REMARKS ON LOCALLY CLOSED SETS

M. Ganster

Department of Mathematics, Graz University of Technology, A-8010 Graz, Steyrergasse 30, Austria.

I.L. Reilly

Department of Mathematics and Statistics, University of Auckland, Auckland, New Zealand.

M.K. Vamanamurthy

Department of Mathematics and Statistics, University of Auckland, Auckland, New Zealand.

Received December 1991

AMS Subject Classification: 54 A 05, 54 A 10; 54 D 15

Keywords: Locally closed set, α -topology, semi-open set.

Abstract: This paper provides a useful characterization of $LC(X, \tau^{\alpha})$, i.e. the family of locally closed subset of (X, τ^{α}) , where τ^{α} denotes the α -topology of a topological space (X, τ) . In addition, we consider various statements about the family of locally closed subsets of an arbitrary space and examine the relationships between these statements.

1. Introduction and preliminaries

Recently there has been some interest in the notion of a locally closed subset of a topological space. According to Bourbaki [5] a subset S of a space (X, τ) is called locally closed if it is the intersection of an

open set and a closed set. Ganster and Reilly used locally closed sets in [7] and [8] to define the concept of LC-continuity, i.e. a function $f: X \to Y$ is LC-continuous if the inverse with respect to f of any open set in Y is locally closed in X. This enabled them to produce a decomposition of continuity for functions between arbitrary topological spaces. Later on, Jelić [9] extended their results to the bitopological setting by providing a decomposition of pairwise continuity and, quite recently, Balachandran and Sundaram studied several variations of LC-continuity in [4] and [13]. Finally, locally closed sets have been used by Aho and Nieminen [1] in their study of α -spaces and irresolvability.

In this paper we begin by characterizing $LC(X, \tau^{\alpha})$, i.e. the family of locally closed subsets of (X, τ^{α}) where τ^{α} denotes the associated α -topology of a space (X, τ) . Our first result points out that the family $LC(X, \tau^{\alpha})$ has already been investigated by Kuratowski [10] in a different context and, moreover, that $LC(X, \tau^{\alpha})$ coincides with the collection of δ -sets in (X, τ) [6]. We then move on to consider various statements about the family of locally closed subsets of an arbitrary space (X, τ) and examine the relationships between these statements.

Let (X, τ) be a topological space. For a subset S of X, the closure and the interior of S with respect to (X, τ) will be denoted by cl S and int S respectively.

Definition 1.1. A subset S of a space (X, τ) is called

- (i) semi open if $S \subseteq \operatorname{cl}(\operatorname{int} S)$;
- (ii) semi-closed if X S is semi-open, or, equivalently, if int $(\operatorname{cl} S) \subseteq S$;
- (iii) an α -set if $S \subseteq \text{int} (\text{cl (int } S))$;
- (iv) nwd (=nowhere dense) if int (cl S) = \emptyset .

The collections of semi-open sets, semi-closed sets and α -sets in (X,τ) will be denoted by $\mathrm{SO}(X,\tau)$, $SC(X,\tau)$ and τ^{α} respectively. Njåstad [11] has shown that τ^{α} is a topology on X with the following properties: $\tau \subseteq \tau^{\alpha}$, $(\tau^{\alpha})^{\alpha} = \tau^{\alpha}$ and $S \in \tau^{\alpha}$ if and only if S = U - N where $U \in \tau$ and N is nwd in (X,τ) . Hence $\tau = \tau^{\alpha}$ if and only if every nwd set in (X,τ) is closed. Clearly every α -set is semi-open and every nwd set in (X,τ) is semi-closed. Andrijević [2] has observed that $\mathrm{SO}(X,\tau^{\alpha}) = \mathrm{SO}(X,\tau)$, and that $N \subseteq X$ is nwd in (X,τ^{α}) if and only if N is nwd in (X,τ) .

Definition 1.2. A subset S of (X, τ) is called

(i) locally closed if $S = U \cap F$ where U is open and F is closed, or,

equivalently, if $S = U \cap \operatorname{cl} S$ for some open set U;

(ii) co-locally closed if X - S is locally closed, or, equivalently, if $S = U \cup F$ where U is open and F is closed and nwd.

We will denote the collections of all locally closed sets and colocally closed sets of (X,τ) by $LC(X,\tau)$ and $co\text{-}LC(X,\tau)$ respectively. Note that Stone [12] has used the term FG for a locally closed subset. A dense subset of (X,τ) is locally closed if and only if it is open. More generally, Ganster and Reilly [7] have pointed out that, if $S \subseteq X$ is nearly open, i.e. if $S \subseteq \text{int}(\operatorname{cl} S)$, then S is locally closed if and only if S is open. It is easy to check that (X,τ) is submaximal, i.e. every dense set is open, if and only if every subset of X is locally closed. Finally, spaces in which singletons are locally closed are called T_D -spaces [3].

No separation axioms are assumed unless explicitly stated.

2. Locally closed sets in α -spaces

Let (X, τ) be a topological space and let us denote by J the ideal of nwd subsets of (X, τ) . On page 69 in [10] Kuratowski defined a subset $A \subseteq X$ to be open mod J if there exists an open set G such that $A - G \in J$ and $G - A \in J$.

Proposition 2.1 (see page 69 in [10]). Let J denote the ideal of nwd sets in a space (X, τ) . Then

- 1) open sets are open mod J;
- 2) closed sets are open mod J;
- 3) if A, B are open mod J then $A \cap B$, $A \cup B$ and X A are open mod J;
- 4) $A \subseteq X$ is open mod J if and only if $A = U \cup N$ where U is open and N is nwd in (X, τ) .

In order to state our main result in this section we need some more definitions. A subset S of a space (X,τ) is called semi-locally closed [13] if it is the intersection of a semi-open set and a semi-closed set. A subset S of (X,τ) is said to be a δ -set in (X,τ) [6] if $\operatorname{int}(\operatorname{cl} S) \subseteq \operatorname{cl}(\operatorname{int} S)$. Theorem 2.2. Let A be a subset of a space (X,τ) and let J denote the ideal of nwd subsets of (X,τ) . Then the following are equivalent:

- 1) $A \in LC(X, \tau^{\alpha});$
- 2) A is semi-locally closed;
- 3) A is a δ -set;
- 4) $A = U \cup N$ where U is open and N is nwd in (X, τ) ;

5) A is open mod J.

Proof. 1) \Rightarrow 2): This is obvious since every α -set is semi-open.

- 2) \Rightarrow 3): Let $A = S \cap T$ where $S \in SO(X, \tau)$ and $T \in SC(X, \tau)$, i.e. $S \subseteq \operatorname{cl}(\operatorname{int} S)$ and $\operatorname{int}(\operatorname{cl} T) \subseteq T$. Since $\operatorname{int}(\operatorname{cl} A) \subseteq \operatorname{int}(\operatorname{cl} T) \subseteq T$, we have $\operatorname{int}(\operatorname{cl} A) \subseteq \operatorname{int} T$. Since $A \subseteq S \subseteq \operatorname{cl}(\operatorname{int} S)$ we have $\operatorname{int}(\operatorname{cl} A) \subseteq \operatorname{cl}(\operatorname{int} S)$. Consequently, $\operatorname{int}(\operatorname{cl} A) \subseteq \operatorname{cl}(\operatorname{int} S) \cap \operatorname{int} T \subseteq C$ $\subseteq \operatorname{cl}(\operatorname{int} S \cap \operatorname{int} T) = \operatorname{cl}(\operatorname{int} A)$. Hence A is a δ -set.
- 3) \Rightarrow 4): Suppose that int (cl A) \subseteq cl (int A) and let $U = \inf A$ and $N = A \inf A$. We will show that N is nwd. Clearly int (cl N) \subseteq \subseteq int (cl A), and since $N \cap \inf A = \emptyset$, we have int (cl N) \cap cl (int A) = = \emptyset . So int (cl N) = \emptyset , i.e. N is nwd.
- $4) \Rightarrow 5$): See Prop. 2.1.
- 5) \Rightarrow 1): Let A be open mod J. By Prop. 2.1., X-A is open mod J, so $X-A=U\cup N$ where $U\in \tau$ and N is nwd in (X,τ) . Hence $A=(X-N)\cap (X-U)\in LC(X,\tau^{\alpha})$ since $X-N\in \tau^{\alpha}$ and X-U is closed in (X,τ) and thus closed in (X,τ^{α}) . \diamondsuit

Corollary 2.3. $SO(X, \tau) \subseteq LC(X, \tau^{\alpha})$ and $SC(X, \tau) \subseteq LC(X, \tau^{\alpha})$ for every space (X, τ) .

Corollary 2.4. If $f:(X,\tau)\to (Y,\sigma)$ is quasi-continuous, i.e. the inverse image of every open set is semi-open, then $f:(X,\tau^{\alpha})\to (Y,\sigma)$ is LC-continuous.

Remark 2.5. In a recent paper [6], Chattopadhyay and Bandyopadhyay study the collection T^{δ} of all δ -sets of a space (X, τ) . Using Th. 2.2. one obtains straightforward proofs of many results in [6], e.g.

- 1) T^{δ} is the discrete topology if and only if (X, τ^{α}) is submaximal (since 1) \Leftrightarrow 3) in Th. 2.2.);
- 2) $(\tau^{\alpha})^{\delta} = T^{\delta}$ (since $(\tau^{\alpha})^{\alpha} = \tau^{\alpha}$);
- 3) $\tau = T^{\delta}$ if and only if every open set is closed.

Finally let us observe that (X, τ^{α}) is a T_D space if and only if every singleton is a δ -set in (X, τ) .

3. On the structure of $LC(X,\tau)$

The topic of this section is the relationship between the following properties of a space (X, τ) :

- (A) $SO(X, \tau) \subseteq LC(X, \tau)$;
- (B) co-LC(X, τ) \subseteq LC(X, τ);
- (C) $SC(X, \tau) \subseteq LC(X, \tau)$;

- (D) Every nwd set in (X, τ) is locally closed in (X, τ) . Theorem 3.1. For a space (X, τ) the following are equivalent:
 - 1) (X, τ) satisfies (A);
 - 2) $\tau = \tau^{\alpha}$;

3) $LC(X, \tau) = LC(X, \tau^{\alpha}).$

Proof. 1) \Rightarrow 2): Let N be nwd in (X, τ) . Then X - N is dense and semi-open in (X, τ) , hence, by assumption, locally closed. Thus $X - N \in \tau$ and so N is closed in (X, τ) . Hence $\tau = \tau^{\alpha}$.

2) \Rightarrow 3): This is obvious.

 $3) \Rightarrow 1$: Let $S \in SO(X, \tau)$. By Cor.2.3. we have $S \in LC(X, \tau^{\alpha})$. Thus $S \in LC(X, \tau)$ and so (X, τ) satisfies (A). \diamondsuit

Corollary 3.2. For every space (X, τ) , (X, τ^{α}) satisfies (A).

Our next result follows immediately from Prop. 2.1. and Th. 3.1. **Theorem 3.3.** For a space (X, τ) the following holds:

1) (A) *implies* (B);

2) (A) implies (C) implies (D).

We now provide examples to show that none of the implications in Th.3.3. can be reversed.

Example 3.4. Let $X = \{a, b, c\}$ and $\tau = \{\emptyset, \{a\}, X\}$. Then $LC(X,\tau) = \{\emptyset, \{a\}, \{b,c\}, X\} = \text{co-LC}(X,\tau)$. Hence (X,τ) satisfies (B) but fails to satisfy (A) since $\{a,c\} \in SO(X,\tau) - LC(X,\tau)$.

Example 3.5. Let $X = \{a, b, c\}$ and $\tau = \{\emptyset, \{a\}, \{a, b\}, X\}$. Then $LC(X, \tau) = \{\emptyset, \{a\}, \{b\}, \{c\}, \{a, b\}, \{b, c\}, X\}$ and $SC(X, \tau) = \{\emptyset, \{b\}, \{c\}, \{b, c\}, X\}$. Hence (X, τ) satisfies (C) but not (A) since $\{a, c\} \in SO(X, \tau) - LC(X, \tau)$.

Example 3.6. Let $X = \{a, b, x, y, z\}$ and $\tau = \{\emptyset, \{a\}, \{b\}, \{a, b\}, \{a, b, x\}, \{a, b, x, y\}, \{a, b, x, z\}, X\}$. If $Z = \{x, y, z\}$ then Z is a closed subspace of (X, τ) and the subspace topology $\tau | Z = \{\emptyset, \{x\}, \{x, y\}, \{x, z\}, Z\}$ is submaximal. Now, if $N \subseteq X$ is nwd in (X, τ) then $N \subseteq Z$ and $N \in LC(Z, \tau | Z)$ and, since Z is closed in (X, τ) , $N \in LC(X, \tau)$. Hence (X, τ) satisfies (D).

On the other hand, if $A = \{a, y\}$ then $A \in SC(X, \tau)$. We have, however, $x \in U \cap cl\ A$ for any open set U containing y, so $A \notin LC(X, \tau)$. Hence (X, τ) does not satisfy (C). \diamondsuit

In order to state and prove our final result let us say that a space (X, τ) is a T_1^* space if every nwd subset is a union of closed sets. Clearly every T_1 space is a T_1^* space, and the indiscrete topology on any set X having at least two points yields a T_1^* space which is not T_1 .

Theorem 3.7. For a space (X, τ) the following are equivalent:

- 1) (X, τ) satisfies (A);
- 2) (X, τ) satisfies (B) and (D);
- 3) (X, τ) is T_1^* and satisfies (B).

Proof. 1) \Rightarrow 2): See Th. 3.3.

- 2) \Rightarrow 3): Let N be nwd in (X,τ) and let $x \in N$. Then $\{x\} \in LC(X,\tau)$ by (D). Since (B) holds, $X \{x\}$ is locally closed and dense and so open. Thus $\{x\}$ is closed, and hence (X,τ) is T_1^* .
- 3) \Rightarrow 1): By Th. 3.1. we have to show that every nwd subset N of (X,τ) is closed. Let $x \in \operatorname{cl} N$. Since (X,τ) is T_1^* and $\operatorname{cl} N$ is nwd, $\{x\}$ is closed and so $\operatorname{cl} N \cap (X \{x\}) \in \operatorname{LC}(X,\tau)$. Since (B) holds, $\{x\} \cup (X \operatorname{cl} N)$ is locally closed and dense, hence an open neighbourhood of x. Consequently $N \cap (\{x\} \cup (X \operatorname{cl} N))$ is nonempty and so $x \in N$. Thus N is closed. \diamondsuit

Corollary 3.8. In general, the statements (B) and (C) are independent of each other.

Corollary 3.9 [1]. Let (X, τ) be a T_D space satisfying (B). Then (X, τ) satisfies (A).

Proof. It is easy to show that (X, τ) is T_1^* . Now apply Th. 3.6. \diamondsuit

References

- [1] AHO, Tr and NIEMINEN, T.: On α -spaces, PS-spaces and related topics, Preprint.
- [2] ANDRIJEVIĆ, D.: Some properties of the topology of α -sets, Mat. Vesnik 36 (1984), 1 10.
- [3] AULL, C.E. and THRON, W.J.: Separation axioms between T_0 and T_1 , Indagationes Math. 24 (1962), 26 37.
- [4] BALACHANDRAN, K. and SUNDARAM, P.: Generalized locally closed sets and GLC-continuous functions, Preprint.
- [5] BOURBAKI, N.: General Topology Part 1, Addison Wesley, Reading, Mass. 1966.
- [6] CHATTOPADHYAY, Ch. and BANDYOPADHYAY, Ch.: On structure of δ -sets, Preprint.

- [7] GANSTER, M. and REILLY, I.L.: A decomposition of continuity, Acta Math. Hungarica 56 (3-4) (1990), 299-301.
- [8] GANSTER, M. and REILLY, I.L.: Locally closed sets and LC-continuous functions, Internat. J. Math. & Math. Sci. 12 (3) (1989), 417 424.
- [9] JELIĆ, M.: A decomposition of pairwise continuity, Jour. Inst. Math. & Comp. Sci. (Math. Ser.) 3 (1) (1990), 25 29.
- [10] KURATOWSKI, K.: Topology Vol. I, Academic Press, New York, 1966.
- [11] NJÅSTAD, O.: On some classes of nearly open sets, *Pacific J. Math.* **15** (1965), 961 970.
- [12] STONE, A.H.: Absolutely FG spaces, *Proc. Amer. Math. Soc.* 80 (1980), 515 520.
- [13] SUNDARAM, P. and BALACHANDRAN, K.: Semi generalized locally closed sets in topological spaces, Preprint.