## Mathematica Pannonica 4/1 (1993), 95 - 101

## ON AN INTEGRAL EQUATION

## Zbigniew Grande

Department of Mathematics, Pedagogical University, 76-200 Słupsk, ul. Arciszewskiego 2a, Poland

Received March 1991

AMS Subject Classification: 45 D 05, 34 A 10, 35 D 05

Keywords: Integral equation, Carathéodory conditions, Carathéodory solutions, nowhere dense set of solutions.

Abstract: A class G of functions f is introduced such that the integral equation  $x(t) = \int_0^t f(s, x(s)) ds$  has solutions. This class is more general than the class of functions f satisfying the classical Carathéodory's conditions.

Let  $\mathbb R$  be the set of all reals,  $I=[t_0,t_0+a],\ J=\{x\in\mathbb R^n: |x-x_0|\leq b\}$ . A function  $f:I\times J\to\mathbb R^n$  satisfies the Carathéodory's conditions (C) if

- (i) almost all sections  $f_t(x) = f(t, x)$   $(t \in I, x \in J)$  are continuous,
- (ii) all sections  $f^x(t) = f(t,x)$   $(t \in I, x \in J)$  are measurable (in the sense of Lebesgue), and
- (iii) there is an integrable function (in the sense of Lebesgue)  $m: I \to \mathbb{R}$  such that  $|f(t,x)| \le m(t)$  for every  $(t,x) \in I \times J$ .

It is well known the following theorem:

Theorem 0. ([2], p.7-8, Th. 1). Suppose that  $f: I \times J \to \mathbb{R}^n$  is a function satisfying the conditions (C) and d is a number such that

$$0 < d \le a, \ \overline{g}(t_0 + d) = \int\limits_{t_0}^{t_0 + d} m(s) ds \le b.$$
 Then there is an absolutely

Supported by KBN research grant (1992-94) No 2 1144 91 01

continuous function  $h: [t_0, t_0 + d] \rightarrow J$  such that  $h(t_0) = x_0$ , and  $h(t) = x_0 + \int\limits_{t_0}^t f(s, h(s)) ds$ .

In this paper we prove that Th. 0 remains true if the conditions (C) will be replaced by more general conditions (G).

We say that a function  $f:I\times J\to\mathbb{R}^n$  satisfies the *conditions* (G) if

- (j) for every continuous function  $h: I \to J$  the superposition  $t \to f(t, h(t))$  is measurable,
- (jj) there exists an integrable function  $m: I \to \mathbb{R}$  such that  $|f(t,x)| \le m(t)$  for every  $(t,x) \in I \times J$ , and
- (jjj) there is a sequence of functions  $f_k: I \times J \to \mathbb{R}^n$  satisfying the conditions (C) with  $|f_k(t,x)| \leq m(t)$  for  $(t,x) \in I \times J$ ,  $k=1,2,\ldots$ , and such that for every subsequence  $(f_{k_n})$ , for every sequence of continuous functions  $g_n: I \to J$  which converges uniformly on I to a function g and for every  $t \in I$  there is a strictly increasing sequence  $(n_i)$  of positive integers such that

$$\lim_{i\to\infty}\int_{t_0}^t f_{k_{n_i}}(s,g_{n_i}(s))ds=\int_{t_0}^t f(s,g(s))ds.$$

Theorem 1. Suppose that  $f: I \times J \to \mathbb{R}^n$  satisfies the conditions (G) and d is a number such that  $0 < d \le a$ , and  $\overline{g}(t_0 + d) = \int\limits_{t_0}^{t_0 + d} m(s) ds \le b$ . Then there is an absolutely continuous function  $h: [t_0, t_0 + d] \to J$  such that

$$h(t) = x_0 + \int_{t_0}^t f(s, h(s)) ds, \quad t \in [t_0, t_0 + d].$$

**Proof.** Since f satisfies the conditions (G), there is a sequence of functions  $f_k$  satisfying the condition (jjj). Without loss of generality we may assume that  $|f_k(t,x)| \leq m(t)$  for  $(t,x) \in I \times J$ ,  $k=1,2,\ldots$  Since each  $f_k$   $(k=1,2,\ldots)$  satisfies the conditions (C), by Th. 0 there are absolutely continuous functions  $h_k: [t_0,t_0+d] \to J$  which satisfy the integral equations

$$h_k(t) = x_0 + \int_{t_0}^t f_k(s, h_k(s)) ds$$
 for  $t \in [t_0, t_0 + d]$ .

Remark that the functions  $h_k$  (k = 1, 2, ...) are uniformly bounded and equicontinuous on  $[t_0, t_0 + d]$ . By the Ascoli-Arzela Theorem, there is a subsequence  $(h_k, i)$  which converges uniformly on  $[t_0, t_0 + d]$  to a continuous function  $h: [t_0, t_0 + d] \to \mathbb{R}^n$ . We shall prove that

$$h(t) = x_0 + \int_{t_0}^t f(s, h(s)) ds$$
 for  $t \in [t_0, t_0 + d]$ .

Evidently,  $h_k(t_0) = x_0$  (k = 1, 2, ...). So  $h(t_0) = \lim_{i \to \infty} h_{k_i}(t_0) = x_0$ . Fix  $t \in [t_0, t_0 + d]$ . There exists a subsequence  $(m_j)_j$  of the sequence  $(k_i)_i$  such that

$$\lim_{j \to \infty} \int_{t_0}^t f_{m_j}(s, h_{m_j}(s)) ds = \int_{t_0}^t f(s, h(s)) ds.$$

Since

$$h_{m_j}(t) = x_0 + \int_{t_0}^t f_{m_j}(s, h_{m_j}(s)) ds,$$

and

$$\lim_{t\to\infty}h_{m_j}(t)=h(t)\,,$$

we obtain by (jjj) the relation

$$h(t) = \lim_{j \to \infty} h_{m_j}(t) = \lim_{j \to \infty} \left( x_0 + \int_{t_0}^t f_{m_j}(s, h_{m_j}(s)) ds \right) =$$

$$= x_0 + \lim_{j \to \infty} \int_{t_0}^t f_{m_j}(s, h_{m_j}(s)) ds = x_0 + \int_{t_0}^t f(s, h(s)) ds. \quad \Diamond$$

From Th. 1 it follows immediately

Corollary 1. If a function  $f: I \times J \to \mathbb{R}^n$  satisfying the conditions (G) is such that for every continuous function  $h: [t_0, t_0 + d] \to J$  the superposition  $t \to f(t, h(t))$  is a derivative then there exists a solution of the Cauchy's problem  $y'(t) = f(t, y(t)), y(t_0) = x_0$ , defined on  $[t_0, t_0 + d]$ .

Recollect that  $g:[t_0,t_0+d]\to\mathbb{R}^n$  is a derivative at a point t if

$$\lim_{r \to t} \int_{s}^{r} g(s)ds/(r-t) = g(t) \quad ([1] \text{ or } [3]).$$

**Theorem 2.** If  $f, g: I \times J \to \mathbb{R}^n$  are functions satisfying the conditions (G) then the sum f + g satisfies the conditions (G).

**Proof.** Evidently, the sum f+g satisfies the conditions (j), (jj). Let  $(f_k)$ ,  $(g_k)$  be sequences of functions satisfying the condition (jjj) for f and g, respectively. Obviously, the sums  $f_k + g_k$  (k = 1, 2, ...) satisfy the conditions (C). Suppose that a sequence of continuous functions  $h_k: I \to J$  converges uniformly on I to a function h. Fix  $t \in I$ . Let  $(k_n)$  be a strictly increasing sequence of positive integers. By (jjj) there are a subsequence  $(n_i)$  of the sequence (1, 2, ...) and a subsequence  $(i_j)$  of  $(n_i)$  such that

$$\lim_{i \to \infty} \int_{t_0}^{t} f_{k_{n_i}}(s, h_{n_i}(s)) = \int_{t_0}^{t} f(s, h(s)) ds, \text{ and}$$

$$\lim_{j \to \infty} \int_{t_0}^{t} g_{k_{i_j}}(s, h_{i_j}(s)) = \int_{t_0}^{t} g(s, h(s)) ds.$$

Consequently,

$$\lim_{j \to \infty} \int_{t_0}^{t} \left( f_{k_{i_j}}(s, h_{i_j}(s)) + g_{k_{i_j}}(s, h_{i_j}'(s)) \right) ds =$$

$$= \int_{t_0}^{t} (f(s, h(s))) ds + \int_{t_0}^{t} g(s, h(s)) ds. \quad \Diamond$$

Remark 1. Analogously as above we may prove that the product kf satisfies the conditions (G) whenever  $k \in \mathbb{R}$  is a constant and the function  $f: I \times J \to \mathbb{R}^n$  satisfies the conditions (G).

Remark 2. From Remark 1 and Th. 2 it follows that the space  $G = \{f : I \times J \to \mathbb{R}^n : f \text{ satisfies (G)} \}$  with the metric  $\rho(f,g) = \min(1, \sup\{|f(t,x) - g(t,x)| : (t,x) \in I \times J\})$  is a linear metric space.

**Theorem 3.** Assume the Continuum Hypothesis. Then the set  $C = \{f: I \times J \to \mathbb{R}^n : f \text{ satisfies } (\mathbb{C}) \}$  is closed and nowhere dense in G.

**Proof.** Of course, if  $f \in C$  then f satisfies the conditions (j), (jj) and the functions  $f_k = f$  (k = 1, 2, ...) satisfy all requirements of the condition (jjj). So  $C \subset G$ . Moreover, if a sequence of functions  $f_k : I \times J \to \mathbb{R}^n$  satisfying the conditions (C) converges uniformly (with respect to the metric  $\rho$  from Remark 2) to a function f then f satisfies also the conditions (C). So C is a closed set in G with respect to the metric  $\rho$ . Fix  $f \in C$  and  $\varepsilon > 0$  ( $\varepsilon < 1$ ). Denote by  $\omega$  the first ordinal number of the continuum power. Let  $(h_{\alpha})_{\alpha < \omega_1}$  be a transfinite sequence of all continuous functions  $(h_{\alpha} : I \to J \text{ and let } (F_{\alpha})_{\alpha < \omega_1})$  be a transfinite sequence of all closed subsets of  $I \times J$  which are of positive (Lebesgue) measure and all sets  $E_t = \{(t, x) : x \in J\}, t \in I$ . Denote by  $G(h_{\alpha})$  the graph of the function  $h_{\alpha}$  ( $\alpha < \omega_1$ ). By transfinite induction, there is a set

$$B = \{(t_{\alpha}, x_{\alpha}) \in I \times J : \alpha < \omega_1\}$$

such that

$$(t_{\alpha}, x_{\alpha}) \in F_{\alpha} - \bigcup_{\beta < \alpha} G(h_{\beta}), \quad \text{and} \quad x_{\alpha} \neq x_{0} \quad \text{for} \quad \alpha < \omega_{1},$$

and for each  $t \in I$  the intersection  $B \cap E_t$  contains a sequence  $((t, x_k))_k$  such that  $\lim_{k \to \infty} x_k = x_0$ . Let  $u \in \mathbb{R}^n$  be a point such that |u| = 1. Let us put

$$g(t,x) = \begin{cases} \varepsilon u & \text{for } (t,x) \in B \\ 0 & \text{otherwise} \end{cases}$$

and

$$h = f + q$$
.

Evidently,  $\rho(f,h) = \varepsilon$ . To prove that  $h \in G - C$  it suffices to show that  $g \in G - C$ . Since for each  $\alpha < \omega_1$  the set  $\{t \in I : g(t,h_{\alpha}(t)) \neq 0\}$  is countable, g satisfies the conditions (j), (jj) and

$$\int_{I} g(s, h_{\alpha}(s))ds = 0 \quad \text{for} \quad \alpha < \omega_{1}.$$

Consequently, g satisfies the condition (jjj), and  $g \in G$ . Fix  $t \in I$ . Since  $g(t, x_0) = 0$  and  $x_0$  is an accumulation point of the set  $B \cap E_t$ , the section  $g_t$  is not continuous at  $x_0$ . So  $g \notin G$ , and the proof is completed.  $\Diamond$ 

Remark 3. In Th. 4 the Continuum Hypothesis can be replaced by the Martin's Axiom.

Example 1. Let I = [0, 1], J = [-1, 1], and let

$$f(t,x) = \begin{cases} 1 & \text{if } x = 0 \text{ and } 1/(2n+1) < t < 1/2n, n = 1, 2, \dots \\ 0 & \text{otherwise.} \end{cases}$$

The function f is of Baire class 1. If the function  $x:[0,d]\to J$   $(d\leq 1)$  satisfies the equation

(\*) 
$$x(t) = \int_{0}^{t} f(s, x(s)) ds$$

then x(0) = 0, x is nondecreasing, and x(t) > 0 for t > 0 ( $t \le d$ ). But, in this case f(s, x(s)) = 0 for s > 0 and x(t) = 0 for  $t \in [0, d]$ . This contradiction proves that the integral equation (\*) has not an absolutely continuous solution, and consequently  $f \notin G$ .

Example 2. Let I = [0,1] and J = [-1,1]. Denote by  $T_e$  and  $T_d$ , respectively the euclidean and the density topologies in  $\mathbb{R}$  (for the definition of the density topology see [1]). There is an approximately continuous (i.e.  $(T_d, T_e)$  continuous) function  $g: J \to [0, 1]$  is such that g[1/k] = 1 for  $k = 1, 2, \ldots$ , and g(0) = 0 (see [1]). Consequently, the function f(t, x) = g(x) is a  $(T_e \times T_d, T_e)$  continuous mapping. Assume that  $f \in G$ , Let  $(f_k)$  be a sequence of functions from G corresponding to f by the condition (jjj). For f = 1,2,... there are an index f and a number f such that f = 1,2,... there are an index f and a number f such that f = 1,2,...

(i) 
$$\left| \int_{0}^{1} f_{n_{k}}(s, y_{k}) ds - \int_{0}^{1} f(s, 1/k) ds' \right| < 1/2.$$

Since

$$\int\limits_0^1 f(s,1/k)ds=1\,,$$

it follows from (i) that

$$\int_{0}^{1} f_{n_{k}}(s, y_{k}) ds > 1/2.$$

Then the sequence  $(y_k)$  converges uniformly to 0 and there is not a strictly increasing sequence  $(k_i)$  of positive integers such that

$$\lim_{i \to \infty} \int_{0}^{1} f_{n_{k_{i}}}(s, y_{k_{i}}) ds = \int_{0}^{1} f(s, 0) ds = 0.$$

So,  $f \notin G$ . Observe that the integral equation (\*) has a solution x(t) = 0 for  $t \in I$ .

## References

- BRUCKNER, A. M.: Differentiation of real functions, Lecture Notes in Math. 659, Springer-Verlag, Berlin-Heidelberg-New York, 1987.
- [2] FILIPPOV, A. F.: Differential equations with discontinuous right hand (in Russian), Moscow, 1985.
- [3] GRANDE, Z. and RZEPKA, D.: Sur le produit de deux dérivées vectorielles, Real Anal. Exch. 6 (1980-81), 95-110.