3,4}) are closed under
homomorphisms and the classes Sy, (w € {3,4}) are closed under sub-
structures. . .
Proof. The near-rings belonging to S3 and Sy are without substruc-
tures and simple, so they do not have proper homomorphic images.
Moreover, if N' = ¢(N) is a homomorphic image of N, each proper N}-
subgroup (ideal) of N' derives from some proper No-subgroup (ideal) of
N, thus N € Sz implies N' € S5 (N € S implies N’ € Sp). Moreover,
if N is strongly monogenic and simple, then N' is strongly monogenic
and simple, therefore N € Sy implies N’ € S;. $

Hence, by Prop.6 of [1]: ‘
Proposition 3. The classes of the 3J-near-rings and of the 4J-near-
rings are closed under substructures, homomorphic images and Ng-
subgroups. 4

We should observe that the classes Sy, (w € {0, 1, 2}) are not closed
under substructures. In fact for example @ € S; but Z & Sy. Therefore
we cannot apply Prop.6 of [1] and, in fact, even if we can prove that
S3 is closed under Ny- subgroups, the class of the 2J-near-rings is not
closed under Np-subgroups.

2-Jordan near-rings

The following Th.3, which provides a necessary and sufficient con-
dition so that the class Sy is closed w.r.t. substructures, uses the
Th.1.33 of [11].

Let I be an ideal of a near-ring N and S a subnear-ring of N.
Then INS is an ideal of S, I 1s an ideal of [+S and I4S/1 is isomorphic
to S/INS.
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Theorem 3. A near-ring N has all its subnear-rings as 2J-near-rings
iff it contains an invarient series N = N;y O N, D ... D
D N, = {0} whose principal factors N! belong to S;.
‘Proof. Let N be a near-ring whose subnear-rings are 2J-near-rings.
So N is also a 2J-near-ring. Hence let us consider an invariant series

of N,
(a) N=N13N2'3...3Nn=={0}

whose principal factors belong to S3. In order to show that the principal
factors of () belong to S5, we will show that every subnear-ring M of
N; has the d.c.c. on the M-subgroups. Let M be a subnear-ring of
N{. Since M is a homomorphic image of a subnear-ring of N; and
consequently of N, by Proposition 2, it is a 2J-near-ring. Therefore
M has an invariant series M = My 2D M;... D M, = {0} whose
factors belong to S3. Hence these factors have the d.c.c. on the (M})o-
subgroups. By Th.1 and Ex a) of [1] we can deduce that M also has the
d.c.c. on M-subgroups. Thus N] belong to S; and every subnear-ring
M of N has the d.c.c. M. We apply Th.2 and N} € S3.

Conversely, let N be a near-ring with an invariant series N = N; D
D Nz D ... D N, = {0} whose principal factors N} belong to S5. We
can prove that the subnear-rings of N are 2J-near-rings. Let M be a
subnear-ring of N. We set M; = M N N; and we obtain an invariant
sericsof M : M =M, 2 M, 2...2 M, ={0}.

By the Theorem 1.33 of [11], Niy1 + M;/N;4 is isomorphic to
M;/Niy1NM; that coincides with M;/M;i . Therefore M/ is isomorphic
to Niy1 + M;/Nii1 and the latter is a subnear-ring of N}. Since N!
belongs to S5, M| belongs to Sz and M is a 2J-near-ring. <
Corollary 1. The class of finite 2J-near-rings is closed under sub-
structures.

Proof. It follows from Th.2 and 3, given that, in the finite case, the
d.c.c. hold. ¢ '

In the following NV will be a zero-symmetric near-ring.
Theorem 4. If N i3 a near-ring with an A-simple and stfongly mono-
genic ideal I such that N/I is a zero-ring of prime order, then N = I®J
where J = Jo(N).(®)

() J2(N) is the intersection of right annihilators of Ny-simple N-groups, see [12]
p- 136.
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Proof. Let I be a proper idecal of N, otherwise the thesis is trivi-
al.- Since N is zero-symmetric, I is an N-subgroup of N, therefore
IJ3(N) = {0} and J(N) # N, Jo(N) # I because I is A-simple.
Moreover J3(N) # {0}. In fact: if Jo(N) = {0}, then J2(I) = {0} and
I is 2-semisimple with d.c.c. on the right annihilators. Hence I has a
left identity e (see [2], [4], [12] p.- 146) and by Pierce decomposition
N = r(e) + eN. We observe that r(e) # {0}. In fact r(e) = {0}
implies N = eN C I and this is excluded. Moreover N/I is a zero-ring,
therefore [r(e)]? C I and hence [r(e)]? = {0}. In this way r(e) is a non
trivial nilpotent N-subgroup of N and therefore r(e) C J2(N) = {0}
(see [12] p. 153, [13]), a contradiction. Finally INJ2(N) = {0} because
I is simple and N = I + J3(N) because N/I is of prime order. Hence
N =18 Jy(N). $ '

The following theorem shows that, given a zero-symmetric near-
ring with an invariant series whose factors are in S5, it is possible to
construct another invariant series whose factors are in S; such that the
A-simple and strongly monogenic factors precede the zero-ring factors.

Theorem 5. Let N be a 2J-near-ring and N =Ny D N2 D...DO N, =
= {0} an invariant series whose principal factors are in Sa. If N! is
a zero-ring and N, is an A-simple and strongly monogenic near-ring
then there is an ideal M1 of N such that N; D Mty D Niyz, Ni/Mitq
is 1somorphic to Ni,, and Miy1/Niyo is isomorphic to N|.

Proof. Considering the near-ring N;', we set I = fI' (N;41). Given
that N{'/Nj,, is isomorphic to N} we have N{'/I isomorphic to N].
Therefore N!'/I is a zero-ring of prime order and I is A-simple and
strongly monogenic because it is isomorphic to N{, ;. Hence, by Th.4,
N = I @ J where J ~ N/ and therefore N/, ~ N/'/J. We set
Miys = (fi")° (J), that is Miy1/Nit2 is isomorphic to N!: Obviously
M;y; is an ideal of N; and Nij/Miy1 ~ (Ni/Nig2)/(Mit1/Niy2) =~
o~ N!'/J >~ I~ Niy1/Niys = N{,. Hence M;;; is a maximal ideal of
N;.

Now we can show that M;y; is an ideal of N: the near-ring
Niyq1 is an ideal of N, M;y; is an ideal of N;, hence Nijt1M;41 C
C Niy1 N M;y;. Moreover Nip1 N Mip1 = Nigz. Infact if z € N1 N
NM;y1, then -+ Niyo € N{,;NJ = {0} and this implies that z € N;4».
Thus N;y1 N My, C Ni+;., Obviously Ntz C Nip1 N M4, therefore
Ni+1 ﬂMi_H = 1V{42. We now set (Ni+2 : N,'+1)N = {m € N/N,'_,.lm g
C Niy2} = H which is an ideal of N (see [11]). We obtain M;y; C
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C H N N; and H N N; is strictly enclosed in N;, otherwise it would be
Nit1 N; € Nii2 and hence Niyq Nip1 © Nigo, but N[, is A-simple
and this is excluded. Hence M;+; = HNN;. Thus M1, as intersection
of two ideals of N, is an ideal of N. {
Theorem 6. A non nilpotent 2J-near-ring N, has the radical Jo(N)
nilpotent and the factor N/Jy(N) is @ direct sum of A-simple and
strongly monogenic near-rings. ’
Proof. By Th.5, if N is a zero-symmetric 2J-near-ring, we can con-
struct a new invariant series N = N; D N2 O ... D N, = {0} whose
factors are in Sz, such that, if N/ is A-simple and strongly monogenic
and N} is a zero-ring, then i < j. We set h € I, the smallest in-
dex such that N}, is a zero-ring. Obviously N} is nilpotent. Therefore
Ny C Jo(N). Moreover, if Nj # N, the near-ring N/N} contains an
invariant series whose factors are N-simple and hence 2-semisimple. By
Ex. f) of [1], N/N} is 2-semisimple and therefore J(N) C Nj. Hence
J2(N) = N, and the radical J,(N) is nilpotent. In this way N/J2(IN)
has an invariant series satisfying the hypotheses of Th.4 of [1], thus
N/J5(N) is the direct sum of A-simple and strongly monogenic near-
rings. ¢
The analogous, in ring-theory, brings us to the famous theorem

of Artin-Noether. In fact, rings with an invariant series whose factors
are in S,, are rings with an invariant series whose factors are without
right ideals(®) and hence are either fields or zero-rings. Thusin a ring A
satisfying the hypotheses of Th.6 the Jacobson radical J(A) is nilpotent
and the factor A/J(A) is a direct sum of fields. .
Corollary 2. Let N be a 2J-near-ring. Then P (N) = n(N) =
Proof. It can be easily demonstrated, since N has the d.c.c. on the
N-subgroups and J,(N) is nilpotent (see 5.61 p. 162 of [12]). ¢
If N is a finite near-ring, we obtain:
Corollary 3. Let N be a finite near-ring such that N # Jo(N). Then:
1. If N is a 2J-near-ring and the A-simple factors present in a principal

series are planar, then the additive group (N/J2(N))V is nilpotent;
2. If N is a 3J-near-ring, the-additive group (N/J2(N))T is abelian.
Proof. The group (N/J2(N))* is a direct sum of finite groups sup-

®) A ring having an invariant series whose factors are in S, is right artinian.

() For the definitions of P(N), n(N) and Jo(N) (v € {0,1,2,}) see [9], [11], [12].
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porting planar near-rings. Therefore, as shown in [3], (N/Jy(N))* is
nilpotent.

If N is a 3J-near-ring, the factors of the invariant series are with-
out proper subnear-rings. Therefore, as proved in [6], (see also [7])
they are p-singular(® and therefore their additive group is elementary
abelian, because they are simple. Thus (N/Jz(N))¥, being a direct
sum of elementary abelian groups, is abelian. <

4-Jordan near-rings

In this section we will study the 4J-near-rings with particular
reference to the nilpotent case. We recall that a near-ring N is nilpotent
if there is an index n € N such that N* = {0}. We will call g(N) the
least n € Nsuch that N = {0} and dim(V) the length of an invariant
series whose factors are in Sy,

Theorem 7. A near-ring N with an invariant series N = NiDN; D
D ... D Nn = {0} and whosc factors are in Sy is nilpotent iff N* C N,,
for every s € I,. | '

Proof. Let N be a nilpotent 4J-near-ring. We will show that, for
everyi € I, NN; C Niy1. If NN; € Ny, there is an element a € N
such that aN; € N;;,. Since aN; is a subnear-ring of N; and N;/N;4,
is of prime order, (aN; + Njt1)/Nit;1 is not a proper subnear-ring of
Ni/Niy1. Therefore, either aN; + Ny = Nit1 or aN; + Niyq = N,.
Given that aN; € Nii1, we have:

() alN; + Nit1 = N;

and a"N; = a"*1 N, + ahN,-+1. Let A’ be the smallest integer such that
a"'N; C Niy1. This h' exists and it is 2’ > 1 because otherwise, for
every t € N, it would be a'N; + N;y1 = N; and since N is nilpotent, it
would be N;1; = N; and this is excluded. Therefore, by (), we obtain
(l.h'N,‘ +ah'”‘1N,-+1 = ahl_lN,-, hence a.hl"lN,- C Ni41 in contrast to the
hypothesis stating that &/ is the smallest integer so that a* N; C Niy1.
Thus NN; C N;4; and consequently N* C N, for every s € I,,. The
converse is trivial. ¢

(5) For the definition of p-singular near-ring see [6].
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Corollary 4. If N is a nilpotent 4J-near-ring, g(N) < dim (N).
Proof. It is a consequence of Th.7. ¢

We can characterize the case in which g(N) = dim (V).
Theorem 8. Let N be a nilpotent 4J-near-ring and let N = N; O
DN;D...DN, = {0} a series whose factors are in'Sy. The length of
the chain and the nilpotence indez of N coincide iff N; = (Niyq : N)n
for everyi € I,,_4.
Proof. We set M; = (Niy1 : N)y = {n € N/Nn C N1} Let
g(N) = dim (N) = n. By Th.7, we have NN; C N;;; and hence N; C
C M;. If N; is strictly contained in M;, the series N D M; D N; O {0}
will be refinable (by Jordan-Hélder theorem) in a principal series where
M; = Nj with ;7 < 7. By Th.7, N7 C Wj and hence N7 C M;.
Therefore N7+t! C NM; C Niyi. Hence Nitlt(n—i=1) . yn—(i-j) —
= {0}. Given that g(N) = n, we obtain i-= j, that is M; = N; =N;.

Conversely, let us suppose N; = M; for every i € I,,_; and g(N) =
= h. Then N" = {0}, therefore N*=1 C (0: N)y = N,_1,infact N,,_;
is the right annihilator of N because Np_qy = M,_; = (Nn : N)n.
Analogously N*—2 C (Nn=1 : N)y = N,,_3 and so on. After a finite
number of steps we get N C Np_py1, thus N = Ny—ppiandn=h. &

Finally: .
Theorem 9. If N is a nilpotent 4J-near-ring such that g(N) =
= dim (N), then |[N| = p*, (p prime). ‘
Proof. We can prove this theorem by induction on g(N). If g(N) =
=2, N = N; D Ny = {0} is the principal series required and hence
| V] = p. Let us suppose the theorem proved for dim (N)=n-—1 and
let N =N; DNy D...D N, = {0} be a series of N whose factors are
in 5. Then |N/Ny—1| = p and we can suppose |N,—1| = ¢ (q prime).
By Th.7, N**2 N = N™~! C N,_,, therefore, for every m ¢
€ N2 mN C N,_; and given that N,_; is of prime order, either
mN = {0} or mN = Np_;. If mN = {0}, for every m € N"~2, then
N™~1 = {0} and this is excluded, thus mN = N,_; for some m € N.
Considering now the left translation v, : N — mN, we obtain an en-
domorphism of N+ whose kernel is r(m), the right annihilator of m
and whose image is N,_1. Therefore |im v,,| = | N/ker vp,| that is
q = |N/ker 71| Given that ker v = r(m) 2 r(N) = N,_;, either
|ker ym| = ¢ or |ker ym| = ¢f. Thus: ¢ = ¢p*/q¢? and this impliés
¢® = p® hencep=gq. ¢ '
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