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Abstract: The variety of implication algebras is a minimal quasivariety.
It is 3-filtral but not 2-filtral. An implication algebra A is tolerance-trivial
M (A4, <) is a lattice, where the partial ordering /<" is defined as follows:
a<b<s dz € Asuchthat b=z -a.

1. Introduction

Implication algebras are groupoids with a simple binary operation,
which yields a partially order. This derived order structure can be
considered as a generalization of Boolean lattices (see Prop.2).
Definition 1 ([1], [9]). A groupoid ( 4,-) is called an implication
algebra if the operation ” - ” satisfies the following axioms:

(a-b)-a=a
(a-b)-b=(b-a)-a
a-(b-¢c)="b-(a-c).
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Example. If (B,V,A,0,1,7) is a Boolean algebra then (B,—) and
(B,/), wherea — b=a"V banda/b=a" A bior all a,b € B, are
both implication algebras.
Remark. If the algebra above is the Boolean algebra of propositional
calculus then ”—" represents ordinary implication. '
Implication algebras are examples of algebraic varieties which are
9-permutable, 3-congruence distributive and J-congruence modular but
are not cither congruence permutable or 2-distributive or 2-modular: [9],

[4].

In this paper we shall prove a new property of implication alge-
bras, namely that they are §-filtral but not 2-filtral (§2) and we shall
characterize those implication algebras on which every compatible tole-
rance is a congruence (§3)

Let us first review a few concepts:

A variety V is congruence permutable (congruence §-permutable) if O 0
00, =0200; (0;00200;,=0,00;0 0,) for any two congruences
0,0, € Con A and forany A € V (where” o” is the relational product
of congruences); 3-congruence modularity and J-congruence distributi-
vity mean that the systems of equations of H.P. Gumm and B. Johnson
respectively for congruence modularity and congruence distributivity
consist of at least 3+1 terms.

For example 3-distributivity means that the following system of
equations (where n,i € N; ¢o,q1,...,qn are 3-variable terms): :

‘10(-"3,3/,3) =, qn(ﬂ:,y,z) =z
(1) q,‘(a:,y,m) =z, 0<Z 1<n

q,'(x,z,y) - Qi-l-l(xax,y)v : even
ai(z,y,y) = ¢i+1(2,v,y), ¢ odd

must contain at least 3+1 terms, i.e.: n = 3.
For implication algebras these terms are:

QO(m,y,Z) =z, q;;(:L‘,y,Z) =2z

(2) q1(rc,y,z)=[y-(z-.r)]-n:, Q2($,y,z) :(m'y)'z

for all z,y,2z € A.
Filtral varicties can be defined using the notion of product con-
gruence:
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Let A be the subdirect product of algebras A; (z € I) and let a;
denote the i-th component of a € A belonging to 4;. A congruence
@ € Con A, is called the product of the congruences w; € ConAj, 1 € I
if ap b exactly when a; p; b; for all 2 € I. We write ¢ = HieI Y-
Definition 2 ([7],{8]). A variety V is called an idcal variety iff for all
A €V cvery compact congruence on A is a product congruence.
Definition 3 ([7],[8]). A variety V is called filtral if it is an ideal
variety and it is semi-simple 1.e. all its subdirect irreducible algebras
are congruence-simple.

We shall denote the class of subdirect irreducible algebras of a va-
riety V by SIV, and the variety of implication algebras by V(I). E.Fried
and E. Kiss [5] gave the following characterization of filtral varieties b
term functions (see also [8]): '
Theorem ([5],[8]).: A varicty V is filtral iff there is ann € N and there
are §-variable terms fo, fi,...,fn (n > 1) such that for any z,y,z in
any algebra of V we have:

(a) fU(mvyaz) =T, Afn(m,yaz) =z,
(b) fi(z,y,a&) ==z, (forall i:0<17<n),

(3) (C) f,-(:z:,:c,z) = f,‘+1(.’13,:l,',2), fOT i cven,
(d) for all A€ SIYV and =z,y,z2€ A, z# y:

fi(mayaz) = fi+1($ayaz)a fOT‘ i odd.

Proceding in the same way as in characterization of congruence
modular and congruence distributive varieties by a system of term equa-
tion, we can use the following concept:

Definition 4. According to the theorem above, if the system (3) of
equations for V needs at least n -1 terms, then V is called n-filtral. Eg.
Vis 3-filtral if n = 3 and fy, f1, fa, f3 satisfy conditions (3).

Let us now list some properties of implication algebras:
Property 1 ([1}). Let be A an implication algebra. We can define an
partially ordering relation ”<” on A as follows:

a<b&edreA:b=2x-aq.

J.C.Abbott has shown [1] that this relation is isotone on the left and
antitone on the right with respect to ”-” (i.e. Ve € A,ifa<b:ca<c'b
and a - ¢ > b - ¢); furthermore (4, <) is a semilattice with identity, i.e.
sup{a,b} = (a-b) - b exists for all a,b € A and there is an element
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1€ Asuchthat z <1forallz € A. ”<” can be defined using 1, since
a<b&a-b=1.

Property 2 ([1]). I (4, <) is the semilattice corresponding to the
implication algebra (A,-), then every principal filter ({z|z > a}, <)
is a Boolean lattice. Vice versa in every semilattice with the above
mentioned property one can define a binary operation ”-” for which
(A,-) is an implication algebra in the following way:

a-b=(aV b

where (a V b); denotes the complement of a V b in the Boolean lattice
(el 2 B}, <), |

Property 3 ([1]). For a pair a,b € A, inf {a,b} exists exactly when
{a,b} has a common lower bound ¢ € A. In that case inf {a,b} =
=[a-(b-c)]-c.

Remark ([1]). (A, <) is a Boolean lattice iff it has a least element,
denoted by 0 (0 < z, for all z € A). '
Definition 5 ([1]). If (4,-) is an implication algebra and if the derived
partially ordered set (4, <) is a lattice (i.e. for all a,b € Ainf {a,b} =
= aAb exists), then (4, <) (and (A4, -, <) as well) is called an smplication
lattice.

2. The variety and congruences of implication
algebras

One of the most notable properties of implication algebras is that
is a one-to-one correspondence between their congruences and their
filters.

A subset F' C A of a partially ordered set (4, <) is called a filter
ifforalla€ Fandz € A,z > a= 2 € Fandifinf {z1,22} = 21 A 22
exists for 1,7, € F, thenzy A 2, € F. E.g. [a] ={z € Alz < a} is a
filter, called the principal filter belonging to a. By Property 1 if a # b
then [a] # [b].

One can easily show that the intersection of a given family { F;}ier,
I 5 § of filters of (A, <) is also a filter; [];c; Fi can be defined as the
intersection of all filters containing the set Uie ; Fi. If 74 denotes the
set of all filters of an implication algebra (4, -), then (Fa, [, N, 4,{1})

is a distributive complete lattice with 1 and 0.




The congruence laliice of implicalion algebras 119

From now on let Ofa] denote the congruence class of © belonging
toa € A,ie: Ola] ={z € Alz O a}.
Property 4 ([1]). The mapping i : Con A — Fu, i (©) = O[1] i3 an
isomorphism between (Con A, A,V,14,04) and (Fa,),11,4,{1}). For
any F € Fa, 171 (F) = Op, where a Opb < a-b, b-a € F(:7! denotes
the inverse of the mapping ¢).
Proposition 1. The variety of implication algebras i3 ¢ minimal qua-
sivariely.
Proof. We begin by showing that V(I) has only one subdirect irre-
ducible algebra, namely the 2-element one.

Let A € SIV(I), v its monolit, and F, the filter belonging to 7.
Since v < © for all © € Con A(© # 04), therefore F, C (), ¢4 [z] and
so there exists an a € Fy such that Fy = [a] = {1,a} and

(4) a>zforall z € A\ {1}.

Suppose now that there exists an z € A\ {1} such that z # a.
Since ([z], <) is a Boolean lattice (see Prop.2) and « € [z], therc exists
an a_ € [z] such that " Aa=z,and a”V a=1.

Now (4) gives ¢~ < a # 1 - which is a contradiction. Thus 4 =
{1,a}, i.e. A has two elements. .

Two element implication algebras are isomorphic to each other
and so SIV(I) contains only one non-trivial algebra (and this one is
congruence and subalgebra simple at the same time).

A locally finite variety V is a minimal quasivariety exactly when it
has only one SI algebra and this can be embedded into every non-trivial
B eV (see [2], Cor.2).

By [1] the number of elements in any free implication algebra
generated by n elements is at most 22" . Therefore any finitely generated
implication algebra is finite and so V(I) is locally finite.

On the other hand for every nontrivial B € V(I) and z € B, z #
# 1, {1,z} is a two-element subalgebra of B and thus V(I) satisfies all
previous conditions. ¢
Corollary 1. Every implication algebra (A,-) 13 a subdirect power of
two element implication algebra ({1,a},").

Theorem 1. The variety of implication algebras i3 3-filtral but not
2-filtral.

Proof. Assuming that V(I) is 2-filtral means there are three 3-variable
terms fo, f1, f2 sufficient for V(I) in the system (3) of equations. But in
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this case from (3) we get that V(I) is 2-distributive, contradicting [8].
To prove that V(I) is 3-filtral we shall use the terms go,q1, 92,43
from (2)-which were used first for distributivity. Let us check the iden-
tities of (3):
(a) is clear;
(b) qi(z,y,2) ==z, 0<i<2 (by distributivity - (1));
(c) From (1) we have qo(z,7,2,) = qi(z,z,2) and gq(z,z,2) =
= 32,2 2);
(d) Let z,y, 2z be clements of the subdirect irreducible algebra ({0,1}, :)
and let = # y:
If z =0andy =1 then ¢;(0,1,2) =[{1:(2-0)]-0=(2-0)-0=
=sup {2,0} = 2, ¢2(0,1,2) =(0-1) - z = z;
If £ =1and y =0 then ¢;(1,0,2) =[0-(2-1)] -1 =1, ¢2(1,0,2) =
=(1-0)-2=0-z Since0:0=1and 0-1=1, wehave 0- 2z = 1.
To sum up: if z # y then ¢i1(z,y,2) = ¢2(z,y,2) and so all the
identities of (3) are satisfied. ¢
Corollary 2. Every compact © € Con A(A € V(I)) has a complement.
Proof. By [7] (and [8]) if V(I) is filtral then every compact congruence
on V has a complement. ¢
Let Con® A denote the lattice of compact congruences of A ;
Con™ A is the same lattice together with the element "14” and let
B(Con*s A) be the Boolean lattice generated by Con*® A. (This one
always exists, see [6]). Denoting the complement of © € Con 4 by 07,
let us define the opecration ” *” on Con A as follows: @ xp =0~ V o.
(This way we obtain from B(Con* A) an implication algebra in which,
by [1], (4,-) can be dually embedded). Let ©, denote the congruence
belonging to the principal filter [a] (a € A), (and at the same time to
the element a € A as well).
Proposition 2. Let (4,-) be an implication algebra and (A, <) the
derived partially ordered set. The following statcments are equivalent:
(1) (4,<) is a Boolean lattice;
(i1) (A, <) and (Con™ A, <) are dually order-isomorphic;
(iii) (4,-) and (B(Con* A),*) are dually isomorphic implication alge-
bras.
Proof. (i) = (ii) by [11]. (For a more general construction see [6]).
(ii) = (i) and (iii) = (ii): Since Con®® A and B(Con* A) both
have a greatest element, (4, <) has a least element and therefore by [1]
it is a Boolean algebra.



The congruence latlice of implication algebras 121

(i) = (ii): If © € Con™ A, then © can be written as a finite
union of principal filters [a],...,[a,] (a1,...,a, € A, n € N). Since
(4,<) is a lattice, [a1] II... I [a,] = [a1 A ... A an] and therefore O[1]
is a principal filter, i.e. there is an ae € A such that [ag] = O[1].

If @ denotes the complement of a and O the corresponding con-
gruence then [a] N [@] = {z|r > a and z > @} = {z|z > 1} = {1}, so
O, ANOz =04 and [a]U[E =[aAE =[0] = A, ie: O,V Oz =14.
Hence O, and ©F are complements of each other; furthermore since for
all © € Con® A there is an a € A such that O, = 0, 6 € Con® A4 holds
as well (for all ©® € Con®A). However, this means that Con™ A =
= B(Con™ A) and by (i)& (ii) (4, <) and (B(Con** 4), <) are dually
order isomorphic Boolean algebras. But in that case, by [1] again, they
are dually isomorphic as implication algebras. ¢

3. Reflexive, compatible relations on implication
algebras

A compatible relation p < A x A on (4,-) is called a compatible
tolcrance if p is reflexive and symmetric ([3]).
Definition 6 ([3]). An algebra A € V is called tolcrance-trivial ('T-
trivial) if every compatible tolerance on A is a congruence (i.e. transi-
tive as well).
Theorem 2. Let (A,-) be an umplication algcbra. Then the following
statements are equivalent:
(1) Every reflezive compatible relation on (A,-) 18 a congruence;
(1) (A4,-) s tolerance-trivial;
(i) (A4, <) 18 an mplication lattice.
Proof. (i) = (ii) is clear. -

(i1) = (iii): Let us define a relation p as follows: apb < there
is a k € A such that @ > k and b > k. By definition p is reflexive
and symmetric. Let us show that p is compatible as well. Consider
cpd(c,d € A). This means that there is an [ € A such that ¢ > [
and d > I. Then ca > a > k and db > b > k, while ac > ¢ > [ and
bd > d > I, thus capdb and acpbd, ie.: p is compatible. By (ii) pis a
congruence and 1pa for any a € A. Therefore p = 14. However, this
means that for any a,b € A, {a, b} has a lower bound m € A. By Prop.3
of [1] inf {a, b} exists for all a,b € A and hence (4, <) is an implication
lattice. :
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(iii) = (i):. Let us now assume that (A,-) is an implication
lattice. Using the idea of [4] (Th.8) first we show that if (4,<) is a
Boolean lattice then it satisfies (1). Indeed in that case thereisa 0 € A
such that 0 < z for all z € A and by [1] again the complement of a,
denoted by @, can be obtained as @ = a-0. Since aVb = (a-b)-b,aAb =
=[a-(b-0)] -0, every compatible relation on (4, -) is also a compatible
relation on (A, A, V,1,0,7). But since this algebra belongs to a Mal’cev
variety all its reflexive compatible relations are congruences [3].

Now let (A4, -) be an implication lattice and p a compatible reflexive
relation on A. Let apb,bpc (for a,b,c € A). Then (a Ab)Ac = d exists
and it is the greatest lower bound of {a,b,c}. The restriction of ” -7
to the principal filter [d] is a Boolean algebra (with ”0” element d) and
a,b,c € [d].

On the other hand the restriction of p to [d] is also compatible
and reflexive and thus it is also a congruence on ([d],-). But this means
that apb=>bpaand apb,bpc = apc. In conclusion p is a congruence
on (4,-) as well. ¢
Corollary 3. Lct (A,-) be an implication algebra. If the derived struc-
ture (A, <) 1s an implication lattice, then the congruences of (A,-) per-
mutc.

Proof. In this case (A,-) is tolerance-trivial by Th.2. According to
[10] every tolerance-trivial algebra has permutable congruences. ¢
Corollary 4. For a finite implication algebra (A,-) the following state-
ments are cquivalent:

(i) The derived partially ordered set (4, <) is a Boolean lattice;

(ii) (A,-) is tolerance-trivial;

(ii1) (A,-) end (Con A, ) arc dually isomorphic;

(iv) (A, <) and (Con A, <) are dually order isomorphic.

Proof. The proof is bascd on the fact that if A is finite then all
its congruences are compact and so Con A = ConA = Con*“ A =

= B(Con™® A). Applying Prop.2 we get Cor.4.
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