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Abstract: Let n be an integer > 1 and let A be a real n ¥ n-matrix. Put
S:={(z1,...,22) €[0,00)" | m1 +... 4+ 25 = 1}. An element p of S is called
an evolutionarily stable strategy (ESS) (with respect to the payoff matrix A)
if pApT 2 zApT for all p € S and if pAzT > zAzT for all z € S\ {p} with
zApT = pApT. For all z €R™ the set suppz := {i € {1,... ,n} | =z; £ 0} is
called the support of 2. The aim of this paper is to provide a criterion for the
existence of an ESS with given support and to give a concrete descriptibn of
such an ESS. By means of this charactenzatxon the case n =3 is completely
settled.

When applying game-theoretical methods to biological situations,
Maynard Smith and.Price ([15]) introduced the notion of an evolution-
arily stable strategy (ESS). For basic literature on ESS’s cf. e.g. [5], [10]
and [14]. It is well-known that (for given payoff matrix) there exists
- at most one ESS with given support. We characterize the existence
of such an ESS by means of inequalities between certain deterrmnants
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and by the strict copositiveness of a certain matrix. We also describe
the unique ESS in this case. As an application, we give a complete de-
scription of all ESS’s in the case of three pure strategies. For literature
concerning the characterization of ESS’s cf. e.g. [1] (correcting [9]), [4],
[6], [7], [11], [12] and [17].

Let n be an arbitrary fixed integer > 1 and let A = (ai;)i j=1,...,n
be a real n X n-matrix. Let R™ denote the set of all n-dimensional real
row vectors and for any a € R® and any ¢ € {1,... ,n} let a; denote the
i-th component of a. If not explicitely stated otherwise, all summation
indices run from 1 to n. Put

s::{x € [0,00)" | Ta _—.1},

N :={z € § | zAzT 2 yAzT for all y € S}, _
E:={z € N|zAyT > yAy” for ally € S\ {z} with yAzT = zAzT}.

The elements of S are called (mized) strategies, those of N Nash equilib-
ria (with respect to the payoff matrix A) and those of E evolutionarily
stable strategies (ESS’s) (with respect to the payoff matrix A). For

all 1,7,k,1 € {1,...,n} put bg;) = air + ar; — aij, CS?’I) = bg;c) if

J # land CE;’I) = a;; if 7 = . For I C {1,...,n} the matrix A is
called strictly I-copositive if zAzT > 0 for all z € R™\ {(0,...,0)}
with £; 2 0 for all : € I. A is called strictly copositive if it is strictly
{1,... ,n}-copositive. For literature concerning strict copositiveness cf.
e.g. [4], [8], [12] and [16]. For alli € {1,...,n} let ¢; denote the element
(0,...,0,1,0,...,0) of R® with 1 on the i-th place and 0 on the other
places. For all z € R put suppz := {1 € {1,...,n} | z; # 0} and
J(z):={i €{1,...,n} | e;AzT = zAzT}. suppz is called the support
of z. Finally, let (T') denote the following condition:

(T) a,b,c,d, e, f are real numbers such that a +¢,b+e,d+ f > 0 and
such that (a + ¢)'/2,(b+ €)'/? and (d + f)!/? are the lengths of the
sides of a triangle of positive area.

Lemma 1 (cf. [2]). Let p € N and ¢ € E and assume p # q. Then

suppp Z J(q)- _
Proof. suppp C J(¢) would imply pA¢T = 3 pi(e;AgT) =
‘ i€supp p
= Y pi(gAq¢T) = gAqT which together with ¢ € E \ {p} would
i€supp p
lead to ¢ApT > pApT contradicting p€ N. {
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Lemma 2 (cf. [13]). Let p € N. Then suppp C J(p).

Proof. pAp" = 3 pi(esdp™)< ¥ pi(pApT) = p4p”. 0
i€supp p i€supp p
Lemma 3. Lei p € N and q € E and assume p # gq. Then suppp ¢

¢ suppq.
Proof. suppp C supp ¢ would imply suppp C J(g) according to Lem-
ma 2. But this contradicts Lemma 1.

Theorem 4. A possesses at most one ESS with given support.
Proof. Lemma 3. {

Lemma 5 (cf. [3]). Let b € R®. Then A and (aij + b;)i j=1,...,n have
the same ESS’s.

Proof. Put B := (aj; + b;):,j=1,..,n. Then for all z,y,z € S we have

(z —y)BzT = (z — y) AT + 2o bz (@i — yi) = (¢ —y)A2T. O

Theorem 6. A and (a;; — aj;)i j=1,.. n have the same ESS’s.
Proof. Lemma 5. {
In the following we assume (without loss of generality) a;; = 0 for
all:=1,... ,n.
Lemma 7. Let p € S. Then the following are equivalent:
(i) pe N;
(ii) pApT > ;ApT for alli=1,... n.
Proof. (i) = (ii): Trivial.
(ii)=(i): For all ¢ € S we have zApT = Y z4(e;ApT) <

< Y zi(pApT) = pApT. ¢

Lemma 8. Let i,k € {1,...,n} and p € S. Then the following are
equivalent:

(i) eidpT {Z} exdpT;

@ T bYpi{Z}aa
j€(supp p)\ {k}
Proof. The following are equivalent:

(i),
<

Y aipi (S} X ax;pj,
J 2
¥ aipi +ai(1- 2 p;) {£} 5 awspsy
ik =3t =t

k
g;k bgj)pj {%} a;; and
J

(i)- 0
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Lemma 9 (cf. [1] and [4]). Let p € N and y € R™\ {(0,...,0)} with
suppy C J(p), yi = 0 for alli € J(p)\suppp and 2 Yi =0. Then there

exists an x € S\ {p} and a positive real number ¢ such that z —p = cy.
Proof. Put ¢ := min{—p;/y; | i € {1,... ,n},ui < 0} and z := p + ey.
Then c is well-defined and positive. Let j € {1,... ,n}. If y; <0 then
pj > 0 and ¢ < —p;/y; and hence z; = p; + cy; > 0. If y; > 0 then
also z; > 0. The rest of the proof is obvious. ¢
Proposition 10 (cf. [1] and [4]). Let p € N and k € suppp. Then the
following are equivalent:

(i) pe E;

@) |I(p)l = 1 or (I9(p)] > 1 and (b)): jesnixy i strictly (J(p) \

\ supp p)-copositive).

Proof. For all z € S we have zApT = ¥ z;(e;ApT) < Y zi(pApT) =

= pApT. Hence, for € S the equality zApT = pApT is equivalent to
suppz C J(p). Put U := {z € R"\ {(0,...,0)} | suppz C J(p), ; >0
for all 7 € J(p) \ suppp and Zx,- = 0}. Using Lemma 9 we see that

the following are equivalent:

(i),

(z —p)A(z — p)T < 0 for all z € S\ {p} with suppz C J(p),
rAzT < 0forall z € U,

zagj:z:,-a:j <0OforallzeU,

i,J
> aiTiTi+ ) a.-kx.-(—- b IBj) + 3 akj(‘" > Iv.'):vj < 0 for all
Ui,#k #k ik ik ik
relU, -

3 bg;)z;xj >0forall zeU,
i,j 2k
> Pz >0foralleeU and
i,j€J(p)\{k}
(). 0
(Observe that U = @ if |J(p)| = 1.)
Theorem 11. Letk € {1,... ,n} and put J:= {i € {1,... ,n} \ {k} |
| aix = 0}. Then the following are equivalent:
(i) ex € E;
(i1) (1) and (2) hold:
(1) aix <0 for alli € {1,... ,n}\ (J U {k}),
(2) J=0, or J #0 and (arj — aij)i jes 18 strictly copositive.
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Proof. Follows from Lemma 7 and Prop. 10 by observing that b(k)
=agj —aiforalle,5 € J. §

Lemma 12. Let B = (b;j)i j=1,..,»n be an arbitrary (not necessarily
symmetric) real positive definite n X n-matriz. Then |B| > 0.

Proof. For all z € R*\ {(0,...,0)} we have z((B + BT)/2)zT =
= zBzT > 0 and hence |(B + BT)/ZI > 0. Now assume |B| < 0.
Put B(t) := tB+ (1 —t)(B + BT)/2 for all t € R. Then t — |B(t)|
is a continuous function, |B(0)] > 0 and |B(1)| < 0 and hence there
exists a tg € (0,1] with |B(%)] = 0. Therefore there exists a d €
€ R*\ {(0,...,0)} with B(ts)dT = (0,...,0)T. Now we would obtain
dBdT = dB(ty)d" = 0 contradicting the positive definiteness of B.
Hence |B| > 0. ¢

Theorem 13. Let I C {1,... ,n} with |I| > 1, let k € I and put

J =TI\ {k}, D := |V jesl, Di o= |(cE)ijesl for all 1 € T and
K = {z e€{1,...,n}\I| X bgf)D] = a,kD}. Then the following are
i€T

equivalent:
(i) A possesses an ESS with support I;
(i1) (1)—~(4) hold:
(1) D; >0 forallj e J,
(2) Z 'D.f < D,
jE€J :
(3) E b9 D; > auD for alli € {1,... ,n}\ (JUK),

(4) (bij )i,jeJuk 18 strictly K -copositive.
If this 13 the case then the corresponding ESS p is given by p; := D;/D
foralljeJ, pr:=1~ 5 p; and p; := 0 otherwise.
Jj€J
Proof. (i)= (ii): Let p denote the ESS with support I. Because of
Lemma 2 and Prop. 10 (bgf))i,jej is positive definite. According to
Lemma 12 we have D > 0. Because of Lemmas 2 and 8 it holds
E bIJ Pj = aix for all ¢ € J. Applying Cramer’s rule we obtain p; =

= D ;/D for all j € J. Now (1) and (2) follow immediately. Observe
that J(p) = I U K (because of Lemmas 2 and 8). (3) follows from
Lemmas 2 and 8. (4) finally follows from Prop. 10. ~

(ii)=(i): Define p € Sby p; :=Dj/D forall j € J, pp := 1 —

— Y, pj and p; := 0 otherwise. Because of (1) and (2) suppp = I
JET
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and D > 0. According to Cramer’s rule > bgf)pj = ai for all ¢ €
JEJ

€ J. Because of (3) we have )}, bg-:)p_,- >aj; foralli=1,...,n. Now
JEJ

Lemmas 2, 7 and 8 imply p € N. Using (3) and Lemmas 2 and 8 we
obtain J(p) = IU K. Now p € E follows from (4) and Prop. 10. {

Theorem 14 (cf. [17]). Let A = (0 a) with a,b € R. Then (1)—(v)

b 0

hold:

(i) Ifa=b=0 then E=0,

(ii) fb<0<a#bthen E = {e},

(iii) fa <0< b#a then E = {e3},

(iv) ifa,b> 0 then E = {(a,b)/(a + b)},

(v) #fa,b<0 then E = {e1,ez}.
Proof. We apply Theorems 11 and 13. e¢; € E if and only if 6 < 0 or
b=0<a. e € Eifandonlyifa<0ora=0<b. A hasan ESS with
support {1,2} if and only if a,b > 0. If this is the case then this ESS

reads (a,b)/(a+b). ¢
Lemma 15. Let B = (Z b) with a,b,c,d € R. Then (i) and (ii)

d

hold:

(i) B is positive definite if and only if a,d > 0 and |b+¢c| < 2(ad)/?,

(ii) B is strictly copositive if and only ifa,d > 0 and b+c > —2(ad)'/2.
Proof. (i) If B is positive definite then a = e;Bel > 0, d = e;Bel >
> 0 and a(4ad — (b + ¢)?) = (b+ ¢,—2a)B(b + ¢,—2a)T > 0 whence
b + ¢| < 2(ad)!/?. Conversely, assume a,d > 0 and |b + ¢| < 2(ad)'/2.
Then 4azBzT = (2az; + (b + ¢)z3)? + (4ad — (b + ¢)*)z3 > 0 for all
z € R%\ {(0,0)}.

(ii) If B is strictly copositive then a = e; Bel >0, d = e;Be] >0
 and (ad)/2(2(ad)/? + b + ¢) = (d*/?,a'/?)B(d*/?,a/?)T > 0 whence
b+ ¢ > —2(ad)/?. Conversely, assume a,d > 0 and b+ ¢ > —2(ad)'/2.
Then zBzT = (a'/?zy — d"/?z3)? + (2(ad)'/? + b + ¢)z1z, > 0 for all
z € [0,00)” \ {(0,0)}. O ,

Lemma 16. Let a,b,c,d,e,f € R with a+ ¢c,b+ e > 0. Then the
following are equivalent: '
() (a+ &)+ (b4 )" +(d+ 1) —2a+c)b+e) —2ate)d+f)—

—2(b+e)(d+ f) <0

(i) (T). :
Proof. Put g := (a+c)*+(b+e)2+(d+ f)®—2(a+c)(b+e)—2(a+c)(d+
+f)—2(b+e)d+f). Then g = (a+c—b—e—d—f)>—4(b+e)(d+ f).
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Hence (i) implies d+ f > 0. Under the additional assumption d+ f > 0
the following are equivalent:

9<0,

(a+c—b—e—d—f)? <4(b+e)(d+ f),

la+c—b—e—d— f| <2(b+e)/?(d+ f)/2,

atc—b—e—d—f<20b+e)/*(d+f)/?and —a—c+b+e+
+d+ f <2(b+e)/2(d + F)1/2,

ate < ((b+e)2+(d+£)1/2)? and ((b+e) /2 —(d+£)1/?)? < a+e,
(@t P < (b+e) /P4 (d+ £)/? and |(b+ )/ — (d+ f)112] <
< (a+c)'/?,

(a+c)1/2 < (b+e)1/2+(d+f)1/2 (b+e)1/2 (d+f)1/2 (a+c)1/2
and (d+ f)Y/2 — (b+ €)'/? < (a + ¢)1/2,

(T). ¢
0 a b
Theorem 17 (cf. [17]). Assume A= | ¢ 0 d | witha,b,c,d,e, f €
e f O

€ R and put Dy := ad+bf—df, D, := be+de—be and D3 := ae+cf—ac.

Then (1)—(vii) hold:

(i) es € Eifand onlyifc,e<O0orc<O0=e<bore<0=c<a
or (c=e=0<a,band d+ f < (al/? 4 b1/2)2),

(i) e € Eifand only ifa,f <0 ora<0=f<dorf<O0=a<c
or(a=f=0<cdandb+e<(c/? +dl/2)?),

(ili) e3s € Eif and only if b,d <0 orb<O0=d< ford<O=b<e
or(b=d=0<e,f and a+c < (/2 + f1/2)?),

(iv) A possesses an ESS with support {1,2} if and only if D3 < 0 <
<a,c or (D3 =0 < a,c and (T)). In this case the corresponding
ESS reads (a,¢,0)/(a+ ¢),

(v) A possesses an ESS with support {1,3} if and only if D, < 0 <
< b,e or (D2 =0 < b,e and (T)). In this case the corresponding
ESS reads (b,0,¢)/(b + e),

(vi) A possesses an ESS with support {2,3} if and only if D; < 0 <
<d,f or (D1 =0<d,f and (T)). In this case the carrespondmg
ESS reads (0,4, f)/(d+f),

(vii) A possesses an ESS with support {1,2,3} if and only if Dy,
D;,D3 > 0 and (T). In this case the corresponding ESS reads
(D1, D2, D3)/(D1+ Dy + D3).

Proof. (i)-(iii) follow from Th. 11 and Lemma 15. (iv)—(vii) follow

from Th. 13 and from Lemmas 15 and 16. {
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0 a b
Theorem 18. Let A = [ ¢ 0 d | with a,b,¢c,d,e,f € R. Then

e f O
E = {e1,e3,e3} if and only if a,b,¢,d, e, f < 0.
Proof. Theorem 17. {

Theorem 19. Let A = with a,b,c,d,e, f € R. Then (i)

O R, o

o o o

~ O 8

and (ii) hold:

(i) Ifa,d,e > 0 and b,c,f < 0 and min(a+c¢,b+e,d+ f) <0 then

E=40,

(i1) if a,d,e <0 and b,c,f > 0 and min(a + ¢, b+ e,d+ f) <0 then
E=0.
Proof. Theorem 17. {
Theorem 20 (cf. [17]). Let 1,5,k € {1,... ,n} with i # j # k # ¢.
Then {{i,j}.{s, k},{k,i}} € {suppp | p € E}.
Proof. Assume {{:,7},{j,k},{k,:}} C {suppp | p € E}. Then there
exist p,q,r € E with suppp = {i,;}, suppq = {j,k} and suppr =
= {k,:}. Because of Th. 13 a;j, @ik, aji, Gjk, aki, ax; > 0 and ax;/a;; +
+akifaji, aic/ajk +aij/akj, aji/aki +ajr/aix < 1. Hence agj/a;; < 1/2
or agi/aji < 1/2. In the first case a;;/ax; > 2 contradicting a;i/ajx +
+ a;j/ar; < 1. Similarly, the second case leads to a contradiction. ¢
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