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Abstract: We prove some finiteness theorems for pairs of binary forms with
given semi-resultant ideal over the ring of S-integers of a number field. Our
main results imply, in an ineffective form, some finiteness results of [3] on
binary forms with given non-zero resultant and some finiteness theorems of
(1] and [2] on binary forms with given non-zero discriminant or given non-zero

discriminant ideal.

1. Introduction

In our papers [4] and [5], finiteness theorems have been estab-
lished for pairs of monic polynomials with given non-zero resultant over
an integrally closed and finitely generated integral domain A over Z.

*Research partially supported by Hungarian National Foundation for Scientific Re-
search, grant. no. 1641.
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Moreover, the results of [5] have been extended to pairs of monic poly-
nomials with given semi-resultant. In the particular case when A is the
ring of S-integers O of a number field, explicit upper bounds have also
been derived for the number of Og-equivalence classes of pairs under
consideration. On the other hand, in our joint paper [3] with Evertse
lower bounds have been given for resultants of binary forms over Os.
As a consequence, we obtained in [3] a qualitative finiteness theorem for
binary forms with given non-zero resultant over Og. The purpose of the
present paper is to extend this qualitative result to binary forms of given
semi-resultant ideal over Og. Since the semi-resultant ideal is a common
generalization of resultant ideal and of discriminant ideal, our finiteness
theorems imply both the above-mentioned qualitative finiteness result
of [3] and the ineffective and qualitative versions of some finiteness the-
orems of [2] on binary forms with given non-zero discriminant or given
non-zero discriminant ideal. It should, however, be remarked that in
our proofs some results of [3] and [2] are involved. Further, in contrast
with the theorems of [2] the results of the present paper are ineffective.
This is a consequence of the fact that the results of [3] used in our
proofs depend on the Thue-Siegel-Roth-Schmidt method and its p-adic
generalization.

In Section 2, we introduce some concepts and notations and make
some preliminary remarks. Our results are stated in Section 3. Finally,
Section 4 is devoted to the proofs.

2. Definitions, notations and preliminary remarks

Let K be an algebraic number field with ring of integers O, S
a finite (possibly empty) set of prime ideals in Ok, Os = {a € K :
: ord p(a) > 0 for all prime ideals P of O with P ¢ S} the ring of
S-integers in K, and O% the group of S-units in Os. By an Og-ideal
we mean a finitely generated Og-submodule of K, and by an integral
Og-ideal, an Og-ideal contained in Og. The Og-ideal generated by
aq,...,0, is denoted by (ay,...,a,)s. If F € K[X,Y] then (F)s
denotes the Os-ideal generated by the coeflicients of F.

K F(X) = F(X,Y) and G(X) = G(X,Y) are non-zero binary
forms in K[X,Y] with deg F' = r, deg G = s, then they can be factorized

as
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(1) FOO = [16(), 600 = _HE;(X),

where £;, E are homogeneous linear polynomials with coefficients in a
fixed finite extensmn say L, of K. The resultant of F and G is defined
by

(2) R(F,G) = H H det (£;,£})
i=1j=1

where det (¢;,£;) denotes the coefficient determinant of {/;,£;}. Here
it should be remarked that for binary forms F,G with F(1,0) # 0,
G(1,0) # 0, R(F,G) is just the resultant of the polynomials F(X,l)
and G(X,1). In [5] we used the concept of semi-resultant of monic
polynomials in one variable which is a generalization of resultant. As
far as I know, this concept of semi-resultant cannot be extended in an
appropriate way to arbitrary binary forms. Instead we shall define the
semi-resultant ideal of binary forms.

The resultant Og-ideal of the binary forms F,G € K[X,Y] is
defined (cf. [3]) by

_(B(F,G))s

(F)s(G)s

Rs(F,G) is an integral Og-ideal (see [3]). Denote by Of, the ring of
integers of L, by T the set of prime ideals of O lying above the prime
ideals in S, by O the ring of T-integers in L, by (a)r the Op-ideal in L
generated by «, and by (¢;)r the Op-ideal generated by the coefficients
of the linear form ¢;. Further, let I (F, G) denote the set of pairs {i,5}
with det (£;,£;) # 0 for i = 1,...,r, j = 1,...,s. We shall show in

Section 4 that there exists a non-zero integral Og-ideal R%(F, G) such
that

. _ (det (f,, J))T
“ 6= 11 =gy

where the product is taken over all pairs {7,5} in I(F,G). R%(F,G)
is called the semi-resultant Og-ideal of F' and G. We note that by
Gauss’ lemma (see e.g. Lemma 2 in [2]), RE(F,G) is independent of
the choice of £; and £} in (1). Further, R§(F,G) = Rs(F,G) for the

case when F, G have no common linear form divisor over L. Finally, if

(3) Rs(F,G) =
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F is a square-free binary form in K[X,Y] with degree r (i.e. F has no
multiple non-constant factor over K) then

(D(F))s
()5
which is just the discriminant Og-ideal Ds(F) of F, as defined in [2]

(see also [3]). Hence the semi-resultant Os-ideal is a common general-
‘ization of the resultant Og-ideal and the discriminant Og-ideal.

It is easy to see that
(6) { Rs(\F,uG) = Rs(F,G) and R%(\F,uG) = R5(F,G)
forall A p€e K*.

For any binary form F € K[X,Y] and for any U = (‘c'g) € SLy(0g),
we put Fy(X,Y) = F(aX + bY,cX + dY'). Two pairs (F,G), (F',G')
of binary forms in K[X,Y] are called Og-equivalent if F' = ¢Fy, G'=
=Gy for some ¢, € O% and U € SLy(0s), and weakly Os-equivalent
if F' = AFy, G' = pGy for some A\, u € K* and U € SLy(Og). It is not
difficult to show that if (F,G) and (F',G’) are weakly Os-equivalent
then

(7) Rs(F,G) =Rs(F',G') and R5(F,G)=Rs(F',G").
For every Og-ideal A there is a unique Ox-ideal A* composed of Ok-
prime ideals outside S, such that A = A*Os. We put

[Als = Nijq( A/,

For an integral Og-ideal A we have |A|s > 1. If A is generated by o
then we put |a|s = [Als.

(5) YF,F)=

3. Results

, We keep the notation of Section 2. We shall deal with the solutions
of the inequality )

(8) IR%(F,@)|s € M in binary forms F,G € K[X,Y],

where M > 1is an arbitrary but fixed constant. ”

- For a binary form F € K[X,Y], let w(F) denote the maximal
number of pairwise linearly independent linear factors of F' over Q.

Further, for binary forms F,G € K[X,Y], we denote by wg(F) the
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maximal number of pairwise linearly independent linear factors of F
over Q which do not divide G, and we define wr(G) similarly. Let L
be an arbitrary finite extension of K, and consider those pairs (F,G)

of binary forms F,G € K[X,Y] for which

(i)  F,G factorize into linear forms over L;
(9) (i) w(F)=3,w(G)2>3;

(i) max{wg(F), wr(G), w(ged(F,G))} > 3.
We note that

wG(F)237 UJF(G)Z3

imply (i) and (iil) in (9). Further, if (F,G) satisfies (8) and (9) then
so does every pair (F',G") which is weakly Og-equivalent to (F, Q).
Theorem 1. If (F,G) is a solution of (8) with property (9) then w(FH

+w(@) < e1, where ¢; = ¢1(K, L, S, M) is a number depending only on
K,L Sand M.

Theorem 2. For every D > 2, there are only finitely many weak Og-
equivalence classes of pairs (F, G) of binary forms with deg F + deg G <
<D which satisfy (8) and (9).

As Remarks 1 and 2 in [3] show, both assumptions (i) and (ii)
of (9) in Ths. 1 and 2 are necessary. Recently Evertse remarked (pri-
vate communication) that the condition (iii) of (9) can be replaced by
the weaker assumption that either w(ged(F,G)) > 3 or w(F) + w(G)-
—w(ged(F,G)) > 3.

Consider now those solutions (F,G) of (8) for which F, G are
square-free. Then (9) takes the form

( (i) F,G factorize into linear forms over L;
(i) F,G are square-free;
(iii) degF >3, degG >3;

. F G
(iv) max {deg (‘——gcd(m)) , deg (“gcd"(F,G)) )

deg (ged(F, G))} > 3.

(10) 4

\

Ths. 1 and 2 imply the following
Corollary 1. There are only finitely many weak Og-equivalence classes
of pairs (F,G) of binary forms F,G € K[X,Y] which satisfy (8) and
(10).
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As a further consequence, consider the solutions of the inequality
(11) 0<|Rs(F,G)|s <M in binary forms F,G € K[X,Y].

If (F,G) is a solution of (11) then wg(F) = w(F), wr(G) = w(G)
and |R%(F,G)|s = |Rs(F,G)|s. Hence Ths. 1, 2 and Cor. 1 apply
immediately to (11). For example, Cor. 1 gives

Corollary 2. There are only finitely many weak Og-equivalence classes
of pairs (F,G) of square-free binary forms F,G € K[X,Y] of degree
> 3 which satisfy (11) and for which FG factorizes into linear factors
over L.

Next consider the solutions of the inequality

(12) 0<|R(F,G)|s <M in binary forms F,G € Os[X,Y].

If (F,G) is a solution of (12) then so is every (F',G') which is Og-
equivalent to (F,G). From Cor. 2 we shall deduce the following
Corollary 3. There are only finitely many Og-equivalence classes
of pairs (F,G) of square-free binary forms F,G € Os[X,Y] of degree
> 3 which satisfy (12) and for which FG factorizes into linear factors
over L.

This is Cor. 1 of [3]. From Cor. 3 one can easily deduce a similar
result for the solutions of the equation

(13) R(F,G) =Ry in binary forms F,G € Os[X,Y],

where Ry is a given non-zero element of Og. It is easy to see that
if (F,G) is a solution of (13) then so is (eFy,nGy) for every U €
€ SLy(Os) and every e,n € O% with ¢9°8C . pdeeF' — 1 Such pairs
(F,G), (eFy,nGy) of binary forms are called strongly Os-equivalent.
Obviously, they are also Og-equivalent. It follows from Cor. 3 that
for every solution (F,G) of (13) for which F,G are square-free binary
forms of degree > 3 with splitting fields contained in L, deg F and
deg G are bounded. Further, for given integers r > 3, s > 3, there are
finitely many pairs (F”, G') such that every solution (F, G) of (13) with
deg F = r, deg G = s for which FG is square-free and factorizes into
linear factors over L, is Og-equivalent to one of these (F',G"). But it is
easy to prove that for such a fixed pair (F',G'), all solutions (F, G) of
(13) having the properties specified above which are Og-equivalent to
(F',G'") are strongly Ogs-equivalent to each other. Hence we get from
Cor. 3 the next corollary.

Corollary 4. There are only finitely many strong Og-equivalence
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classes of pairs (F,G) of square-free binary forms F,G € Ogs[X, Y]
of degree > 3 which satisfy (13) and for which FG factorizes into linear
factors over L.

In view of (5), the above results can also be applied to the in-
equality

(14) 0< [Ds(F)|s < M in square-free binary forms F € K[X,Y].

Two binary forms F, F' in K[X,Y] are called weakly Os-equivalent if
F' = AFy for some A € K* and U € SLy(Os). If F is a solution of
(14) then so is every binary form F' which is weakly Og-equivalent to
F (see [2]). From Cor. 1 we obtain the following corollary.

Corollary 5. There are only finitely many weak Ogs-equivalence classes
of square-free binary forms F € K[X,Y] of degree > 3 with splzttmg
field contained in L which satisfy (14).

For an effective and quantitative version of Cor. 5, see Th. 2 of
Evertse and the author [2]. We note that this theorem of [2] is valid
for all square-free binary forms F' € K[X,Y] of degree > 2, without
any assumption on the splitting fields of F. Using some arguments
of [2], one could deduce from Cor. 5 some finiteness results for binary
forms F' € Og[X,Y] with given degree and given non-zero discriminant.
Finiteness theorems of this kind can be found in Birch and Merriman
[1] and, in effective and quantitative forms, in [2].

4. Proofs

We adopt the notations of Sections 2 and 3. First we show that
for non-zero binary forms F,G € K[X,Y], R%(F,G) is a non-zero in-
tegral Og-ideal in K. In the proof we shall use some arguments of [5],
applied there to semi-resultants of monic polynomials. Suppose that F'
and G factorize into linear factors over L where L is a finite extension
of K. Define T' and Ot as in Section 2. There exists binary forms
Fg,Gp,P1,..., Py in K[X,Y] such that Py,..., P, are irreducible, Fg
and G are relatively prime to each other and to P;,..., P, over K and

(15) F=FsPr, G=GrPs,
where Pp = Pj*... P}, Pg = P ... P} with some rational integers

a;,b; > 1 for ¢ =1,...,t. Further, Fg,Gp,P,,...,P;, Pr and Pg are
uniquely determined up to multiplicative factors from K*. In view of
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(6), we may assume without loss of generality that Fg,Gp, P1,..., P
are elements of Os[X,Y], that P; = 1for i =1,...,t if F and G are
relatively prime, and that Fg = 1 (resp. Gp = 1) if F (resp. G)
has no linear factor over L, not dividing G (resp. F). Consider now
the representations of F' and G in the form (1). By using (2), (3) and
Lemma 2 of [2], one can easily verify that?

(11 (iit)(f(’:;'))y = Rr(Fa,Gr)Rr(Fg, Pc)Rr(Pr,GF)x

I(F,G) _
: T aib;
« .Hl(RT(Pi,Pj))a'b’ 11 (Dr(P) b=
1,)= i=
(16) {

] (RS(FG,GF)RS(FG’ PG)X

XRS(PFy GF)fI ('Rs(P,', Pj))a}bj ﬁ (DS(Pi))ﬂ.-b.' ) -Or.

i,j=1 i=1
\ i

This implies that R%(F, G), defined by (4), is indeed a non-zero integral
Os-ideal. Further, by (16) we have

%(F,G) = Rs(Fg,Gr)Rs(Fa, Pe)Rs(Pr, Gr)X

(17) X ﬁ (Rs(P;, Py))™i% 'ﬁ('DS(Pi))aib"
b=l i=1

Finally, we note that (17) is true for any factorizations of the form
(15) of F,G (without the assumption that Fg,GF, Py,..., P, Pp, PG €
€0s[X,Y)).

In the proofs below, we shall frequently use that wg(F) = w(Fg),
wr(G) = w(Gr) and w(gcd(F,G)) = w(Py,...,P;). Further, if F,G
and H are non-zero binary forms in K[X,Y] then

(18) Rs(F,GH) = Rs(F,G) - Rs(F, H).

In what follows, cz( ),...,c1o( ) will denote positive numbers
which depend only on the parameters occurring between the paren-

theses. To prove Ths. 1 and 2 we need some lemmas."

1For convenience, for P = 1 we put ’D_g(P) = Og, Dr(P) = Or. Further, if
Q = 1 orif Q is a binary form in K[X,Y] thenlet Rg(P,Q) = Os, Rr(P,Q) = Or.
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Lemma 1. Let F,G € K[X,Y] be binary forms such that degF =
=r >3, degG = s > 3, FG has splitting field L over K, and FG 1is
square-free. Then for alle > 0

(19) [Rs(F,G)ls2ca(r,5,5,L,e) (IDs(F)FT - 1Ds(G) S.) e

Proof. This is proved in Remark 4 of [3]. ¢

Lemma 2. Let F,G € K[X,Y] be binary forms with the properties
specified in Lemma 1. Then

(20) |Ds(FG)|s < ea(r,s, S, L)|Rs(F, G)|c4(r,s) :
where cy(r,s) > 0 is effectively computable.

Proof. It follows from
D(FG) = D(F)D(G)R*(F,G)
that

(21) Ds(FG) = Ds(F)Ds(G)YRA(F, G).
Together with (19) this implies (20). ¢

Lemma 3. Let G € K[X,Y] be a fized square-free binary form of de-
gree 3 > 3 and L a fized finite normal extension of K containing the
splitting field of G. Further, let A > 1 be fized. Then up to multi-
plication by elements of K*, there are only finitely many non-constant
square-free binary forms F € K[X,Y] with splitting field contained in
L that satisfy

(22) 0< [Rs(F,G)|s < A.

Further, each of these binary forms F has degree at most cs, where
cs =c¢5(K,L,S,A) is a number depending only on K, L, S and A.

Proof. Denote by H the Hilbert class field of L over K, by T' the
set of prime ideals of Oy (the ring of integers of H) lying above the
prime ideals in S, by O the ring of T" integers in H, and by (P)q» the
O -ideal generated by the coefficients of a polynomial P in H[X,Y].
Note that H,T depend only on K,L and S. Let F € K[X,Y] be a
non-constant square-free binary form with splitting field contained in
L which satisfies (22). Then there are A\, p € H* such that A\F,uG €
€ Op[X,Y] and (A\F)p = Op, (uG) = O7:. It follows now from
(22) that
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(23) 7 A > |Rp(F, Q)| = |R(AF, pG)|r > 0.

Up to a multiplicative factor from O%.,, p is uniquely determined. On
applying now Lemma 1 of [3] to (23), we obtain that AF may assume
only finitely many possibilities in O/[X,Y] apart from a factor from
O% . This implies that up to multiplication by elements of K*, there
are only finitely many F' € K[X,Y] with the properties specified in our
Lemma 3. Further, using again Lemma 1 of [3], deg F' < ¢(H,T", A) <
<e¢r(L, S, A) which completes the proof of the lemma. ¢

Proof of Th. 1. Let F,G be an arbitrary but fixed solution of (8)
with property (9), and consider the representations of F' and G in the
form (15). Put P* = Py ... P;. Then, by (21), we have

Ds(P*) = HDS(PZ) X H Rs(Pi,Pj) .

ij=1
i

Together with (8) and (17) this implies that

(24) [ Ds(P*)|s < M.

It follows now from Th. 4 of [2] that
w(ged(F,G)) = w(P*) < (K, L, S, M).
If both w(Fg) and w(Gp) are less than 3 then it follows that
WFY+w(G) <cs+4.
It remains the case max{wg(F),wr(G)} > 3.
Suppose that for example wg(F) > 3. Denote by F and G} the

maximal square-free parts of Fg and G, respectively. Then F} and

% are binary forms in K[X,Y] and are uniquely determined by F' and

G up to non-zero proportional factors from K*. Further, deg F¢ > 3.
It follows from (8), (17) and (18) that

(25) 0 < [Rs(F&, P*Gy)|s < M.

By the assumption w(G) > 3, we have deg(P*G%) > 3. Hence,
by Lemma 3, deg Fy = wg(F) < ¢o(K,L,S, M) and deg(P*G%) =
= w(G) € ¢(K,L,S,M) and the assertion follows. One can proceed
in the same way when wr(G) > 3. §

Proof of Th. 2. In what follows C;,...,Cs denote finite sets depend-
ing at most on K,L,S,M and D. Let F,G be an arbitrary but fixed
solution of (8) with deg F' + deg G < D and with property (9). First
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consider the case when wg(F') > 3. Then using the notation of the
proof of Th. 1, we have (25). By Lemma 2 and (25) we get

(26) IDS(FE?P* 7*")'5 < ClO(I{7LaSa M7D)

But then, by Th. 2 of [2], there are a A € K* and a U € SLy(Os)
such that A(F§P*G% )y € C; for some C;. Since by assumption deg Fif
+deg G < D, this implies that (F, G) is weakly Os-equivalent to a pair
of binary forms belonging to C; for some C;. We can proceed in a 51m11ar v
way if wp(G) > 3.

It remains the case when wg(F) < 2 and wp(G) < 2. Then, by
assumption, w(P*) > 3. Further, (24) holds. Now Th. 2 of [2] can be
applied to (24) and we get A\(P*)y € Cs for some A € K*, U € SLy(Os)
and C3. Further, it follows from (8), (17) and (18) that

- |Rs(F&GR, P)|s < M,
whence
Rs(F&GF)u, (P™)u)ls < M.

But, for fixed U, (P*)y is also fixed and, by Lemma 3, u(FG%)yu € C4
for some p € K* and Cy. Consequently, (F,G) is weakly Og-equivalent
to a pair (F',G") of binary forms with (F',G") € Cs for an appropriate
Cs. O

Proof of Cor. 3. Cs,...,Cy, will denote ﬁmte sets depending at most
on K,L,S and M. Let (F,G) be a pair of square-free binary forms
F,G € OS[X Y] of degree > 3 which satisfy (12) and for which FG

factorizes into linear factors over L. Then
(27) 0<|Rs(F,G)ls <|R(F,G)|s < M.
Hence, by Cor. 2, (F,G) is weakly Og-equivalent to some (F',G"),

where F',G' € Cq for some Cg. In other words, there are A, u € K* and
U € SL,(0s) such that

(28) Fy(X) = AF'(X), Gu(X)=pG'(X).
It is easy to see that this implies
(29) (B(F, G))s = (R(F',G"))s(A°u")s,

where r := deg F', s := degG are bounded. It follows now from (27)
and (29) that (A\*u®)s € C; for some C;. Further, we have

FH(X)Gy(X) = (AF'(X))*(uG'(X))".
Hence we infer that (AF')5(puG')s € Cs. But (AF')s and (uG')s are
integral Og-ideals, hence (AF")s,(1G")s € Cq for suitable Cg, Cy. This
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implies that (A)s,(u)s € Cip for some Cqp. It follows now that there
are Ao, o € K™ with Ao, g € C11 such that A = e)g, p = nue with.
some ¢,17 € O%. Putting now F = M\F', G = poG' we get by (28)
that Fy(X) = EF(X) Gy(X) =9G(X) and F, G € C12. Thus we have
proved that (F, G) is Os-equivalent to (F, G) where (F', @) belong to a
finite set depending only on K,L,S and M.
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