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Abstract: Relationships between the structure of a group automaton M and
its semigroup of endomorphisms End M are found. It is shown that End M
is trivial precisely when M is strongly connected. Moreover if End M consists
solely of linear maps then M has at most two components. Conditions are

found as to when End M contains only linear maps.

1. Introduction

In [3] Maxson and Smith studied the endomorphism semigroup
of a linear automaton. They showed that the endomorphisms of a
linear automaton give information about the connectivity, or lack of
connectivity, in the automaton. The methods used in [3] relied heavily
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on the vector space structure of a linear automaton. It is the goal of
this paper to obtain similar results for a group automaton. Since every .
linear automaton is a group automaton we will generalize the results in
[3]. The arguments used are new, relying on the theory of finite groups.
We will obtain connectivity results analogous to the linear case. It will
soon be clear that our work essentially involves the study of certain
maps on a finite group G which commute with a given endomorphism

Aof G. )

The reader is referred to the references in [3] concerning the back-
ground of endomorphisms of automata as well as basic information on
" automata theory.

- . !

2. Preliminaries ’ l\

Let M = (Q, %, F) be a finite automaton with states é?, inputs

and transition function F: Q@ x & — Q. The automaton M/ is called

a group automaton if Q and ¥ are (finite) groups (written additively

but not necessarily abelian) and F'is a homomorphié_m from the group

@ x T into Q. Throughout this paper M = (Q, , F') will denote a group

automaton with state group @, input group ¥ and 7"cate—tra,nsition ho-
momorphism F.

The homomorphism F: Q x ¥ — () gives rise to two other homo-
morphisms as follows. Define A: Q — Q by Ag = F(¢.0) and B:¥ —
— @ by Bo = F(0,0). We have F(g.0) = F((¢,0) + (0,0)) =
= F(q,0)+ F(0,0) = Ag+ Bo. Moreover, since (g,0)+(0,0) = (0,0)+
+(g,0) in @ x T, we have F(q,0)+ F(0,0) = F(0,0)+ F(¢,0) in Q, or
equivalently Ag + Bo = Bo + Ag. This proves the following lemma.
Lemma 1. If M = (Q,%,F) is a group automaton with F(q,0) =

= Aq + Bo then every element in the range of A commutes with every
element in the range of B. In particular if A is an automorphism of Q
then W, the range of B, is a subgroup of the center of () and therefore

a normal subgroup of Q.

In our investigation of the endomorphisms of the group automaton
M we will malke use of group theory results which we now review. Let
G be a finite group and let A: G — G be an endomorphism of G.
For each positive integer ¢, A’ is an endomorphism of G and we have a
descending chain
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G > A(G) > A*(G) > --- > AYG) > - --
of subgroups of G. Since & is finite, there exists an integer k& > 0 such
that A*(G) = AF*1(G) = - .., which implies ker A¥ = ker A¥+1 = ...
Let H = A¥(G) and K =ker A*. Then HNK = {0}, forif z € HﬂIx
then A¥z = 0, but A¥ is one-to-one on H, so z = 0.

We show now that G is the sum of H and K. If z € G then there
exists a y € H such that A¥z = A**y. We have z = A¥y + (—AFy +z)
where A*y € H, and —A*y + z belongs to K since A*¥(—A*y + z) =
= —A%y 4 A*x = 0. So G = H + K. Therefore G is a semidirect
product of H and K since K is normal in G. This proves a version of
Fitting’s Lemma (see [2], page 84).

Lemma 2. If G is a finite group and A: G — G is an endomorphism,
then every © € G has the unique form © = z; + z¢ where, for some
E>0,A* 2 = 21 and A¥zy = 0.

Referring to Lemma 2, we will call an element 1 € G such that
Afzy = 2z for some k > 0 an invertible element. If 2o € G such
that A¥z, = 0 for some k > 0, then z, is a nilpotent element. From
Lemma 2 every element in G is {uniquely) the sum of an invertible and
a nilpotent element.

In M = (Q,%,F) we extend ¥ to the free monoid £* over X
consisting of all finite sequences of elements of & (inputs), including
the empty sequence 0. If w € =* then w = op0y ...0,—3 where o; € &
and one defines, for ¢ € Q,

F(q,w) = F(q,0001...0n_1) = F(F(q,00),01 --.0n—1) =
= F(F(F(q,00).01),02...0p-1)=
=F(F(...F(F(q,00),01):02)s--- +0n_32),0n—1)}.
In terms of A, B we have
F(q,w)=A"¢+ A" 'Bog 4+ A" *Boy + -+ ABop_a + Bon_1.
If w = 0, the empty sequence, then we define F (q, 0) =q.

In a group automaton M = (@,X, F) we define, for ¢ € Q, the
reach of q to be reach(q) = {¢' € @Q | F(q,w) = ¢' for some w € T*}.
So reach(q) = {A"q + A"~ 1Ba(, 4o+ ABop o+ Bop,1 | nis a
nonnegative integer and each o; € £}. Finally the component of ¢ in
Q 1s defined to be comp(gq) = {¢' € reach(g) | there exists a w' € T~
with F(q',w') = ¢}.

Lemma 3. In a group automaton. comp (0) = reach(U
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Proof. Clearly comp(0) C reach(0). Let z € reach(0). Then there
exists a positive integer k and elements 0g,01,-.. ,0% in ¥ such that
T = AkBO'O + ABO’k_l -+ BO‘k.

Suppose z is invertible. Then there exists a positive integer s
such that £ = 4%z = A%%z = ---; so we may assume s > k. Let
w=0...0(—0g)(—01)...(—0x) (s —k—1 zeros). Then (using Lemma
1 repeatedly)

Flz,w) = F(A* ¥z (oo)(=01)...(=0k)) =
= Ar — AFBoy — --- — ABoy_y — Boy =
= A’r — (Boy + ABog—1 + - +AkBO'g) =
—Af:z—(A’"Bao+ -+ ABoy— 1+Bcrk):a:——:c——0

1

So z € comp (0).
“Suppose t is nilpotent with A’z = 0. Then let &u =0...0 (s
zeros) and we have F(z,w) = A’z = 0. So z € comp (0)
For z arbitrary we have z = z7 + zo where 2y is nvertible and
Zo is nilpotent. So if Az = 0 and A®z; = 7, then AsAly = Alg.
Let w = 0...0is — k — 1 zeros) and @ = 0...0 (¢ zeros). Then
F(z,w(—00)...(—or)w) = A*Tlz — Ath =0 asg above Thus = be-
longs to comp (0). ¢ é'
Lemma 4. In ¢ group automaton M = Q,E comp (0) is a sub-
group of Q. If A is invertible then comp (O) s a normal subgroup of @
contained in the center of Q.
Proof. From Lemma 3 comp (0) = {A"Bayg —l— 4+ ABon_ 1+Bo, |n
is a nonnegative integer and o; € £}. Repeated use of Lemma 1 shows
comp(0) is closed under addition. The normality of comp (0) when A
is invertible follows from Lemma 1 and the fact that every element in
() has the form Az, so each A ‘Bo,_; belongs to the center of Q. O

3. Endomorphisms of group automata

An endomorphism of a group automaton M = (Q , 5\ F) is a func-
tion ¢: @ — Q such that g(F(q,0)) = F(g(g),0) for all.g € Q,o0 € L.
In terms of the linear maps A:Q — @ and B: X — @ for M we have
that g is an endomorphism of M if g(Ag + Bo) = Ag(q) + Bo for all
g€ Q,0 €. Welet End M denote the set of endomorphisms of M.

For g € End M we can write g = 1+ (—1+g) where 1: Q — Q is
the identity map. The function —1 + ¢ has the property that
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(-1 +¢)(Ag + Bo) = —(Aq + Bo) -+ g(Ag + Bo) =
=—Bo — Ag+ Ag(q) + Bo = —Agq + Ag(q) =

=A(-1+9)(q)-
So if ¢ € End M then the function —1 + g belongs to the set

T={f:Q — Q| f(Ag + Bo)=Af(q),q € Q,0 € T}.
Conversely it is easy to verify that if f € T then 1+ fisin End M.
Lemma 5. EndM =1+T.

In creating endomorphisms of a group automaton M we will find
it convenient to create elements of T and then use Lemma 5. The
properties of functions in T are listed in the following result.

Lemma 6. If f:Q — @Q belongs to T then
(i) fA=Af;
(ii) f(0) 1s a fized point of A, that is AF(0) = f(0);
(iii) f(z) = f(0) for allz in comp (0);
(iv) If A is invertible then f is constant on each left coset of comp (0)

n Q.

Proof. Parts (i) — (iii) are easily proved. For (iv) we note that Q finite

and A an automorphism mean AF = 1, the identity map, for some
positive integer k. If z,y € @ such that —z +y € comp (0), then there
exist elements og,01,... ,0¢ € X such that

y=z+ A'Bog +--- + ABoi—1 + Boy.
There exists an s > t such that z = A®z so
y = A’z + A'Bog + -+ + ABoy—; + Boy

and repeated use of the fact that f € T gives f(y) = A° flz) =
= j(A%) = f(=). O

An automaton M = (Q,%,F) is called sirongly connected if
comp (0) = Q. Our next result says that if M is strongly connected
then its endomorphisms are, in a sense, trivial, i.e. translation maps
using fixed points of A.
Theorem 1. If M = (Q, T, F) is strongly connected then End M =
={g:Q — Q| g(z) = z+ a where a € Q such that Aa = a}.

This follows directly from Lemmas 5 and 6 (iii). ¢

We now begin to show that the converse of Th. 1 is also true, that
is, if M = (Q,%,F) is not strongly connected then End A contains
functions which are not translation maps. We split our investigation
up into two cases: A invertible and A not invertible. In the invertible
case we will need a group theory result, found in [1], page 334. Recall
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tha: an automorphism A of a group G is fixed point free if Az = z only
whan o = 0.

Lemma 7. Let G be a finite group and lei A:G — G be a fized point
frez automorphism of G. Then every element in G can be uniguely
ezzressed wn the form —x + Az for a suitable z in G.

Proof. Suppose 7,y € G with —z + Az = —y+ Ay. Then y —z =
= 4(y — z). Since A is fixed point free then y —z = 0 or y = z. This
shows that the map h: G — G defined by h(z) = —z + Az is one-to-one.
Sizce G is finite, h is onto. {

Corollary 1. Let G be a finite group and let A:G — G be a fized
poi:«. free automorphism. If W is an A-invariant subgroup of G, then
—z + Az belongs to W if and only if © belongs 1o W.

Proof. Since W-is A-invariant, z € W implies —z + Az € W. Suppose
now that z belongs to G with —z + Az in W. Since W js A-invariant,
A is fixed point free on W, and so by Lemma 7 there is é weW such
thet —z + Az = —w + Aw. But A is fixed point free on, G,sow ==z
and v € W.

Corollary 2.. Let A:G — G be an automorphism of G and let W be
an A-invariant subgroup of G. If z belongs to G such that z does not

belong to W and if —z + A*z belongs to W for some posztzve integer k,. v

then A* is not fized point free on G. /

We are assuming that A is invertible and M = (Q Y, F) is not
strongly connected. If H = comp (0), then H # Q. Select z € Q\H
(so z € Q but = ¢ H). We show now that the relation “y € reach(z)”
is symmetric and transitive if A is invertible.

Suppose y € reach(z). Theny hastheformy = A"2+ A" Bog+

+ABo,_3 + Bo._; where each ¢; € ¥. Solving for A"z gives A"z =
=y+ A" B(~0q) + -+ + AB(—0,_3) + B(—0r_1), using Lemma 1..
Sizce A is invertible there exists a positive integer ¢ > r such that
AT =1,s02 = A""TATs = AV Ty+ A1 B(—0g)+- -+ AB(—0r—2)+
+3(— Ur_l) and z € reach(y).

If y € reach(z) and z € reach(y) then y = A"z + A" ' Bog +

+ ABo,_9+Bo,_j and z = A%y + A* 1Brg+-- -+ AB7y_o+ By
wzere each o; € ¥ and each 7; € 3. This means Asy\ = AStTa +
+4t™1Bgy + .- + A Bo,_s + A°Bo,_; and so 3

z=A"T + AT Boy 4+ -+ A Bo, o + A°Bo, 1+
+ A*'Brg+ -+ ABTe_g + B7oy
azd z € reach(z).
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The following lemma describes comp ( z).
Lemma 8. Let A be invertible and M = (@, %, F) be not strongly

k—1
connected. If z € Q\ comp (0) then comp (z) = reach (z) = | Az +

=0
+ comp (0) where k is minimal such that —z+ A*z belongs to comp (0).
Proof. Since Q is finite and A is an automorphism of @ there exists a
positive integer s such that A® = 1, the identity map on Q. Let H =
= comp(0), a normal subgroup of @ by Lemma 4. For z € Q\H
we have comp(z) C reach(z) = {A™z + A" 'Boy 4+ --- + ABo._5 +

s—1
+Bo,—1 | r is a positive integer and each og; €8} = |J Az +H =
=0
E—1
= U A*z+H, where k is minimal such that —z+ A%z € H. Conversely
i=0
k=1
ifye |J Az + H then
i=0
y=A'2 + A’Boy +--- + ABoj_; + Boj
where each 0; € . Since A° = 1, we can change ¢ if necessary so

=1
that ¢ > 7. We now have y= Az 4+ AiBoy_;_; where some of
=0

the 0;’s may be 0. Hence y = F(z,w) where w = 090y ...0;—; and
y € comp (z). ¢ ‘
Proposition 1. If A is invertible then the group automaton M =
=(Q, %, F) is strongly connected iff End M is trivial.
Proof. It suffices to show that, if M is not strongly connected, then
End M is not trivial. Select € Q\H where H = comp (0) and let
k > 0 be minimal such that —z + A%z € H. Since H is A-invariant,
by Cor. 2 A* is not fixed point free on @- So there exists a y £ 0in Q
such that 4%y = y. Define @ — Q as follows:

(i) if z € comp(z), whence z = Aiz + h where h € H, let f(z) =

= f(A'z +h) = Ay,

(i) if z ¢ comp(z), let f(z) = 0. 4 .
We need to show f is well-defined. Assume z = Alg+h = A7 z--h' where
h'€ Handj >i. Then —A'z+Aizg =h—h' = AY(—z+ A7~ z) belongs
to H. Since H is A-invariant, —z + A7~z belongs to H, so k divides
J —t due to the minimality of k. This implies that flz) = Aly = A%y
since Ay =y. So f is well-defined.

We now show that f belongsto T. If = ¢ comp (z) then 4z+Bo ¢

¢ comp (z) for any ¢ € £ and conversely since 4 is invertible. We have
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f(Az + Bo) = 0 = Af(z). If z € comp(z) then z = A‘z + h where
0<i<kandh€ H. For o € ¥ we have Ah + Bo € H and
f(Az + Bo) = f(4" 'y 4+ AR + Bo)

_[ATy if 0<i+l<k

a { Yy if  1+1=k

= Af(z).
So f belongs to T and f is not constant. Hence End M = 1 + T is not
trivial.

We now can describe all the functions in T and hence all the
endomorphisms of M. Since @ is finite we have elements z;,... ,z; €
€ Q\H with .

Q = comp (20) U comp (z;)U... U cqmp (z{) ,
where comp (z9) = comp(0) = H and comp (z;) N coixxnp (zj) =0 if

- k._l L H

1 # j. By Lemma8, comp(z;) = JU Atz ;4 H where k; > 0 is minimal

i=0 Wi
such that —z;+ A¥iz; € H. (Bach component of Q is a union of cosets
of H in Q.) By Lemma 6 part (iv) each f € T is constant on any coset
of H in Q. So to define a function f in T it is enough to define f on
To,%1,:..,T¢. Moreover we must have f(z;) = §; where Aki Yi = Yj-
It is now easy to check that f: Q — Q defined l:(y f(Alz; + k) = Aly;
is a function belonging to T. ¢

If A is not invertible we have the same result but by a different
route. '

Proposition 2. If 4 is not invertible then the group automaton M =
= (@, %, F) 1s strongly connected iff End M is trivial.

Proof. Again it is enough to show that, if M is strongly connected,
then End M is not trivial. We split the argument up into two cases.

Case 1: Assume reach(z) N H = 0 for every 2 € Q\H where
H = comp (0). From Lemma 2 we have Q = G + Gy, a semidirect sum
of subgroups Gy, Gy where G; contains the A-invertible elements and
Gy consists of the A-nilpotent elements of Q. Our assumption in Case 1
implies H D (Y. Since H 2 Gg and since every element in G; belongs
to the range of A, Lemma 1 implies that H is a normal sybgroup of Q.
If r € Q\H then x = x; + z¢ where z; is invertible and g is nilpotent.
Since reach(z)N H = §.z; # 0. As in the proof of Lemma 8 we have

k-1
reach (v) = reach(z;) = comp(z1). Also comp(2;) = |J Afz; + H
=0
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where k > 0 is minimal such that —z; + Akzy belongs to H. Since G4
is a group and since A restricted to G4 is an automorphism of G, Cor.
2 implies that A* is not fixed point free on G;. So there exists a y € Gy
such that y # 0 and A¥y = y. Define f:@Q — Q as follows: )

(i) if z € reach(z) = reach(z;) = comp (z1) with z = Az, + A,

then f(z) = f(A'z1 + R) = A'y;

(i) if z ¢ reach(z) then f(z) = 0.
As in the proof of Th. 2, f is well defined, it belongs to T and is not
constant. So End M =1+ T is not trivial.

Case 2: Assume that A is not invertible and that there exists an
z € Q\H such that reach(z) N H # 0. Fory € Q let y have H-order
n>0if A"y € H but A" 'y ¢ H. If A"y ¢ H for all n then y has
H-order co. f y € H then y has H-order 0. Our assumption in Case 2
means that there exist elements in Q of finite H-order greater than 0.

Let = € Q\H have finite H-order n > 0. So A"z ¢ H. From
Lemma 2, = z;1 + ¢, where z; is invertible and Zp 1s nilpotent. Since
Atz = A™z; + A"z belongs to H and since z; is invertible, we must
have z; € H. This means z¢ has H-order n.

For z5 € @ such that zg # 0 is nilpotent let n > 0 be such that
A"zo = 0 but A" 1z £ 0. Call n the nilpotent order of z9. Among all
the nilpotent elements in @ select z; to have maximal nilpotent order,
say k > 0. From the above observation, if z € Q has finite H-order ¢
then t < k.

Define f: Q — Q as follows:

(1) f(y) = 0if y has H-order 0 or co;

(11) fly) = AF="z if y has H-order i > 0.
We show now that f belongs to T. If Ay + Bo has H-order i > 0 then
y has H order 7 + 1 and

f(Ay + Bo) = AF1zp = A4t 50 = Af(y).
If Ay + Bo has H-order 0 then y has H-order 0 or 1, so
f(Ay + Bo) = 0= Af(y).
If Ay+ Bo has H-order co then so does y and conversely. Thus Ay +
+Bo) =0 = Af(y). This shows f € T. Since k > 1 then f is not the
zero function, and T' does not consist of constant maps, i.e. End M is

not trivial. ¢
Propositions 1 and 2 establish the following theorem.

Theorem 2. A group automaton M = (Q, S, F) is strongly connected
Jf EndM is trivial, i.e. EndM = {g:Q — Q | g(z) = 2 + a with
Aa = a}.
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4. Linear endomorphisms

If M = (Q,%, F) is a group automaton, is it possible that End M
consists only of linear maps? If M is strongly connected then Th. 1
implies End M is linear iff the only fixed point of A is 0, in which
case End M = {1}. If M is not strongly connected it can happen that
End M is linear.

We investigate the linearity of End M only when A is invert-
ible. Then Q is partitioned into disjoint components @ = comp (zg) U
Ucomp (z1) U ... U comp(z,) where comp(zo) = comp(0) = H,

ki1
and comp(z;) = U Alz; + H where k; > 0 is minimal such that
j=
—a:z—}—Ak‘mlEH/ . _—
Proposition 3. Suppose M = (Q, F) and A 15 invertiple. Let Q be
the union of at least three disjoint components Then End M contains
nonlinear maps. x‘
Proof. We have Q= comp (0)U comp (z1)U comp (z2)U. . ’U comp (Zn),
a disjoint union as above. Define f:Q — @ as follows: let f(z) =0
if z ¢ comp(z;) and f(z1) = y where y # 0 is such that AFy = y.
Then .f belongs to T' and g = 1 + f belongs to EndM by Lemma 5.
Suppose 1 +z2 ¢ comp (z1), then g(z1+22) = Tyt T2 #Fr1+yt+ze =
= g(z1) + g(z2) and g is not linear. So in order for g to be linear we
must have 1 +2, € comp (z1). But then define f': Q —Q by fi(z)=0
if z ¢ comp (z2) and f'(zs) = y' where A"y’ = ¢’ with y' # 0. Then
g' = 1+ f' belongs to End M and ¢' is not linear because =1 + =2 €
€ comp(z;) means ¢'(z1+22) = T1+72 # T1 +zy+y = g'(z1)+9'(z2).

The remaining case is the one in which @ has two components,

Q = comp (0)U comp (). We have H = comp (0) is a subgroup of the

center of @ and comp (z) = U Alz + H where k > 0 is minimal such
1=0

that —z + A*z ¢ H.

Lemma 9. Let Q and H be as above. Then Q/H = Z,®---® Zp for

some prime p. ’

~ \
Proof. Q/H = {A'z + H | i = 0,1,.. k—l}U{O—}—H} since

comp (z) = U Aiz + H. The automorphism A of mduces an au-
=0

tomorphism A on Q/H defined by .-l(y + H) = Ay + H. The cyclic

group (A) acts transitively on the nonzero elements of Q/H, from which
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it follows that Q/H is a p-group of exponent p. Since p-groups have
nontrivial centers and since the center of a group is invariant under
automorphisms, the center of Q/H is all of Q/H, i.e. Q/H is abelian,
whence Q/H = Z, & - ® Z,. ¢

Lemma 10. Let M = (Q, %, F) with A invertible and Q = comp (0)U
Ucomp (z). Let g be an endomorphism of M with g = 14 f where
f€T. Then g 1s linear if and only if

f(Alz + Alz) = —Alg + f(A'z) + Az + f(A72)
for alle,j. '
Proof. Let H = comp(0). Since H is a subgroup of the center of Q,

Az +h=h+A'zforalliandall h € H. If g 1s linear then for all 7, 5
and all h;,h; € H, we have

(1) g(A'z+ hi+ Az + hj) = g(A'z + Bi) + g(Alz + 1;).

Let Az + h; + Afz + hj = A'z + hy. Then since g =1+ f we have
from (1)

Azt hi+ Ao+ hj+ f(A'z) = Az hi+ f(A'z) + ATz + by + f(ATz)
or
Az + f(A'z) = f(A'z) + Az + f(ATz)
or
Az + Alz) = —Alz + f(Alz) + Az + F(AT2).
The above steps are reversible.
Corollary 3. et g € End(M) with g = 1+ f where f € T. Let
@ = comp{0) U comp(z). Then
(i) if f(z) € comp (0) then g is linear if and only if f is linear;

(ii) if Q is abelian then g is linear if and only if F is linear.

Lemmas 9 and 10 raise the following question: if End M is linear

must T' also be linear? If Q) is abelian the answer is yes. If comp (z) =
k—1

= |J A'z+ H and A* is fixed point free on comp (z) the answer is yes,
=0

for if f € T then f is completely determined by the value f(z) =y and

y must have the property that A¥y = y. This meansy € H = comp (0)

and f is linear by Lemma. 10 (because y is central).

The question now reduces to the following situation: Q =
k-1
= comp (0) U comp(z), comp(z) = |J A’z + H and there exists a
i=0
y € comp (z) such that A*y = y. Without loss of generality we may
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assume y = ¢, i.e. Afz = 2. We now define f: Q — @ by f(h) =0 if
h € H = comp (0) and f(Aix+h) = 4'z. Since Akz = z, we have that
f belongs to T' and ¢ = 1 + f belongs to End M. If g is linear then by
Lemma 10

2) F(Alz 4 Alz) = —Alz + Al + ATz + Al
for all 2,7. If Alz + Alz = Ala + h then (2) says that
(3) Ath—Aj.'v+Aia,'+Ajz+Ajm

We now define a new binary operation * on the set () in terms
of the old binary operation + as follows: if y,z € @ then y* 2z =
= —z+4+y+ 2+ z. Since Q/H is abelian and since H is a subgroup of
the center of () t then every commutator of  belongs to the center of
(). Because of the above properties of (Q,+), we Have tha.t (Q,%) is a
group. (To verify associativity, let a,b,c be in Q. Using L.’qnultlphcatlve
notation and the fact that ¢c~1671cb is central gives 4 :

a*x(bxc)=ax*(c” 1bcc):c 13- lcac  bece Y bee P

= _l(c_lb;lcb)bnlac_lbcbcc =c 6 ac be(c T b eb)bee
=c b tabbec = (axb) *x c.)
We note that if y or z belongs to the center f (@Q,+) theny*z =
=y + z. Since “s” is defined in terms of “+”, the automorphism A on
(Q,+) is also an automorphism on (Q,*). Also (Q,*) = comp(0) U

Ucomp (z) where H = comp (0) is a subgroup of the center of (@, ),
and A acts transitively on (Q/H, *). Moreover by Lemma 9, Q/H =

27, @ @®Z, We have comp(z) = U Atz + E: where AFz = 2,k
=0

minimal.

By equation (3) we see that K = {42 |i=0,1,... ,k—1}U {0}
is a group under #. This means that (@, #) is a direct sum of H and K
and so (@, *) is abelian.

We now need some group theory results. For these we switch to
the multiplicative notation in our finite group Q). As abow; we define a
new group (@, *) using a * b = b~'abb where a,b € Q. |
Lemma 11. Let G be a group such that (G, *) forms an wbelian group
then (ab)® = a®b® for all a,b € G, or equivalently (ab)® = b*a® for all
a,beqG.
Proof. In (G,*),a b = b*a for all a,b implies b~'abb = a~lbaa
for all a;b in G. Rearranging factors gives b~ lab™'a = aab™'b7!,
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or ab~lab~'ab™! = aaab b7 b7, or (ab™1)® = @3(b71)? for all a,b
mG. ¢
Lemma 12. Let G be a group such that (G,*) is abelian and such that
G', the commutator subgroup of G, is a subgroup of Z(G), the center
of G. Then a® belongs to Z(G) for every a € G.
Proof. By Lemma 11 we have (ab)® = a®b? for every a,b € G. Since
G' is a subgroup of Z(G), aba™1b™! = c is a central element. We have
ab = cba and b*a® = (ab)? = abab = c*baba = c*b?a?, so ¢ = 1. Also
(ab)® = ababab = c*bababa = cSbbbaaa = b*a® since ¢® = 1. We now
have
Ba® = (ab)® = (ab)’ab = b?a’ab = *a’b
which implies ba® = a3b, so a3 is central in G. ¢
Lemma 13. Suppose Q = comp (0) U comp (z) where comp(z) =
k—1
= |J A'z+H, H = comp(0) and k is minimal such that —z+AFz € H.
=0
If 5 is a positive integer such that s divides k and s # k and if A® has
a fized point y # 0 in Q, then End M contains nonlinear maps.
Proof. We have A’y = y with y # 0 s < k and s divides k. We
show now that y must belong to H. If y ¢ H then y = A'z + h where
0<i<k—landh € H. Wehave 0 = (1—A%)y = (1—-A*)(A'z+h) =
= A*(1— A®)z + (1 — A®)h. This implies A*(1 — A®)z belongs to H and
thus (1 — A%)z = z — A%z belongs to H. But this is not possible since
8 < k. So y belongs to H.

Define f: Q — Q by f(A'z+h) = A'yand f(h) =0forallh € H.

Since s divides k then f belongs to 7. Since s < k then —z + A’z ¢ H
and so f(—z + A®) # 0. If f were linear then f(—z + A°z) = f(—z) +
+f(A%z) = —f(z) + A°f(z) = —y + A’y = 0. So f is not linear. The
endomorphism ¢ = 1+ f is not linear since f is not linear and f(z) =y
isin H = comp (0) (Cor. 3). ¢
Lemma 14. ([1], page 336) If A is a fized point free automorphism of
order 2 in o finite group G, then G s abelian.
Proof. By Lemma 7 every element in G has the form —z + Az, and
so A(—z + Az) = —Az + A’z = —Az + ¢ = —(—z + Az). This means
Ay=—yforallyinG. So—z—y=Aly+z)=Ay+4z=—-y—=z
and G is abelian. ¢

We return to our group of states (Q,+) where @ = comp (0) U
Ucomp (z), End M linear and A*z = z. Then (Q,*) is abelian and
Lemma 11 and 12 apply to Q. In particular we have 3y belongs to the
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center of @ for every y € . Using Lemma 9 we now have Q/H &
279 @ Zs, le. Q/H is a 3-group.

Theorem 3. If M = (Q,%X,F) is a group automaton such that Q =
= comp (0) U comp (z), then End M is linear iff T is linear.

Proof. We have seen that we may assume A¥z = z and Q/H is an
elementary abelian 3-group. Since A acts transitively on @@/ H and since
k is minimal such that A¥z = z,k = |Q/H|—1 = 3" —1 for some integer
t > 0. In particular k is even, so let r = k/2. If A™ has any nonzero

fixed points in ) then End M and T contain nonlinear maps by Lemma
13. So A™ must be fixed point free on Q. Also (A7)? = A?" = A*

Let Q. be the subgroup of @ generated by {z, Az, A%z,
A¥=12}. Then Qz is A-invariant and AF =1 on @, since A¥z’'= z. On
Qz, A" is fixed pSint free and has order 2. By Lemma 14 QI 15 abelian,
and this implies Q is abelian. The result follows fI‘OI}’l Coﬂf\ 3. ¢

Theorem 4. Let M = (Q, %, F) be a group automaton with A invert-
sble. ' _ i
(i) If M 1s st"ro‘ngly connected then End M is linear iff the only fized
point of A 1s 0;

(i1) If M has at least three components then EndM is not linear;

(iii) Suppose M has two components, Q@ = comp.(()) U comp (z). Let
k > 0 be minimal such that —z + A¥z belongs to H = comp (0).
Then End M is linear if and only if whenc’uer y 7% 0 in @ s such
that A¥y =y then {A'y |1 =0,... ,k— 1} U {0} is an elementary
abelian p-group 1somorphic to Q/H via Aly — Alz + H.

Proof. It suffices to prove part (iii). By Th. 3 End M is linear iff T' is

linear, so we may replace End M by T. If f € T is linear with f(z) =y

then f induces an isomorphism of the elementary abelian p-group Q/H

onto {Aly |i=0,... ,k—1}U{0} given by A’z +H — A'y. Moreover

if y #£ 0 € Q is such that A¥y = y then there exists an f € T with

f(z) = y. Also k is minimal such that A*¥y = y otherwise f is not linear

(Lemma 13). \

Conversely select y # 0in @ such that A*y = y. Then { —1‘y li=
= 0,...,k — 1} U {0} is a group isomorphic to Q/H via o: Aly —
Aix+H. This implies A7y # y for 1 < j < k. Define f € T by f(z) = y.
I Atz +hy, AJz4+h; € Q with hy, h; € H and (Alz+hi)+ (AT x+hj) =
= A'z + hy, hy € H, then
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F(A'z + hi + ATz + hy) = f(A'z + h) = Afy = ¢ (Alz + H) =
=¢ YAz + H)+ ¢ Az + H) =
= A'y+ Ay = f(A'z + ki) + f(Az + 1),
and f is linear. But every f in T arises in this way, so T is linear. ¢
We end with an example of a group automaton M with two
components such that End M is linear. Let K = GF(p™), the finite
field with p™ elements where p is prime. The multiplicative group K* of
nonzero elements of K is cyclic ([2], page 279); so let a be a generator
of K*. Let M = (Q,%,F) = (K?,K,F) where F: K% x K — K? is

defined by F(q,0) = F((B1,62),7) = (52)(5) + (). We have H =

= comp(0,0) = {(8,0) | B € K} and Q\H = comp (z) = k@: Alz + H

where z = (0,1), 4 = (0‘1) and k = p"™ — 1. Since A — 1— ka*—1
R e ' o 1 )

A*z o 2 for all z € comp (z). If f € T then f(z) = y where AFy =y,
which means y € H. Thus f(z) = (v,0) for some v € K. Since o
generates K*, A* is fixed point freeon Q forall ¢, 1 <i < k — 1.

We show now that T = {(g g) ‘7 € K}. For all : > 0 we
have A'f(z) = A(3) = (%7) and 47f(z) = f (41(%)) = (). This
shows f(i“;:l) = (“(;7). For any § € K we have f(f;) =f ((iac;:l)—F
+75T) = F(AQ+ () = aife) = 4 = ().

Since f annihilates H = {(8,0) | 8 € K} then f = (8 g .

This show T consists of linear maps. By Cor. 3, End M is also
linear.
References

(2] GORENSTEIN, D.: Finite Groups (27¢) edition, Chelsea, New York, 1980.
[2] HUNGERFORD, T. W.: Algebra, Springer-Verlag, 1974.

[3] MAXSON, C. and SMITH, K.: Endomorphism of Linear Automata, J. of
Computer and System Sciences 17 (1978), 98-107.





