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Abstract: Random variables with values in the space of fuzzy subsets of a
Banach space are studied and an individual ergodic theorem for such variables
is proved. To do it the representation of the random fuzzy set by the system

of random sets and an embedding theorem is used.

1. Introduction

Limit theorems for random fuzzy sets (or fuzzy-valued random
variables) have recently been studied by several authors in two direc-
tions. The first one uses the Kwakernaak’s definition of fuzzy random
variables and has been investigated by Boswell and Taylor [7], Kruse
[11], Miyakoshi and Shimbo [12] and others. Another concept of fuzzy
random variables (as a generalization of random sets) was defined by
Puri and Ralescu [15]. The limit properties of such random variables
were studied by Klement, Puri and Ralescu [10], Inoue [9], Ban [4], [5],
and others.
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This note is a contribution in the second direction. We extend the
results of Ban [4] using a different type of convergence for random fuzzy
sets. Our results are established for Banach spaces of type p, p > 1.

2. Preliminaries

A Banach space X is of type p if there exists a constant K > 0
such that

E Zfi
i=1

holds for any independent X-valued random elements fi,..., f, with
Ef; = 0, where ||.|| is the norm in X. A Banach space X is said
to have the Radon-Nikodym property if for each finite measure space
(2, A,p) and each p-continuous X-valued measure m : A — X of
bounded variation, there exists a Bochner integrable function f: 2 —
— X such that

<K. ZE]If,””

i=1

m(A) = /fd,u forall AeA.
A
Throughout this paper, let (2,4, P,T) be a dynamical system
with a measure-preserving mapping T':  — (2 and a probability mea-
sure P. Let X be a Banach space of type p,p > 1 having the Radon- -
Nikodym property. It is well-known that the set K(X') of nonempty

compact subsets of X is a complete separable metric space with respect
to the Ha,usdorjf distance h defined by '

h(A,B) = { supmf ||l — b||, supinf |la — b||} for A,B € K(X).
bEB acA -

The space K(X) has a linear structure induced by the Minkowsk: add:-
tion and scalar multiplication:

A+B={a+b:.aEA be B} and a.Az{a.a:aEA}

for A,B € K(X) and o€ R.

By co K(X') we denote the space of all nonempty compact convex
subsets of X. For every A € K(X), the number |A]| is defined by
|A| = sup l|lz|| and the inner radius r(A) is given by
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r(A)= sup inf{R>0:3dy,...a, € A4,
a€co A

a €co{ai,...,an} and |la — a;]| < R}

where co B is the closed convex hull of B, B C X.

"The following property of the Hausdorff distance is very important
from our point of view: there exists a constant K > 0 such that

(AL +-- 4 Anyco (A1 + -+ + An)) < KYVP [rP(A) + -+ + rP(4,)] 7
for every A; 4 .-+ A, € K(X). The above property of the Hausdorff

distance is a generalization of the Shapley-Folkman-Starr theorem, and
was proved in [14].

A random set is a Borel measurable function F : (2, 4) — K(X)
(in the sense of measurability in metric spaces). A function f: Q — X
is called a selection of F if f(w) € F(w) a.e. Denote by

Sp={f€eL'(QAP;X): f isa selection of F}.

Now, for a random compact set F', we define EF = {Ef : f € Sp};
(Aumann [2]). Note that, in general, EF may be empty, but if E|F| <
< oo then EF € K(X). A random compact set F is called integrably
bounded if there is a nonnegative real-valued integrable function ¢ :
:  — R such that [[z|| < ¢{(w) for all ¢ and w with z € F(w). The
space of all integrably bounded random sets is denoted by £(2, X).

3. Random fuzzy sets

A fuzzy subset of X is a function u : X — [0,1]. For each fuzzy
subset u, set

Lou={ze X :u(z)>a}, ac(0,1].

Let suppu denote the support of u, i.e. the closure of the set {z € X :
: u(z) > 0}. Let F(X) denote the set of all fuzzy subsets u : X — [0, 1]
such that Lyu € K(X) for every a € (0,1], suppu € K(X), and u is
upper semicontinuous. Similarly denote by co F(X') the subspace of
F(X) consisting of those u for which Lyu is compact convex for every
a > 0. Let cou denote the fuzzy subset such that €6 Lsu = Ly(cou),
a € [0,1].
' The linear structure in F(X) is defined as follows: for u,v in

F(X),a € Rand z € X let
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(v +v)(z) = sup min[u(y),v(z)]
r=y+=z

( )()_{u(a_lx) fas#0

AT = Iigy(z) ifa=0

where I{o} is the indicator function of the set {0}.
If u,v € F(X), define the distances between u and v by

d(u,v) = sup h{(Lau, Lav)
a>0

and
1
di(u,v) = /h(Lau,Lav) do.
0

It is well known that (F(X),d) is a complete metric space.

Now, a random fuzzy set can be defined as a Borel measurable
function X : (Q,4) — (F(X),d). It is easy to show that, for every
a € (0,1], the random set X : @ — K(X) defined by X*(w) = {z €
€ X : X(w)(z) > a} is a measurable random compact set. The func-
tions X @ are called a-cuts of X. A random fuzzy set X is called inte-
grably bounded if X2 is integrably bounded for all a € (0, 1]. The space
of all integrably bounded fuzzy variables is denoted by FV(Q, F(X)).

The expected value EX of any random fuzzy set X is defined in
such a way that the following properties are satisfied:

(i) EX € F(X) _

(ii) Lo(EX) ={z € X : (EX)(z) > o} = E(X*) for each o € [0,1].
The proof of the existence and uniqueness of this integral for any inte-
grably bounded random fuzzy set works in the same way as in [15].

Combining [13] and [10] the following lemma can be proved.
Lemma 1. There ezists a normed space M such that (co F(X),d1)
can be embedded isometrically into M, i.e. there ezists an isometry
j:(coF(X),d1) = M such that

(1) j preserves the linear structure in co F(X),

(2) EG(X)) = j(E(X)) for every X € FV(Q,coF(X)) with

Elsupp X| < oo (where E(j(X)) 1s the Bochner integral in M).

For the formulation of the individual ergodic theorem we need
the notion of conditional expectation of the random fuzzy set X with

values in co F(X). Let A be a sub-o-algebra of A. An Ap-measurable
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random fuzzy set Y is called the conditional ezpectation of X relative

tO.Aoif
/Xsz/YdP forany A€ A.
A A

The existence and uniqueness almost everywhere of the conditional ex-
pectation of any integrably bounded random fuzzy set was shown in
[3]. We denote it by E(X|Ay).

Lemma 2. Let X € FV(Q,co F(X)) with E|supp X| < co. Let j be
the isometry from Lemma 1, and let Ay be a sub-c-algebra of A. Then

E(joX|A) =joE(X|A) a.e.
Proof. Since jo [XdP = [jo X dP, (see [10]), we obtain for any
‘ A A
Ae A

/E(joX|.A0)dP:/jonP:jo/XdP:
A A A

=jo/E(X|AO)dP=/joE(XgAD)dP
A A
and therefore
B(j o X|4o) = j o B(X|As).

The main result of this paper is the following theorem.
Theorem. Let X € FV(Q,F(X)) with Elsupp X| < oo and Ay =
={Ac€ A: A=T(A)}. Then .

dy — lim n7! ZX(Ti(w)) = FE(coX|A4p) a.e.
=1
Proof. First, let us consider the “convex case” i.e. X(w) = coX (w).
Let j : coF(X) — M be the embedding of the space co F(X) into a
Banach space M. From the construction of the isometry j, it is easy
to show that ||j(co X)||a < |supp co X|, which means that

E||j(co X)||a < ElsuppcoX| < Elsupp X| < oo
since ||j(co X)|| s is measurable. Using the individual ergodic theorem

in Banach spaces (Beck and Schwartz [6]) and Lemma. 1, we have

lim n~? Z] 0coX(T'(w)) =jo E(coX|4y) a.e.
i=1

From the properties of j, it follows that
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lim n~! Zco X(T'(w)) = E(co X|A4q) - ae.
i=1

Now,

=1

di (n-l ZX(T‘(w)), E(coXl.Ao)) <
<d (n—l 2 X(Tw)),n™ _ZcoX(T"(w))) +

+dy (n_l ZcoX(Ti(w)), E(coXIAo)) .

=1
The second term converges almost everywhere to zero for n — co.
We have to prove that

lim d; (n—lzX(Tf(w)),n-l ZcoX(T"(w))) =

n—+0oo

= lim / h (La (n—lzX(T"(w))> ,
L, (n"l ico X(T’(w)))) da=0.

Denote by
f¥(a)=nh (La <n—1 zn:X(Ti(w))) Lo (n—l icoX(T"(w))» .
It is well-known that = -

L, [n > x(re))| =n” Y LX)

(see e.g. [13]) and thus for fixed n € N, w € Q and a € (0, 1] we have
F2(a) S EVP[n7? [rP(La(X(THW))) + -+ + P (La( X (T™(w)))] ] =

n l/P
= K/? [n—P ETP(LQ(X(T"(LU))))} :
i=1
The a-cuts Lo(X (T%(.))) of random fuzzy sets X(T%(.)) are compact-
valued random sets and
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r (La(X(T(w)))) < 2. |La(X(T'w)))| < 2. Jsupp X(T'(w))] -

Since Elsupp X| < o0, also Er(Ly(X o T%)) < oo for any a € (0,1].
Moreover, the constant K does not depend on n and thus

n i/p
0< lim f¥a) < KYP lim [n-P > rP(La(X(Ti(w))))] =0
i=1
by the Birkhoff individual ergodic theorem and the assumption p > 1
(applying also the Marcinkiewicz-Zygmund strong law of large num-
bers). For fixed w € 2, the functions f¥(a) are bounded, and we can
apply the Lebesgue dominated convergence theorem. We obtain

nleréo d; <n'1 ETI_:X(CZ"'((.‘J)),n"1 icoX(Ti(w))) =
. 1=1 . =1
= lim [ fJ(a)da= /ﬁl_i;ﬁrolof:(a)da =0 ae.
0

n—oo
0

n ) n .
Thus lim dy (n_l > X(TH(w)),n 13 coX(T'(w))) = 0 a.e. and
n—roo 1=1 =1
the proof is complete. ¢

Remark. The assumption of Radon-Nikodym property of the Banach
space X can be deleted by another formulation of the main theorem.
This property is needed to ensure the existence of conditional expecta-

tion of a random fuzzy set.
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