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Abstract: The concept of an absolute end point of an irreducible contin-
uum is used to introduce the new concept of a local absolute end point of a
continuum. Some characterizations of these concepts are obtained and their
mapping properties are studied, especially for open, atomic, monotone and

related mappings.

1. Introduction

Rosenholtz defined a concept of an absolute end point of an arc-
like continuum and showed that such a point of an arc-like continuum
is characterized by any of some four equivalent conditions given in ([8],
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Prop. 1.3, p. 1309). It has been recently observed in [3] that each of
these conditions is also equivalent to each of two other conditions and
that the scope of application of the definition can be extended to arbi-
trary irreducible continua, not necessarily arc-like ones (see below, Th.
3.1).

The extended notion of an absolute end point is applied in the
present paper to define a local absolute end point of an arbitrary con-
tinuum. Some necessary and sufficient conditions are obtained under
which a given point of a continuum is either a local absolute end point
or aun absolute end point.

The concept of an absolute end point is related to that of an end
point introduced by Bing in Section 5 of [1], p. 660-662 (see [8], Remark,
p. 1310) which’is known to be invariant under confluént (thus under
open as well as under monotone) mappings (see [2], Lemyma, p. 172). It
is known that an arc-like continuum is invariant under:monotone ([1],
Th. 3. p. 654) and under open mappings ([7], Th. 1.0, p 259; compare
also [6], Th. 1, p. 77), and that an irreducible continudm is preserved
under monotone mappings (see e.g. [5], §48, I. ThL. 3, p. 192). There-
fore, it seems to be quite natural to know whether such mappings also

preserve (local) absolute end points. This questien is discussed in Sec-

tion 4. Theorems of this sort are widely known t@ be useful in the study
of various mapping properties of topological spaces in continua theory.

1

2. Preliminaries

All spaces considered in this paper are assumed to be metric and
nondegenerate, and all mappings are continuous. For all undefined
herein notions the reader is referred to books [5] and [9] and to Rosen-
holtz’s paper [7]. Following Kuratowski [5], §49, L. p. 227, we say that
a space X is locally connected at a point p of X provided that for each
open set U of X containing p, the point p lies in the interior of a con-
nected subset of U. Note that some other authors use name “connected
im kleinen” in the same sense. By a composant of a point'y in a contin-
uum X we mean the union of all proper subcontinua of X containing y. -
A simple triod means the union of three arcs (called arms) emanating
from a common end point and mutually disjoint outside the point. The
other end points of the arcs are called ends of the triod. A continuum
is called irreducible if it is irreducible between some pair of its points.



Absolute end points and their mapping properties 105

A mapping f : X — Y from a continuum X onto a continuum ¥V
1s said to be:

(a) monotone, provided that the inverse image of each subcontinuum
of Y is connected;
(b) interior at a point p € X, provided for every open neighbourhood

U of pin X the point f(p) is in the interior of F(U);

(c) open, if for each open subset of X its image under f is an open
subset of ¥;
(d) confluent, if for each subcontinuum @ of Y each component of

F7(Q) is mapped onto Q by f;

(e) light, if dim f~2(y) = 0 for each y € Y;
(f) atomic, provided that for each subcontinuum K of X either F(K)

is degenerate, or f7!(f(K)) = K.

We shall collect several known properties of mappings of continua
which will be needed in the sequel. For the proof of the first of them
see [5]. §48. I, Th. 3, p. 192.

Proposition 2.1. If a continuum X is irreducible between points p
and g and a surjection f: X — Y is monotone, then the continuum Y
is irreducible from f(p) to f(q).

The next two propositions are immediate consequences of the def-
initions. ,

Proposition 2.2. 4 mapping is open if and only if it is interior at
each point of its domain.

Proposition 2.3. Let a continuum X be locally connected at a point
p. If @ mapping f defined on X is interior at p, then F(X) 1s locally
connected at f(p).

Further, the following results are known.

Proposition 2.4. Each atomic mapping of a continuum is monotone
(see [4], Th. 1, p. 49).

Proposition 2.5. Open mappings of compact spaces are confluent (see
[9], Th. 7.5, p. 148)

Proposition 2.6. Open mappings preserve arc-likeness of continua
(see [7], Th. 1.0, p. 259; compare also [6], Th. 1, p. 77).

3. Characterizations of absolute end points and of
local absolute end points '

A point p of a continuum X is called an absolute end pownt of X if
X\ {p} is a composant (of some point) in X. Observe that a continuum
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with an absolute end point must be nondegenerate. Th. 3.1 below is a
part of a result in [3].
Theorem 3.1. The following conditions on a continuum X and a
point p of X are equivalent:
(1) p is an absolute end point of X;
(2) X is irreducible between p and some other point, and X 1is locally
connected at p;
(3) X isirreducible, and if X is irreducible between points = and y,then
either  or y 15 p.
The next proposition will lead to a new characterization of abso-
lute end points in the realm of irreducible continua (see Th. 3.4).
Proposition 3.2. If a continuum X contains an absolute end point p,
then for each nondegenerate subcontinuum K ofX the candztzon pe K
implies p € int'K. ‘
Proof. By Th. 3.1 the continuum X is 1rreduc1b1e fr m p to some
other point ¢ € X. Let a nondegenerate subcontiniuum K of X contain
p- Then there is a point z such that z € K \ {p} C X \ {p}. Since
X \ {p} is a composant in X, there exists a proper subcontinuum C of
X containing both z and ¢, with C C X \ {p}.- Since p € K, g € C
and z € K N C, we conclude K U C = X by the irreducibility of X
between p and ¢g. So X \ C C K. Since C C X \ {p}, the difference "
X'\ C is a nonempty open subset of K containing the point p, and thus
pEIntK. ¢
A point p of a continuum X is called a local absolute end point of
X provided there is a subcontinuum K of X' such that p € int K and
p is an absolute end point of K.
Theorem 3.3. The following conditions on a continuum X and a
point p of X are equivalent:
(a) p is a local absolute end point of X ;
(b) there is a subcontinuum K of X irreducible between p and some
other point of X, such that K is locally connected at p and p €
€ int K;
(c) for each nondegenerate subcontinuum K of X if p € K then p €
€ int ;
(d) pisa local absolute. end point of each nondegenemte subcontinuum
Y of X containing p.
Proof. Conditions (a) and (b) are equivalent by Th. 3.1. Condition (a)
implies (c) by Prop. 3.2. Assume (c) is satisfied. Consider a subcontin-
uwum Y of X with p € ¥. Let a subcontinuum K of ¥ be irreducible
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between the point p and some other point of Y. Then (c) obviously
implies the local connectedness of K at p, and thus (b) is satisfied for
A =Y. By the above mentioned equivalence of (a) and (b) (still for
X =Y), we get (d), which obviously implies (a). ¢
Theorem 3.4. A local absolute end point of a continuum X is an
absolute end point of X if and only if X is irreducible.
Proof. One implication is a consequence of Th. 3.1. To show the other
one, assume that the continuum X is irreducible between points g and b,
and let a point-p be a local absolute end point of X. Suppose a # p # b.
Denote by A and B subcontinua of X which are irreducible between p
and « and between p and b, respectively. By the implication (a) =
= (c) of Th. 3.3, the continua 4 and B are both locally connected at
p. Thus p € int A N int B, whence there is a point g € AN B\ {p}).
Since p is an absolute end point of each of the continua A and B, by
the implication (2) = (1) of Th. 3.1, we have a subcontinuum A’ of A
and a subcontinuum B’ of B such that a,q € 4’, bge B',andpe X'\
\(A"UB'). Hence X is not irreducible between a and b, a contradiction.
Consequently, either a = p or b = p, and thus p is an absolute ead point
of X according to the implication (3) = (1) of Th. 3.1. ¢

As an immediate consequence of Th. 3.4 we have the following
result.
Corollary 3.5. Ifp is a local absolute end pownt of a continuum X,
then p is an absolute end point of each irreducible nondegenerate sub-
continuum of X containing p.

Note that a similar heredity with respect to subcontinua was
proved for arc-like continua as the final part of Th. 1.0 of [8], p. 1308.

4. Mapping properties of absolute end points

Let us accept the following definition. A mapping f : X — Y
between continua X and ¥ is said to be partially confluent at a point
p € X provided that for each nondegenerate subcontinuum Q of ¥V
such that f(p) € @ the component of F7(Q) containing the point p
is nondegenerate. Note that every confluent mapping f: X — Y of a
continuum X onto Y is obviously partially confluent at each point of
its domain just by the definition and that if f X — Y is partially
confluent at p € X and g : Y — Z is partially confluent at f(p) €Y,
then the composition gf : X — Z is partially confluent at p.
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The main result of this section of the paper is the following theo-
rem.
Theorem 4.1. Let a surjective mapping f : X — Y between continua
X and Y be both interior at a point p of X and partially confluent at

p. If p is a local absolute end point of X, then f(p) is a local absolute

end point of Y.
Proof. To show that f(p) is a local absolute end point of Y we shall use
Th. 3.3. Consider a nondegenerate subcontinuum ) of ¥ containing
the point f(p). We must show f(p) € int Q. Take the component K
of f71(Q) with p € K and observe that K is nondegenerate by the
assumption of partial confluence of f at p. Since p is a local absolute
end point of X, we conclude p € int K by Th. 3.3. Now, since f is
interior at p, it follows that f(p) € int f(int K) C int f(I«.) C intQ,
and thereby the proof is completed. { ¢

Qur next result concerns atomic mappings. (\
Proposition 4.2. Let a surjection f : X — Y bétween, continua X
and Y be atomic. Then f is interior at each absolute end;"‘point of X.
Proof. Let an absolute end point-p of X be given. Observe that since
X is irreducible between the point p and some other point ¢ in X by Th.
3.1, the continuum‘Y is irreducible between f(p) and f(g) by Props. 2.4
and 2.1. Given a neighbourhood U of pin X, let C'be a nandegenerate
continuum in U satisfying p € C and f(q) € Y \/?(C) Since X \ {p}
is a composant in the (irreducible) continuum X, there is a continuum
KCX\{p} with KNC # 0 and ¢ € K. Then f(I&) is nondegenerate.
As f is atomic we have f~ 1(f(Ii)) =K, and thus f(p) € Y\ f(K).
Since f(C)N f(K) 5 §, and since ¥ is 1rreduc1ble between f(p) € f(C)
and f(q) € f(K), we have Y = f(C)U f(K) and

flp) €Y\ f(K) = f(C)\ f(K) = int (f(C) \ f(K)) C
C int f(C) C it f(U). 0

The next corollary is an easy consequence of Ths. 3.4, 4.1 and
Props. 2.1-2.6 and 4.2.
Corollary 4.3. Assume p is a local absolute end point of i continuum
X and f: X =Y is a surjection. Then:

The point f(p) is a local absolute end point of Y if

(i) f is both confluent and interior at p, or

(ii) f is open.

The point f(p) is an absolute end point of Y in each of the fol-
lowing cases:
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(ii1) f is open and X is arc-like;

(iv) f is both confluent and interior at p, and X andY are irreducible;
(v) f is open and X and Y are irreducible;

(vi) f is both monotone and interior at p, and X is irreducible;

(vii) f is atomic and X s irreducible.

Remark 4.4. The two assumptions made on the mapping f in Th.

4.1 are independent in the sense that neither of them implies the other

one. To see this we consider the following two easy examples.

Example 4.5. - There is a light retraction of an arc which is interior

at both end points of the domain and which maps one end point onto

an nterior point of the range.

Proof. The (orthogonal) projection of the arc pr onto the subarc pq

pictured in Fig. A is such a mapping. ¢

= W

Fig. A Fig. B

Example 4.6. There are an arc-like continuum X with an absolute
end point p and a monotone retraction f of X such that f(p) is not an
absolute end point of Y = f(X).
Proof. Take the one-point union X of the topologist’s sine curve ¥ and
an arc pq (a homeomorphic copy of X is illustrated in Fig. B). Then
both X = pgUY and Y are arc-like continua. Let f : X — 1 be the
monotone retraction that shrinks the arc pg to the point ¢g. Then p 1s
an absolute end point of X, while f(p) = ¢ is not an absolute end point
of Y. ¢

Note that the mapping f, being monotone, is partially confluent
at p and, by its definition, is not interior at the point p.
Remark 4.7. Ex. 4.5 also shows that partial confluence of f at the
point p is an essential assumption in Th. 4.1. Similarly, Ex. 4.6 shows
that f being interior at p cannot be omitted in the assumptions of this
theorem.
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Remark 4.8. One cannot substitute “absolute end point” for “local
absolute end point” both in the
assumption and in the conclusion
of Th. 4.1. Indeed, let f be the
mapping from an arc pg onto a
simple triod with end points a,
b, ¢ and the center d as pictured

+9 inFig. C.

Then the mapping f is interior at
p and partially confluent at p and
Fig. C the point p is an absolute end

0 =

Py ¥ \‘/ ¥

point of pg, while the image f(p) = a is not an absolute end point of
the triod. e : : Lo

Remark 4.9. The irreducibility of the range continuuml}’ is essential
in parts (iv) and (v) of Cor. 4.3. The following example shows this.
Example 4.10. There ezisis en open, light, 3urjcctiva::$ima,pping f:
X =Y of an irreducible continuum X with an absolute end point such
that the range continuum Y is not irreducible (and thus coniains no
absolute end point). :

Proof. Let C be the standard Cantor ternary set in the unit interval
[0,1], and let p;,g; for ¢ € N be the end points/of all components of
[0,1]\ C such that p; < g; and that the sets {psn : n € N}, {psnt1:1 €
N} and {p3n+2 : » € N} are dense in C. Denote by T' a simple triod
with center r and ends a, b and c. Take the Clartesian product C x T
and consider the quotient mapping g : C x T — X, which identifies
for each n € N all pairs of points of the form: (pan,a) with (g3, a),
(Pan+1,b) with(gss+1,b), and (p3n+2,c) with (gsni2,c), and only these
pairs (i.e., g is one-to-one out of them). Observe that for each t1,t2 € T
the continuum X is irreducible between ¢(0,%1) and g(1,t2). Further,
put 7y = g(0,7), take an arc ros such that ros N Xo = {ro}, and define
X = Xy Urgs. Note that X is an irreducible continuum having s as its
absolute end point. )

Finally consider an arbitrary homeomorphism h : 7‘0& —raCT
such that h(rp) = r and a mapping f : X — T definedby f(z) =t
if z = g(y,t) for some y € C, and f(z) = h(z) if = € ros. It is easy
to see that the mapping f is open and light. Since its range T is not
an irreducible continuum, f(s) is not an absolute end point of T'. The
proof is completed. ¢
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Remark 4.11. That the mapping f be both interior at p and monotone
is an essential assumption in part (vi) of Cor. 4.3 because Exs. 4.5
and 4.6 show that even retractions of arc-like continua do not preserve
absolute end points.
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