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Abstract: The main result is the following. If g : (0,00) — (0, c0) is geo-

metrically convex on an interval (a,cc), for some a > 0, and satisfies the

functional equation
g(z +1) =zg(z), =€ (0,00); g(1)=1,

then g is the I function. This result improves the classical Bohr-Mollerup the-
orem. We also proved that the geometrical convexity of g on (a, c0) can be re-

placed by geometrical Jensen convexity on (g, 00) - i.e. g(+/Z¥) < v/9(z)g(y)
for z,y > a — and some weak regularity conditions.

Introduction

The Euler T' function is characterized as the only logarithmically
convez function g : (0, c0) — (0, ), satisfying the functional equation
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(1 9(z+1)==z-g(z), z€(0,00), with g(1)=1.

This is the well-known theorem of H. Bohr and J. Mollerup [3], pp. 149-
164, published in 1922. Nine years later E. Artin [1] gave a very elegant
and easy proof of it. An elementary and nice exposition of this proof
can be found in Chapter 8 of W. Rudin’s book [11]. W. Krull showed
in his paper [5], which he called a marginal note to Artins “Finfihrung
in die Theorie der I' Funktion”, that this result can be obtained by
characterizing the convex solutions of a class of linear finite difference
equations (see also M. Kuczma, [6], p. 128.)

A. E. Mayer [8] showed that in the Bohr-Mollerup theorem the
condition of the logarithmical convexity cannot be replaced by that of
convexity. In particular, cf. H.-H. Kairies [4], for every sufficiently small
¢ > 0, the function ¢ : (0,00) — (0, 00) given by

g(z) =T(z)exp(csin2rz), z € {0,00),
satisfies (1) and is convex on (0, c0).

The convexity of a function g is meant in the classical sense. Thus
g is convez on an interval (a, b) if and only if for each triplet of numbers
z,y,2 € (a,b) with z < y and z # z # y the following inequality holds:

9(z) —9(z) _ 9(y) —g(2)
x—2z -  y—z

Moreover g s logarithmically conver means that log og is convex. We
say that a function g : (0,00) — (0,00) is geometrically convez if

g (a:'\ M <y (2)*-g(y)'™* forall Ae(0,1); =y € (0,00).

Obviously g is geometrically convex on (0,00) if and only if its expo-
nential conjugate, i.e. the function logog o exp is convex on R.

In Section 1 we will present the following theorem:

The only function g : (0,00) — (0,00) satisfying (1) and geomet-

rically convez on a neighbourhood of the infinity i3 the T' function.
We also prove that this result essentially improves the Bohr-Mollerup
theorem. In this context the above mentioned examples of convex so-
lutions g of equation (1) such that g # I' show that the geometrical
convexity is a more appropriate characterization of the I" function than
convexity or even the logarithmical convexity.

In Section 2, using some well-known weak conditions which ensure
the continuity of Jensen convex functions, we give some characteriza-
tions of the I" function under the assumption of the geometrical Jensen
convexity of the function g.
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1. The main result

We start this section with the following obvious remarks.
Remark 1. If the function g : (0,00) — (0,00) is a solution of (1)

then ¢ : (0,00) — R, given by ¢ = log og is a solution of the functional
equation
(2) (z+1)=logz+p(z), z€(0,00), with ¢(1)=0.
From (2) we get, by induction, for all n € N
) w(n+1+z)=9p(z)+loglz(z+1)-(z+n)], =z€(0,00).
Remark 2. A function ¢ : (0,00) — (0,00) is geometrically convex
on (a,00), a > 0, if and only if the function ¢ R — R defined by
¢ = log og o exp is convex on (loga, 0o).
Now we can prove

Theorem 1. Suppose that g : (0,00) — (0,00) 13- a solution of (1) and
g 18 geometrically convez on an interval (a,00) for some a > 0. Then

=T.
%roof.’ Let g : (0,00) — (0,00) be a solution of (1), geometrically
convex on the interval (a, o). Put ¢ = logog and ¢ = logogoexp as in
Remarks 1 and 2, respectively. By Remark 2 the function ¢ is convex
on (log a,c0). Take arbitrary n € N with n > a and z € (0,1), and put

z1 = logn, Ty = log(n + 1),
=log(n+1+ z), z4 = log(n + 2).
So we have
loga < z1 <19 < 73 < 4.
From the convexity of ¢ on the interval (log a, 00) follows:
L 8(z2) — 9(z1) o 8(zs) — #(z2) < $(z4) — #(z2)
7 T2 — I 3—$2  Lqg — T3 .
Since ¢(n) =log [(n — 1)!], this inequality yields
logn < e(n+1+z)—logn! < log(n + 1)

Ty — Ty T3 — T2 T Ty — T
Subtracting from this inequality 25>~ 1° o> and multiplying by (z3—=z2) >0
yields
0<go(n+1+:c) — logn! — lognS'
$2 -
T3 —
< 2] 1) — 21
_$4_$ og(n+1) p—— ogn.

Put
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On = log(n +1)— — T2 logn.
1

T4 — T2 g — T
Using (3) and the explicit expressions for the z;’s, we get
o n' log (n414z)-—log (n+1)
n

0 < p(z) —log 2@t D (=t n) ‘m e (nFD)-logn

We will show that lim ©, = 0. The inequality z4 — z2 > z3 —

n—oo

implies

0<6, <Z

slog(n + 1 2 logn =
P g( ) = P

n 1
= log(n + 1) — é(n) -logn = log [m + m] )

where §(n) = Z2=%2_ Hence we have

Io—I)
log(n +2) — log(n + 1)
n——»oo log(n 4+ 1) — logn

11m 6(n) = ,1'

Now é(n) > 37 by Cauchy’s mean value theorem and z4 — z; =
= log ﬁ% < log 2L = z5 — x4, that is 1 > é(n). Hence
1< - < e —nwT —» 1 for h—»oo,

n‘s(’?’) nn/(n+1)
therefore

. n 1 ) n 1
Am_log [WJrnT(T] =1°g[hm i T Am =

n—oo n—co na( n)

= log(1 + 0) = 0.
This means lim O, =
So tp(z:?—;.r?:i henceforth also g(z) is uniquely defined for each z of
the interval (0,1) and, while ¢(1) = 0 by definition, also at z = 1. By
the functional equation (1) the function g is uniquely defined on all of
(0,00). Since we know that the I' function is geometrically convex on

a neighborhood of oo (see Remark 4, below) the proof is complete. ¢
To show the relation between the Bohr-Mollerup theorem and our

Th. 1 we need some auxiliary. results.

Lemma 1. Suppose that g : (a,00) — (0, oo), a > 0, i3 increasing
and logarithmically convez on (a,00). Then g is geometrically convez
on (a,o0)..

Proof. Take arbltrary z,y € (a,00). Since a < z 2y < Az +(1 Ay
for X € (0,1), ma,kmg use of the monotonicity and convexity of log og,
we have
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log g(z*y' ™) <logg (Az + (1 — \)y) <
< Mogg(z) + (1 — M) log g(y) = log (9(z)*g(y)* ).

Hence g(z*y'~*) < g(z)*g(y)!?, i.e. the function g is geometrically
convex on (a, o). ¢
Remark 3. The function g : (0, 00) — (0, 00), given by

g(z) = exp(—vz + 1)

is decreasing and logarithmically convex on (0,00). Moreover, it is
easy to verify that the function logog o exp is strictly concave on R,
which means that g is strictly geometrically concave on (0, 00). Thus,
in Lemma 1, the supposition that ¢ is increasing turns out to be indis-
pensable. :

Lemma 2. If a function g : (0,00) — (0,00) satisfies (1) and is
logarithmically conver on a neighbourhood of oo, then there exists an
a > 0 such that g is increasing on (a,0).

Proof. By assumption logog is convex on (b,oc0) for some b > 0.
Thus the right derivative (logog), (z) = ¢'.(z)(g(z))™" exists for all
z € (b,00) and is an increasing function on (b,00). Suppose now that
g (z) < 0 for all z € (b,00). Then, of course, ¢ would be decreas-
ing on (b,00). But this is a contradiction because g(n) = (n — 1).
Thus there exists an a > b such that g/, (a) is nonnegative. In view of

the monotonicity of (logog)!, = %—t we have g/, (z) > 0 for all z > a.
Consequently, the function g is increasing on (a, 00). ¢

Remark 4. The T function is logarithmically convex on (0, 00), see
e.g. Rudin [11], p. 192. Hence, by Lemma 2 and Lemma 1, T is also
geometrically convex at least on the interval (2,00) (cf. the proof of
Lemma 2).

The function g given in Remark 3 shows also that in Lemma 2
the assumption of g to be a solution of (1) is essential. However, the
following more general result is true too: If a function g : (b,00) —
— (0,00) i3 logarithmically convez and is not a deacreasing function,
then there exists an a > b such that g 1s increasing on (a,00).

Now we can see, using the lemmas above, that the following re-
sult which is a generalization of the Bohr-Mollerup theorem (cf. H.-H.
Kairies [4], p. 50) follows from Th. 1.

Theorem 2. If g : (0,00) — (0,00) i3 a solution of (1) and g is
logarithmically convez on an interval (a,00) for somea > 0, then g =T.
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Remark 5. Lemmas 1 and 2 prove that Th. 1 (as well as its con-
sequence, Th. 2) generalizes the Bohr-Mollerup theorem. To see that
Th. 1 is an essential improvement of this classical result notice that all
power functions g(z) = z?, z € (0,00), with p > 0, are geometrically
convex but not logarithmically convex. Note also that g(z) = ? is not
convex for p € (0,1).

2. Generalizations of Theorem 1 for Jensen convex
functions

We introduce the following analogue of a Jensen convex function.
Let I C (0,00) be an open interval. A function g : I — (0,00) is said
to be geom¢tricdlly Jensen convez on I if

9(v/zy) < \/g(m)g(y) forall =z,y el

Remark 6. It is easy to see that g : I — (0,00) is geometrically
Jensen convex iff the function logog o exp is Jensen convex on the
interval log(I). Furthermore, it is well-known that every continuous
(geometrically) Jensen convex function is (geometrically) convex.

Using this remark and the well-known theorems of F. Bernstein-
G. Doetsch [2], W. Sierpinski [12], A. Ostrowski [10] and M. R. Mehdi [9]
(cf. also M. Kuczma [7]), which give some very weak sufficient conditions
for a Jensen convex function to be continuous, we can formulate the
theorems of the previous section in a more general form.
Corollary 1. Suppose that g : (0,00) — (0, 00) 13 bounded above on a
neighbourhood of a point and geometrically Jensen conves on an interval
(a,00) for some a > 0. If g satisfies (1), then g =T.
Proof. By assumption there are z9 € (0,00), 7 > 0 and M > 0 such
- that g(z) < M for all z € (zg —r,z¢0 + 7). Choose n € N such that
(n+zg —r,n+z9+7r)C (a,00). Hence by equation (1) we have:

g(z+n)=2z(z+1)---(z+n-1)g(z) <
, <(zo+r+n)"M, z€(zg—r,20+T).

Thus g is bounded above on U := ((z¢ + n) — r, (2 + n) + r) C (a, c0).
It follows that the function log ogoexp is bounded above on the interval
log(U) C (loga, o). The Bernstein-Doetsch theorem (cf. Kuczma [7],
p. 145, Th. 2) implies that logog o exp is continuous on (loga,co).
Remark 6 yields that log og o exp is convex on the interval (loga, o),
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consequently, g is geometrically convex on (a,00). Now Cor. 1 results
from Th. 1. .
Remark 7. It follows from Ostrowski’s theorem [10] (cf. M. Kuczma
[7], p. 210, Th. 1), that the Cor. 1 remains true on replacing the as-
sumption “g is bounded above on a neighbourhood of a point” by “g is
bounded above on a set T C (0,00) such that the inner measure of T' i3
positive”.
Remark 8. It follows from Mehdi’s theorem [9] (cf. M. Kuczma [7], p.
210, Th. 2), that the Cor. 1 remains true on replacing the assumption
“g is bounded above on a neighbourhood of a point” by “there ezists a
set T C (0,00) containing a second category set with the Baire property
such that g 1s bounded above on T7”.

In a similar way as Cor. 1, using now the Sierpiriski theorem [12]
(cf. also M. Kuczma [7], p. 218, Th. 2), we can prove
Corollary 2. Suppose that g : (0,00) — (0,00) is geometrically Jensen
convez on an interval (a,00) for some a > 0, and there is a nonempty
open wnterval I C (0,00) such that the restriction g|; is measurable. If
g satisfies (1), then ¢ =T.
Remark 9. In M. Kuczma’s book [7] one can find some other weak
conditions which guarantee the continuity of Jensen convex functions.
They allow to formulate somewhat more general results than the above
Cors. 1 and 2.

The authors thank Professor J. Aczél for some helpful comments.
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