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Abstract: The equivalence of various definitions of the S-asymptotic and of
the quasiasymptotic are proved. The use of them are given in the comments

after the main theorems.

1. Introduction

In the last twenty years many aspects of the asymptotic behaviour
of distributions have been elaborated and used. Between them the im-
portant are the quasiasymptotic and the S-asymptotic which play a
special role in investigations of the asymptotic behaviour of generalized
functions’ integral transforms. The quasiasymptotic has been elabo-
rated in [12] and for the S-asymptotic it is done 1n [6]. In the both
cited books and in the references given there, one can find applications
of these notions. For the application of the quasiasymptotic expansion
we refer to [6], [12] and [13].
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Our aim is to give several equivalent definitions for these two
notions of the asymptotic behaviour of distributions. They are useful in
many different cases. We shall point out some of them in the comments
of Theorems 1 and 3.

All the results of the paper are given in the one-dimensional case.
They can be proved also in the many - dimensional case by using a
cone I' instead of the interval [0,00), but the assertions in this case
have more complicated forms.

2. Notation

D' is the space of Schwartz distributions S, is the space of tem-
pered distributions with support in [a,00), a € R; 'S[Ioioo) .= 84. The
Laplace transform of T € S ! is defined by ‘ﬂ\

T(z) = LIT|(z) =(T(t), '), 2eR+ iRy - (R'*’f: (0,00)).

The class of distributions fa, o € R, belonging toi S’ , is defined
by:

(&)1 /I'(a), a>0,
7 ), @a<0,a+m>0,neN,

(2~1) fcv(t) = {

where 6(t) =1, ¢ > 0; 6(t) = 0, t < 0. We denote: f(-m) — fm * f,
m € R (* is the sign of convolution); f_, = §(™ n €N, f; = §. There
holds fo * f5 = fotp, a,8 €R. Let an, n € N, be positive numbers
such that ap, — 0, n — oo, and let
5n€C°°,supp5nC[—an,ozn], bn 20, /5n(z)dm:1, n€N.
Then, the sequence {6,} is called a é-sequence ([1], p. 75). If p € D,
then §, * ¢ —  in D; hence {6n * ©; n € N} is a bounded set in D.
In the sequel, we shall use the class of slowly varying functions.

A function L € L}, is a slowly varying one if L(z) > 0, z*\ > 0, and if
(2.2) uli_'n;lo LL((Zt)) =1, foreveryt >0. %

We know ([9], Chapter 1.5) that if Ly(z) = o0, z — oo and Ly, L, are
slowly varying functions, then L; o L, is slowly varying one, as well.
Hence, forz ¢ R

\
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. L{z + h) . L(tnut)

2. ! = —— 7 -
(23)  Jlim L(h) ~ wtoo L(lnw) — 1
If z belongs to a compact set, then the limit (2.3) is uniform in z (9],
Chapter 1.2).

t>0,z>—cc.

3. S-asymptotic in D’

The S-asymptotic of distributions has been appeared as a useful

notion in the theory of generalized functions and its applications [6].
We shall repeat the definition of it:
Definition 1. Let T belong to D' (to S') and c(h), h > hy be a
positive measurable function. It is said that T has the S-asymptotic at
infinity related to ¢, with the limit g#0in D' (in §') if for every ¢ €
€ED(eS) )

(3.1) Jim ( % #(2)) = (9(2), p(2)) .

We shall write in shbrt_ T ~cg, h— oo, in D (in S"). Since
(32)  (T*)(h) = (T(z +h),d(z)), heR, $(z) = ¢(-z),

the S-asymptotic can be defined in an equivalent form: If for every
# €D (¢ € S) there exists Cy € R such that

(3.3) hlim (T:(# = Cy, where Cy # 0 for some ¢ € D.

Relation (3.1) implies (3.3) in a trivial way. By the equality of the weak
and the strong sequential convergence in D', (3.3) implies (3.1).
We know ([6], p. 85) that ¢ and g from Def. 1 have the form:
c(h) = exp(ah)L(exp k), h > ho, g(z)= Mexp(az), z¢€ R,
where M and a belong to R, M £ 0.
Theorem 1. Let T € D' and c(h) = exp(ah)L(exph), h > hy. The
following conditions are equivalent:
(a)
L T(.+h)
h—co C(h)

(b) For every ¢ € D,

=Mexp(a.), n D', M#0.
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lim ——————(T *9)(.+ 1)

Jim (k) — Mgexp(a.) in D',

where
My :.M/ e“té(t)dt, MF#0.
R

(c) For a é-sequence {6,} there ezists a sequence {My,} from R, such
that My, — M # 0, n — oo, and

lim Mih_) = M, exp(a.),

(3.4) h—co c(h)
in D', uniformly for n € N.

(d) There are functions Fi, i =.0,....,n, which are qontinuous on
(a,0), a € R, stch that for everyi=0,...,n, * i :
. Fi(z +h) o
iexplaz), h—oco,;
exp{ah)L{exp i) — ciexplaz) - 3

W
n . H
uniformly for z € (a,b), a < b < oo, Y.ciat = M £ 0, and the
=0 . ]

restriction of T on (a,00) is of the form T = > D’Fz

1=0
(e) For a §-sequence {6,}, /
lim M =pn, n€N, where p, 7#0 for some n,
oA
and for every ¢ € D, '
(T + ¢)(R)
sup
kzlo C(h)

Proof. (a) = (b). Using the properties of confrolution, for every v € D
we have

. (T *¢)(z+h) _ o JT(@4h)
i, (g vte) = i (S eike)
(3.5) = (Me®,( #)(z)) = M((e* * ¢)(z),b(z)) 2

=M / e p(t)dt(exp(az), p(z)) . !
R R
(b) = (a). This can be derived as a consequence of Th. XXIII in

[8], Ch. VI, but we shall give a direct proof which is more elementary.
It is proved in [7] that any ¢ € D, can be written in the form ¢ =



Structural theorems for the S-asymplotic ... 27
=1 x4 oy * 01, where 1);, and 0i,1=1,2,... k, are from D.
This implies

lim <T(:(\:)h),¢(z)> -

h—o0
k ~
: (T *i)(z + h)
(3.6) = Jim 5 °( T b)) =

=1

k
=D My (e, 6:(z))
i=1

Since in D’ the weak and the strong sequential convergence are equal,
there exists a ¢ € D' such that lim:t (3.6) is equal to (9,¢). But we
know that g has the form g(z) = Meo® z ¢ R, M #0.

(a) = (c). Let {6,} be a é-sequence. For any ¢ € D, {6.%d; n ¢
€ N} is a bounded set in D. We have

(T *8)(z+h)
hl-l-»n; < c(h) ’¢($)> =
3.7 . /T(z+h) .
&0 = fim (T G 9e)) =

= (Me®® (8, + ¢)(z)) = (Mne®® | ¢(x)) .

By using the equivalence of the strong and the weak sequential conver-
gences in D', it follows that relation (3.7) implies (3.4) and (c).
~(c) = (a). Let ¢ € D and

an,h=<%£;+m,¢(a:)> :W, neN, A>0.

We have Gn,h = Qn, b — oo, uniformly for n € N, where
an = My(exp(az),d(z)), n € N,

On — q = M(exp(ae:z:),c/)(:z:)), n — oo.
Also anp — ap, n — 00, where q; = (T(C?;sh) ,#0(z)), b > 0. This
implies ap — a, b — oo, what is in fact (a).

(d) = (a). If two distributions Ty and T; are equal on some
interval (@, ) and 7y has the S-asymptotic related to ¢ with the limit
g, then the same holds for T3, as well. Hence, we can take T — 0 on
(—o0,a). Fora g € D, suppyp C K and h large enough, we have
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z+h
<exp(1;(lz)z_(e>2p h) ’SO(I)> -

= ] M—_ o2\ dr —
‘;; K exp(ah)L(h)( 1)'e™(z)d

— Z alei(e®® yo(z)), h — oo.
=0

(a) = (d). This follows from the structural theorem (see [10]),
but we can give a direct proof. Since T has the S-asymptotic related to
c(h) = exp(ah)L(exp h), h > 0, the set {T(H_h) ; h 2> 0} is bounded

c(h)
in D'. For every ¢ € D, { Lth) oo 7h >0} is a bounded set of
: ¥ ' Tty FP

regularizeds of distributions ([8], I, Ch. VI, §4). Let ué dénote by Q
an open neighbourhood of zero in R which is relatively Xcompact and
denote its closure by K. The proof of Th. XXII, Ch. VI, 3n [8], implies
that there exists m € N such that the linear mappings i
T(.+h)
(@)~ ~s

are equicontinuous mappings of DF x DF into 'C?: p)- Since

F(z,h) = (%w*@ &=
_ (Txa*p)(z+h)
B c(h) ’
it follows that F(.,%) is a continuous function for every h > 0. Also
we have that the family {F(.,h);h > 0}, is uniformly bounded on

the interval [a,b]. Dgq is a dense subset of DF. The set of functions

{T&J’:)h) *Pxrg,h > 0} converges in L7y for 4,6 € Dg. Now, we

*axf, h>0,

zeR,) A>0,

use the Banach-Steinhaus Theorem to prove that for every o, € D,

T&:)h) *a*xfl — Cy gexp(a.), h — oo, in L(a,p)- Now, by using relation
(VI, 6: 23) in [8], we have \
DiF(yE + vE + T)(z) — 2D%* (7 E + £ » T)(z)+,
HE*€E+T)z) = T(z), z€R, )

where E is a solution of D4 E = §, ((I1, 3; 19) in (8]); 7€ € Dq and k is

large enough so that vE ¢ Dg. In this case m = 4k, By = yExyE«T.

Eok=—29E+6+T; By =€+ ¢+ T, E; =0, i # 4k, 2k,0. Thus, (d) is
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proved.
(a) = (e). It is trivial. _
(e) = (a). First, we shall prove that the set G = {6n(.+2z),n €
€ N,z € R} is dense in D. Suppose that T € D' and
(T,6n(.+2)) =(T#8,)(—2) =0, n €N, zeR.
Then for any ¢ € D, (T * é,,,) = 0 and
(T,p) = lim (T,6n %) = lim (T %6,,0) =0.

This implieé that T = 0 and hence, the set G is dense in D. The
Banach-Steinhaus Theorem and (b) imply (a). ¢

Comments for Theorem 1. 1. The following statement
implies (a) but it is not equivalent to (a):

(f) For a 6 sequence {§,} there is a sequence M, from R, such
that M,, = M # 0, n — co, and

lim M-}Mn’ nEN,
h—oo C(h) .

" where the limit is uniform for n € N. :
Let us prove that (f) = (c) which is equivalent to (a). For every"

compact set ' C R we have

(T*6a)(z+h)  (T+6.)(z+h)c(z+h)
c(h) - clz+h)  c(h)

uniformly for z € K, because of C(:(j;)h ) exp(az), h — oo, uniformly

—»Mnexp(azv), h — oo,

for z € I (see [6], p.82). Now, we shall prove that (a) does not imply
(f). Assume H € C° N £! but is not bounded on R; this function has
the S-asymptotic equal to zero related to 1 ([6], p. 104). For T we take
14 H(¢). Then,

JHm (14 H) = 6,)(h) = Jm (1+ H(t +h), 6n(1)) = (1,8.(8)) = 1.
We have
Jim [(1+ H) + 6a)(h) = 14+ H(h),

but the function 1 + H(k) has no limit at all, when kA — oco.
2. We proved in [5] that the conditions of Th. 1 are equivalent to the
following ones: ]

(8) The set {f(.+ h)/c(h); h € R} is bounded in D' and for some
6 € D, for which F(pe=)(€) = LIG|(~€ +ia) £0, £ € R,
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i (= )/elh) =M [ g(etar, 1 0,

where for F($) we used in [5] Jpe T  B(t)dt.

We shall illustrate the usefulness of (g) by an example. Let P(z) =
= ) a;iz' be a polynomial such that P(—z+ia) #0,z € R. We say

i=0
that a sclution of a differential equation P(D)U = F is c-bounded if
the set {U(. + k)/c(h); h € R} is a bounded subset in D'. Assertion
(g) implies: If F has the S-asymptotic related to ¢, then any c-bounded
solution has also the S-usymptotic related to c. Let us show that. We
choose ¢ € D such that Lig](—z + ia) # 0,2 € R. For ¢ = P(D)¢ we
have L[)(—z +ia) #0, z € R and : .
(U *9)(F)/c(h) = (P(DYU) * $)(h)/c(h), + h >ho > 0.

By () the assertion follows. ) k\
Note that the given example can be easily transferedito the many-
dimensional case which is in fact more interesting. i

3. Many properties of distributions and subspaces of distributions in
Schwartz’s theory can be derived from the corresponding regularizeds.
An application of (b) is given in the next example. For the proof that
every T € D',,, 1 < p < oo has the S-asymptotic zero related to ¢ = 1,
we use the known fact that f = (T'+ ) € LP fof every v € D. Taex,
for ¢ € D, suppy C [—a, a] we have

ath

I
(et BN < _sp lo(@] [ 7@l =0, b .
—aLz<a ok

In the sequential approach to the theory of distributions, a distribution
T'is defined by the class [T * 6] which corresponds to the fundamental
sequence {T * §,}, where {6,} is a &-sequence ([1], p- 79). To define
the S-asymptotic of a distribution in this approach, we can use (c) and
(e) from Th. 1.

4. For the Abelian and Tauberian type theorems for integral transforms
of distributions, the assertion (d) of Th. 1. may be uséful (see, for
example, [5] and [11]). B

4. The quasiasymptotic at

This notion is introduced by Zavialov and intensively studied by
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DrozZinov, Vladimirov and Zavialov; see the monograph [12] and ref-
erences there. By using it, the quoted authors have obtained com-
prehensive results in investigations of the Laplace transform and in
applications in the quantum field theory. For the use of this notion in
investigations of the Stieltjes transform we refer to [6].

Definition 2. It is said that T € 8/, has the quasiasymptotic (quasi
asymptotic behaviour) at infinity related to some positive measurable
function c(k), k > ko if there exists g € D', g # 0 such that for every

¢ €D,
Ji (2 ) =

Let us recall some properties of the quasiasymptotic behaviourof a T €
S . The existence of the limit in Def. 2 implies that this limit also exists
in §' and that g(z) = Cfaq1(z), z € R, C # 0 and (k) = k*L(k),
k > kg. The most important result concerning the quasiasymptotic
behaviour is the following Tauberian theorem of Drozzinov and Zavialov
for the Laplace transform:

Theorem 2. [2]. Let T € S., c(k) = k®L(k), k > ko. The following
statements are equivalent:

. T(kzx
0 ®
(i) (A) 11m C(l/y)T(zy) C, C #0; (B) there ezist D >0, m € N
and rg > O such that

T(re'?)| <

— Cfar k00 in §,C#£0;

, O0<r<r, 0<p<T.

C(l/ )
In the next theorem we give several equivalent statements but for

TeS,.

Theorem 3. Let T € S,, a € R and c(k) = k*L(k), k > ko. The

following statements are equivalent:

sin™

. T(k.) . ,
— = D 0
(a‘) kliII;o C(k) Cfa'+1 2 in ) c #
(b) lim ﬂ%g—b—) = Cfar1, in &', forsome beER; C#£0
(c) (A) hm c(l/y)T(xy) = M # 0; (B) there ezist Dy > 0, m € Ny

and g > 0 such that
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T ~ : D1
———T(re'¥)| < < 0 .
c(1/r) (re T sin™p’ der=r, ss
(d) For every ¢ € D,
) T %
khrn (Tk;@ = Mg foy1, in D'; where My £ 0 for some p€eD.

(€) There exists ¢o € D with the property ¢o(0) # 0 such that

. T % k. ’ . ,
kll»rﬂlog—ch?lg))u:]w‘ﬁ“f“""l’ in D, My, #0.

(f) For a 6-sequence {6n there is @ C # 0 such that

(T % 6,)(k.)

him T =Cfat1, m D', and uniformly for« n € N.
e(k .

k— oo

Proof. (a) = (b). We start with the relation “ {\

< T(kz + b) T(kz) B\ v b
—_— =({—= - = € D.
( (k) 9(2)) = FOIRACEY: ) v

The set {¢(. — %), m > 1} is bounded in D. By using the equivalence
of the weak and strong sequential convergences in D' and the fact that
¢<——{—)—)¢, k— oo, in/'D,

we have
= <Cfa+l ,¢>, peD.

By Th. 3 in [12], p. 60, this limit holds also for pES.

(b) = (a). We have to repeat (a) = (b) but starting from the
relation

T(kz) T(ku + b) b

{ o(F) 8(=)) = o(F) ’¢<u+ k> ), ¢€D. 0
Remark. If T € S}, then T(. +a) € Sy = 8. This implies: If T € &',
then there ezists an m € Ny such that T has the quasiasymp)otic related
to k™™~ L(k) with the limit 6™, k — co. This statement has been
proved for T' € &' N S, (see [6], p. 32). .

(b) = (c). Since T(.+a) € S’ and satisfies (i) of Th. 2, it satisfies
(ii), as well. The Laplace transform of T(. + a) is e™** L[T]; hence (A)
and (B) in Th. 2 (ii) imply (A) and (B) in (c).
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(c) = (a). If (c) is true for a T € S, it is true for T(. + a) € S,
and it implies Th. 2 (i) for T'(. + a); hence (a) is true for T.

(c)=>(d). ForaT € S, we have T* ¢ € S}, b € R. We shall
show that T * ¢ satisfies (c¢). Then, it will follow that 7' * ¢ satisfies (a)
and that T' satisﬁes (d). First, we have

Jim, s Twi)d(iy) = lim b TH0) = My,

Moreover, there exist Dy > 0, m € No and rg > 0 such that

Ty e <
re'? Jmax b(re?’ Ds
- c(l/r)T( ) ;<<ro 9 )| = sin™

(d) = (e). Let ¢; € D for which My, # (0) in (d). If 4:(0) # 0,
then we take ¢g = ¢y. If dzl(()) = 0, we take ¢y = @1+ ¢2 where ¢5 is an
arbitrary element from D with the properties ¢(0) 0 and My, = 0.

(e) = (a). The assumptions in (e) imply (a) and consequently (c)
for f* ¢’0- Now we have )

(zy)qSQ(zy) = hm

Taking care of the property qSo(O) # 0 we have
'DI

! ?
sin™

T(re“’”)

C(1/ )
where 0 < r <1, 0 < ¢ < 7 for appropriate ry, D' and m'. This gives
(c) for T and consequently (a).

(a) = (f). Let ¢ € D and n € N. Then

<@—§gﬂ,¢< ) = g (@ a6 (7)) =
= w5 (7@ (B re (3)) @) =

- z(%(:r(kz) , E/ §n(—1)d (:1: _ —> d).

The set
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{/6n(—t)q5 ($ _ %) dt; mne N}
R

is bounded in D because of the properties of {§,}. We have

<%{”)) ,m/a,,(—t)qs (x - %) dt) -

- <Cfu+l , (/ 5n(*y)dy) ¢> = <Cfa+1 705> y k— o,
R

uniformly for n € N. This limit is a consequence of the inequality

| -f(%f’i),qs(z))—((ifaﬂ,&)[si{
ST L oYy
<c(k) J ( k) >

= <‘Cfa+1(?)am/5n(‘t)¢ <z - %) "dt> + |

7

—

Tamn

+ <C’fo,+1(:c),/6n(—t)¢ (T - %) dt>’— (Cfasr 8}
R

(f) = (e). Since [ $,(z) =1, n € N, we can find an ng such
that gmo (0) # 0. This implies that (e) holds. ¢ -

Comments for Theorem 3. Similar comments as for the S-
asymptotic, hold for the quasiasymptotic, as well. Moreover, the use
of the quasiasymptotic is more powerfull (see [12], [13], [6]). Note only
that the results given in [12] for the convolution equations‘-\of elements
from S also hold for elements of St

f
s
v
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