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Abstract: In most variational principles for time depending problems there
is the great disadvantage that the constructed functionals do not have any
extremality properties. In this paper we construct two functionals: concave
F, and convex Fj such that if they attain the same critical value at v and
w, respectively, then v = u(v) = u{w) is a solution of the parabolic equation
with the homogeneous Dirichlet condition. The clue of this construction is
an idea of multiplying the equation by partial derivative of function v with
respect to independent variable {. We give also a convenient estimation for the
solution u by the difference of the values of these corresponding functionals.
Our consideration we based on the variational principles of Herrera and Sewell
[1] and our result [3] on the variational formulation for the initial-boundary
value problem.

1. Preliminaries

The parabolic equation is considered in a bounded domain @ :=
= Q x (0;T) where T > 0 and 2 is an open bounded domain of R™
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with a Lipschitz boundary 0 (in the sense of Necas [2]). We denote
the parts of boundary 0Q by 2 := Q2 x {0}, Qr:=Qx {T}, T := 90 x
x (0; T). We define a Sobolev-type space

H:={ve L*Q): Dy,Dv,D;Dw € L*(Q) for i = 1,... ,m}
where D;, D, are distributional derivatives. This space is a Hilbert
space with the scalar product given by

(u,v)g 1= / [uv + DyuDyv + DiuD;v + D;DyuD;Dw|dzdt
Q

and the corresponding norm || - || . There and below we shall use the
Einstein convention for the sum:

DuD;v := Z DiuD;v and (D;u)®:= D;uD;u.
=1
For a formal description of the boundary condition on I' we intro-

duce a closed linear subspace V of H.

Definition. Let C$2(Q) be the set of all infinitely differentiable in Q
functions which vanish in some neighbourhood of T. Then V is the
closure of C§o(Q) in H.

Under the assumption on the boundary {2 the measure v on
I' and the space L?(T") are well defined and there are the linear and
continuous operators of traces (cf. [2]):
Tro: H — H'(Q) Ter: H — HYQ) Trp: H — LA(T)
where HY(Q) := {v € L*(Q) : D,v € L*(Q) for i = 1,...,m} is the
1

2

Sobolev space with the norm ||v||g1(q) := (fﬂ [(Div)? + vz]d:c) , and

H}(Q) := {v e H(Q): v =0 on 80}. We remark that there exists
Trr(Dyw) € L?(T) the trace of the derivative Dyv on I'. From the
definition of the space V' it follows (cf. [3]):

Lemma 1. Trov, Trrv € Hy(Q) and Trrv = Trp(Diw) = 0 for all
veV.
Let £ > 0 be a constant. Let a,a*: V x V — R be bilinear forms

iven by
%1.1)

a(u,v) :-—-/[Dtthv—l—D,-uD,-Dtv-}—kthv]da:dt—i—/ [D;uD;v+kuv]dz;
Q Q

0
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(1.2)

a*(u,v) :=f [DiuDy—D;uD;Dyw—kuDyv)dzdi+ | [DijuDjv+kuv)dz.
Sy

These forms are adjoint i.e.

(1.3) a(u,v) = a*(v,u) forall u,veV.

The bilinear form e: V X V — R given by

(1.4) o(u,v) = 2la(u,) +a*(u,v)]

is symmetric and strictly positive. Its integral shape is the following:
1
e(u,v)z/ DyuDyv d:cdt+l/ [DiuD,-v-i—kuv]d:c—i——/ [DiuD;vtkuv]dz.
Q 2 Ja, 2 Qr

This permits us to introduce a new norm in the space V.
Definition. The function ||v||yv := 4/e(v,v) is the norm and e(-,+) is a
scalar product in the space V. _

- We remark that from the continuity of the operators of traces
Tro, Trr in (V, || - ||g) we have the estimate ||v]ly < C|lv||&.

2. Formulation of the variational problems

For fg € L2(Q) and fo € H 1(9) we define a linear functlona,l_. )
f:V—=Rby

(2.1) < f,v >:=/ foDyv dmdt—f—/[D,-ng'-v—{—kfov]dz

We have proved in [3] (Th. 1) the equivalence of the variational
problem VP: :

(2.2) find u € V such that a(u,v) =< f,v> (VWweV)
and the initial-boundary value problem IBV:

(2.3a) Dyu — D;Dyu+ ku =fg in L*(Q);
(2.3b) . Trou=f, in Hp(Q);
(2.3¢c) Trru =0 in L*(T).

Moreover we have proved (Th. 3) that the variation of the fune-
tional X: V x V — R defined by

(2.4) ° X(up,u2) = a(ug,uz)~ < fiug > — < g,u; >
is vanishing on the-solutions:(u1,u;) € V x V of the followmg system
of two adjoint variational equations:
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(2.5a) a(uy,v) =< f,v >
(W eV)
(2.5b) a*(uz,v) =< g,v >
where ¢g: V — R is an arbitrary continuous linear functional. If the
functional g is given by

(2.6) <g,v>= / 9o Div dzdt +/ [Digy Div + kgpv]ldz (Vv € V)
Q Qr
for g, € L*(Q) and g, € Hj(€2) then the equation (2.5b) is equivalent
to the following terminal-boundary value problem:
Diu+ D;Dju — ku =g, in L),
Trru =g, in HE(Q),
Trru =0 in L*(D).
The simplest such functional is g = 0.
. In [1] Herrera and Sewell have presented the algebraic construction
of the affine subspaces D,, B} of an arbitrary vector space on which the

functional similar to X is concave and convex respectively. Th. 4.3 from
[1] can be written in the following form:

Theorem 1. Let X: V x V — R be given by X (u1,uz) := a(ug,uz)—
— < fyug > — < g,uy > where the form a: V xV — R s bilinear,
positive and f,g are the linear functionals on V. Let a,B,v,6 be real
numbers such that ‘

(2.7) af <0, v6>0, ad—pFv#0,

(2.8) '

D, := {(u1,u2) €V XV : aa(uy, 2) — fa*(uz,2) =< af — B¢,z >,Vz € V},
(2.9)

Dy = {(u1,uz) € V X V : ya(uy, 2) — 8a*(uz, z) =< 7f — 89,2 >,¥z € V},

and ||ul| :== v/a(u,u). Then
(1) (u1,u2) € VXV s a solution of system (2.5) iff (u1,uz) € DoNDy;
(ii) for all (uq1,ue2) € Do and (up1, upz) € Dy

2 [X (up1, ub2) — X (ua1, uaz)] = mi|[tar ~ up||? +ma||tas — upz ||?

where my := agf;,y > 0; mg := 0_52_%67 > 0;
1) if X(ugqr,u = max X(uj,uz) = min  X{uj,ug) =
( ) f ( aly a.2) (u1,23) €D ( 1, 2) (u1,u2)EDs ( 1, 2)

= X(up1,upz) then (uq1, ua2) = (un, upa);
(iv) of (u1,u2) € V X V i3 a solution of system (2.5) then
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2[X(Ub1,ub2)—X(ua1, ua2)]=7n1 [”ual“u1||2+”ubl"U1”2]+
' +m2‘[”ua2 —ug|® + |usz — U2||2] -
for 'a.ll_(ual,uaz) €D, and (up1,up2) € Dy. O

The subspaces D, and Dj are very important in this theorem.
Next-we shall do some characterizations of them.

3. Dual extremum principles

For a*, f, g given by (1 2), (2. 1) (2.6) we define the functlonal La, |
onV by

1 S ,
(3.1) < Lay,z >:= —zz[a*(v,z)—l— < d'f— Bg,z >] (Vz € V)
and the following auxiliary problem AP(afv): -
(3.2) find u € V such that e(u,z) =< Lay,z > (Vz € ¥).

Definition. A is the set of all elements v € V such that there exists a

solution of the auxiliary problem AP(afv). ,
The equality e(v,v) = ||v||v implies that the solution of this prob-

lem is unique. So, we can define the operator S,: A — D,

(3.3) Se(v) := (wa(v), ug(v))

where u,(v) is a solution of auxiliary problem AP(afv) and
(3.4) ut () = % v — aua(v)].

Lemma 2. The operator S, is a bijection A on D,.
Proof. From the definition"(1.4) of the symmetric form e we have
aa(uy, z) - [)’a*(uz, z) = 2ace(uy, z) — aa*(u, z)' ﬁa*(uz, z)=
=2ae(u, z)—a*(au; +,3u2,z) 2ae(uy,z)—a*(v, z)—<af Bg,z>.
‘Hence (u;, u2) € D, < uy is a-solution AP(a,Hv) for v = ouy+Buy. The
operator S, is one to one because the mapping v La,, is one to one.
Indeed, for La, = La, we have < La, — Lay,z >= —a *(w—w,2) =0
(Vz€V)andfor z =v=w, a*(v—w,v—w) = ||v——w||2 = 0,50 v =w.
Using this bijection we define a new functional:
(3.5) ’ Fop: A—-R F,:=Xo0S,.
Taking z = u; in (2.8) we obtain for all (uq,us) € Dj:
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(3.6) a*(uz,u1) = %a(ul,ul) - % <af —pg,u >

and from (1.3-4)
1
3.7 a(u,ug) = i;-nulnzv ~ g <frawm >+ <gu>.

Therefore for (u;,us) € D, we have

1
(3.8) X (ug,u5) = %nuln%, ~ 5 < fraw + fur >

and forallveV
1
(3.9) fum=%m4m@—5<ﬂu>.

Replacing in (3.1-3.9) the numbers «, 8 by 7,6 we define respec-
tively the auxiliary problem with the functional Lb,, the set B, the
bijection Sy: B — Dp, Sp(w) := (up(w),uj(w)) and the functional
Fy: B — R, F := X 0 S} such that

1
(3.10) me=%mmmm75<ﬁw>.
Corollary of Th. 1. If the numbers a,f8,7,6 satisfy (2.7) the func-
tional F, is concave, F} 1s convezr and F,(v) < Fy(w) for allv € A and
w € B.
The inequality is obvious from the definitions of F,, F; and from
Th. 1 (ii). ¢
Definition. We call dual eztremal principles the following extremal
problems

(3.11) find v € A such that F,(v) = Sup F,
where Sup F), is the number sup F,(v);

vEA
(3.12) find w € B such that Fy(w) = Inf F}

where Inf Fy is the number irelf]; Fy(w).

Because Sup F, = Sup X ID,, and InfFy = Inf X ID,, we can formu-
late two theorems.
Theorem 2. If the dual eztremal principles (3.11-3.12) have the so-
lutions v € A and W € B such that F,(v) = Fy(W) then the element
(u1,uz) = Sa(7) = Sp(W) i3 a solution of the system of variational equa-
tions (2.5) and conversely if (u1,uz) 18 a solution of the system then
the dual extremum principles have the solution U and W respectively and

(u1,u2) = Sa(7) = Sp(W).
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Proof. If the dual extremum principles have the solution v and w such
that Fy(v) = Fy(W) then from (iii) of Th. 1 we obtain (u1,us) :=
= S,(¥) = Sp(w) € D, ND; and from (i) this element (uy,us) is a
solution of the system (2.5).

Let (u1,u2) be a solution of system (2.5). Then from (i) it results
that (ui,uz) belongs to D, N B;. Hence for v := auy + fugz € A
and W := vu; + fuy € B the equation Fu(?) = X(ui,us) = Fp(D)
is satisfied. This means that ¥ and w are the solutions of the dual
extremum principles (3.11-3.12). ¢
Theorem 3. For the solution (uj,uq) of the system (2.5) and any ele-
ments v € A and w € B there 13 the estimation

2 [Fy(w) = Fa(v)] =my [lua(v) — wlly + flus(w) — ual¥/] +
+ma [Jlug(v) = uall} + [luj(w) — ua|l}]
where (ua(v),ug(v)) = Sa(v) and (up(w), uj(w)) = Sa(w).
Proof. It is obvious from (iv) of Th. 1.
Corollary . The element u; = uq(v) = up(W) for the solution of the

dual extremum principles such that F,(v) = Fy(W) is a solution of the
initral-boundary problems (2.3) and the estimation

my [[[ua(v) — w1l + lus(w) — walf}] < 2[Fy(w) — Fa(v)]
18 satisfied for allveV andw eV,
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